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ABSTRACT
Efficient block projections of non-singular matrices have re-
cently been used by the authors in [10] to obtain an efficient
algorithm to find rational solutions for sparse systems of lin-
ear equations. In particular a bound of O (̃n2.5) machine op-
erations is presented for this computation assuming that the
input matrix can be multiplied by a vector with constant-
sized entries using O (̃n) machine operations. Somewhat
more general bounds for black-box matrix computations are
also derived. Unfortunately, the correctness of this algo-
rithm depends on the existence of efficient block projections
of non-singular matrices, and this was only conjectured.

In this paper we establish the correctness of the algorithm
from [10] by proving the existence of efficient block pro-
jections for arbitrary non-singular matrices over sufficiently
large fields. We further demonstrate the usefulness of these
projections by incorporating them into existing black-box
matrix algorithms to derive improved bounds for the cost
of several matrix problems. We consider, in particular, ma-
trices that can be multiplied by a vector using O (̃n) field
operations: We show how to compute the inverse of any
such non-singular matrix over any field using an expected
number of O (̃n2.27) operations in that field. A basis for
the null space of such a matrix, and a certification of its
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rank, are obtained at the same cost. An application of this
technique to Kaltofen and Villard’s Baby-Steps/Giant-Steps
algorithms for the determinant and Smith Form of an inte-
ger matrix is also sketched, yielding algorithms requiring
O (̃n2.66) machine operations. More general bounds involv-
ing the number of black-box matrix operations to be used
are also obtained.

The derived algorithms are all probabilistic of the Las Ve-
gas type. They are assumed to be able to generate random
elements — bits or field elements — at unit cost, and always
output the correct answer in the expected time given.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, analysis of algorithms

General Terms
Algorithms

Keywords
Sparse integer matrix, structured integer matrix, linear sys-
tem solving, black box linear algebra

1. INTRODUCTION
In our paper [10] we presented an algorithm which pur-

portedly solved a sparse system of rational equations consid-
erably more efficiently than standard linear equations solv-
ing. Unfortunately, its effectiveness in all cases was conjec-
tural, even as its complexity and actual performance were
very appealing. This effectiveness relied on a conjecture re-
garding the existence of so-called efficient block projections.
Given a matrix A ∈ F

n×n over any field F, these projections
should be block vectors u ∈ F

n×s (where s is a blocking
factor dividing n, so n = ms) such that we can compute uv
or vtu quickly for any v ∈ F

n×s, and such that the sequence
of vectors u, Au, . . . , Am−1u has rank n. In this paper, we



prove the existence of a class of such efficient block projec-
tions for non-singular n × n matrices over sufficiently large
fields; we require that the size of the field F exceed n(n+1).

This can be used to establish a variety of results concern-
ing matrices A ∈ Z

n×n with efficient matrix-vector prod-
ucts — in particular, such that a matrix-vector product
Ax mod p can be computed for a given integer vector x and a
small (word-sized) prime p using O (̃n) bit operations. Such
matrices include all “sparse” matrices having O(n) nonzero
entries, assuming these are appropriately represented. They
also include a variety of “structured” matrices, having con-
stant “displacement rank” (for one definition of displace-
ment rank or another) studied in the recent literature.

In particular, our existence result implies that if A ∈ Z
n×n

is non-singular and has an efficient matrix-vector product
then the Las Vegas algorithm for system solving given in
[10] can be used to solve a system Ax = b for a given integer
vector b using an expected number of matrix-vector products
modulo a word-sized prime that is O (̃n1.5 log(‖A‖ + ‖b‖))
together with an expected number of additional bit opera-
tions that is O (̃n2.5 log(‖A‖ + ‖b‖)). If A has an efficient
matrix-vector product then the total expected number of bit
operations used by this algorithm is less than that used by
any previously known algorithm, at least when “standard”
(i.e., cubic) matrix arithmetic is used.

Consider, for example, the case when the cost of a matrix-
vector product by A modulo a word-sized prime is O (̃n)
operations, and the entries in A are constant size. The cost
of our algorithm will be O (̃n2.5) bit operations. This im-
proves upon the p-adic lifting method of Dixon [6], which
requires O (̃n3) bit operations for sparse or dense matrices.
This theoretical efficiency was reflected in practice in [10] at
least for large matrices.

We present several other rather surprising applications of
this technique. Each incorporates the technique into an ex-
isting algorithm in order to reduce the asymptotic complex-
ity for the matrix problem to be solved. In particular, given
a matrix A ∈ F

n×n over an arbitrary field F, we are able to
compute the complete inverse of A with O (̃n3−1/(ω−1)) op-

erations in F plus O (̃n2−1/(ω−1)) matrix-vector products by
A. Here ω is such that we can multiply two n× n matrices
with O(nω) operations in F. Standard matrix multiplication
gives ω = 3, while the best known matrix multiplication of
Coppersmith and Winograd [5] has ω = 2.376. If again we
can compute v 7→ Av with O (̃n) operations in F, this implies

an algorithm to compute the inverse with O (̃n3−1/(ω−1)) op-
erations in F. This is always in O (̃nω), and in particular
equals O (̃n2.27) operations in F for the best known ω of
[5]. Other relatively straightforward applications of these
techniques yield algorithms for the full nullspace and (certi-
fied) rank with this same cost. Finally, we sketch how these
methods can be employed in the algorithms of Kaltofen and
Villard [18] and Giesbrecht [13] to computing the determi-
nant and Smith form of sparse matrices more efficiently.

There has certainly been much important work done on
finding exact solutions to sparse rational systems prior to
[10]. Dixon’s p-adic lifting algorithm [6] performs extremely
well in practice for dense and sparse linear systems, and is
implemented efficiently in LinBox [7] and Magma (see [10]
for a comparison). Kaltofen and Saunders [17] are the first
to propose to use Krylov-type algorithms for these prob-
lems. Krylov-type methods are used to find Smith forms of
sparse matrices and to solve Diophantine systems in paral-

lel in [12, 13], and this is further developed in [8, 18]. See
the references in these papers for a more complete history.
For sparse systems over a field, the seminal work is that
of Wiedemann [22] who shows how to solve sparse n × n
systems over a field with O(n) matrix-vector products and
O(n2) other operations. This research is further developed
in [4, 16, 17] and many other works. The bit complexity of
similar operations for various families of structured matrices
is examined by Emiris and Pan [11].

2. EFFICIENT BLOCK PROJECTIONS
For now we will consider an arbitrary invertible matrix

A ∈ F
n×n over a field F, and s an integer, the blocking factor,

that divides n exactly. Let m = n/s. For a so-called block
projection u ∈ F

n×s and 1 ≤ k ≤ m, we denote by Kk(A, u)
the block Krylov matrix [u, Au, . . . , Ak−1u] ∈ F

n×ks. We
wish to show that Km(A, u) ∈ F

n×n is non-singular for a
particularly simple and sparse u, assuming some properties
of A.

Our factorization uses the special projection (which we
will refer to as an efficient block projection)

u =

2
64

Is

...
Is

3
75 ∈ F

n×s, (2.1)

which is comprised of m copies of Is and thus has exactly
n non-zero entries. We suggest a similar projection in [10]
without proof of its reliability (i.e., that the corresponding
block Krylov matrix is non-singular). We establish here that
it does yield a block Krylov matrix of full rank, and hence
can be used for an efficient inverse of a sparse A.

Let D = diag(δ1, . . . , δ1, δ2, . . . , δ2, . . . , δm, . . . , δm) be an
n × n diagonal matrix whose entries consist of m distinct
indeterminates δi, each δi occurring s times.

Theorem 2.1. If the leading ks× ks minor of A is non-
zero, for 1 ≤ k ≤ m, then Km(DAD, u) ∈ F[δ1, . . . , δm]n×n

is non-singular.

Proof. Let B = DAD. For 1 ≤ k ≤ m, define Bk as
the specialization of B obtained by setting δk+1, δk+2, . . . , δm

to zero. Thus Bk is the matrix constructed by setting to
zero the last n − ks rows and columns of B. Similarly, for
1 ≤ k ≤ m we define uk ∈ F

n×s to be the matrix constructed
from u by setting to zero the last n− ks rows. In particular
we have Bm = B and um = u. This specialization will allow
us to argue incrementally about how the rank is increased
as k increases.

We proceed by induction on k and show that

rankKk(Bk, uk) = ks, (2.2)

for 1 ≤ k ≤ m. For the base case k = 1 we haveK1(B1, u1) =
u1 and thus rankK1(B1, u1) = rank u1 = s.

Now, assume that (2.2) holds for some k with 1 ≤ k < m.
By the definition of Bk and uk, only the first ks rows of
Bk and uk will be involved in the left hand side of (2.2).
Similarly, only the first ks columns of Bk will be involved.
Since by assumption on B the leading ks× ks minor is non-
zero, we have rankBkKk(Bk, uk) = ks, which is equivalent
to rankKk(Bk,Bkuk) = ks. By the fact that the first ks
rows of uk+1 − uk are zero, we have Bk(uk+1 − uk) = 0, or
equivalently Bkuk+1 = Bkuk, and hence

rankKk(Bk,Bkuk+1) = ks. (2.3)



The matrix in (2.3) can be written as

Kk(Bk,Bkuk+1) =

»
Mk

0

–
∈ F

n×ks,

where Mk ∈ F
ks×ks is non-singular. Introducing the block

uk+1 we obtain the matrix

[uk+1,Kk(Bk,Bkuk+1)] =

2
4
∗ Mk

Is 0
0 0

3
5 . (2.4)

whose rank is (k + 1)s. Noticing that
»
uk+1,Kk(Bk,Bkuk+1)

–
= Kk+1 (Bk, uk+1) ,

we are led to

rankKk+1(Bk, uk+1) = (k + 1)s.

Finally, using the fact that Bk is the specialization of Bk+1

obtained by setting δk+1 to zero, we obtain

rankKk+1(Bk+1, uk+1) = (k + 1)s,

which is (2.2) for k + 1 and thus establishes the theorem by
induction.

If the leading ks × ks minor of A is non-zero, then the
leading ks × ks minor of AT is non-zero as well, for any
integer k. This gives us the following corollary.

Corollary 2.2. If the leading ks×ks minor of A is non-
zero for 1 ≤ k ≤ m, and B = DAD, then Km(BT , u) is
non-singular.

Suppose now that A ∈ F
n×n is an arbitrary non-singular

matrix and the size of F exceeds n(n + 1). It follows by
Theorem 2 of Kaltofen and Saunders [17] that there exists
a lower triangular Toeplitz matrix L ∈ F

n×n and an upper
triangular Toeplitz matrix U ∈ F

n×n such that each of the

leading minors of bA = UAL is non-zero. Let B = D bAD; the
product of the determinants of the matrices Km(B, u) and
Km(BT , u) (mentioned in the above theorem and corollary)
is a polynomial with total degree less than 2n(m − 1) <
n(n + 1) (if m 6= 1). In this case it follows that there is
also a non-singular diagonal matrix D ∈ F

n×n such that
Km(B, u) and Km(BT , u) are non-singular, for

B = D bAD = DUALD.

Now let R = LD2U ∈ F
n×n, bu ∈ F

s×n and bv ∈ F
n×s such

that

buT = (LT )−1D−1u and bv = LDu.

Then

Km(RA, bv) = LDKm(B, u)

and

LT DKm((RA)T , buT ) = Km(BT , u),

so thatKm(RA, bv) andKm((RA)T , buT ) are each non-singular
as well. Because D is diagonal and U and L are triangular
Toeplitz matrices, it is now easily established that (R, bu, bv)
is an efficient block projection for the given matrix A, where
such projections are as defined in [10].

This proves Conjecture 2.1 of [10] for the case that the
size of F exceeds n(n + 1):

Corollary 2.3. For any non-singular A ∈ F
n×n and

s |n (over a field of size greater than n(n + 1)) there exists
an efficient block projection (R, u, v) ∈ F

n×n×F
s×n×F

n×s.

3. FACTORIZATION OF THE MATRIX
INVERSE

The existence of the efficient block projection established
in the previous section allows us to define a useful factor-
ization of the inverse of a matrix. This was used to obtain
faster heuristics for solving integer systems in [10]. The basis
is the following factorization of the matrix inverse.

Let B = DAD, where D is an n×n diagonal matrix whose
diagonal entries consist of m distinct indeterminates, each
occurring s times contiguously, as previously defined. Define

K(r)
u = Km(B, u) with u as in (2.1) and K(`)

u = Km(BT , u)T ,
where (r) and (`) refer to projection on the right and left
respectively. For any 0 ≤ k ≤ m − 1 and any two indices
l and r such than l + r = k we have uTBl · Bru = uTBku.
Hence the matrix Hu = K(`)

u · B · K(r)
u is block-Hankel with

blocks of dimension s× s:

Hu =

2
66664

uTBu uTB2u . . . uTBmu

uTB2u uTB3u . .
. ...

... . .
.

uTB2m−2u
uTBmu . . . uTB2m−2u uTB2m−1u

3
77775

Notice that Hu = K(`)
u · B · K(r)

u = K(`)
u · DAD · K(r)

u .
Theorem 2.1 and Corollary 2.2 imply that if all leading ks×
ks minors of A are non-singular then K

(`)
u and K

(r)
u are each

non-singular as well. This establishes the following.

Theorem 3.1. If A ∈ F
n×n is such that all leading ks×

ks minors are non-singular, D is a diagonal matrix of in-
determinates, and B = DAD, then B−1 and A−1 may be
factored as

B−1 =K(r)
u H−1

u K(`)
u ,

A−1 =DK(r)
u H−1

u K(`)
u D,

(3.1)

where K(`)
u and K(r)

u are as defined above, and Hu ∈ F
n×n

is block-Hankel (and invertible) with s× s blocks, as above.

Note that for any specialization of the indeterminates inD to
field elements in F such that detHu 6= 0 we obtain a similar
formula to (3.1) completely over F. A similar factorization
in the non-blocked case is used in [9, (4.5)] for fast parallel
matrix inversion.

4. BLACK-BOX MATRIX INVERSION
OVER A FIELD

Suppose again that A ∈ F
n×n is invertible, and that for

any v ∈ F
n×1 the products Av and AT v can be computed in

φ(n) operations in F (where φ(n) ≥ n). Following Kaltofen,
we call such matrix-vector and vector-matrix products black-
box evaluations of A. In this section we will show how to
compute A−1 with O (̃n2−1/(ω−1)) black box evaluations and

O (̃n3−1/(ω−1)) additional operations in F. Note that when
φ(n) = O (̃n) the exponent in n of this cost is smaller than
ω, and is O (̃n2.273) with the currently best-known matrix
multiplication.



Again assume that n = ms, where s is a blocking factor
and m the number of blocks. Assume for the moment that
all principal ks× ks minors of A are non-zero, 1 ≤ k ≤ m.

Let δ1, δ2, . . . , δm be the indeterminates that form the di-
agonal entries of D and let B = DAD. By Theorem 2.1
and Corollary 2.2, the matrices Km(B, u) and Km(BT , u)
are each invertible. If m ≥ 2 then the product of the
determinants of these matrices is a non-zero polynomial
∆ ∈ F[δ1, . . . , δm] with total degree at most 2n(m− 1).

Suppose that F has at least 2n(m− 1) elements. Then ∆
cannot be zero at all points in (F \ {0})n. Let d1, d2, . . . , dm

be non-zero elements of F such that ∆(d1, d2, . . . , dm) 6= 0,
let D = diag(d1, . . . , d1, . . . , dm, . . . , dm), and let B = DAD.

Then K
(r)
u = Km(B, u) ∈ F

n×n and K
(`)
u = Km(BT , u)T ∈

F
n×n are each invertible because ∆(d1, d2, . . . , dm) 6= 0, B

is invertible because A is and d1, d2, . . . , dm are all non-zero,

and thus Hu = K
(`)
u BK

(r)
u ∈ F

n×n is invertible as well.
Correspondingly, (3.1) suggests

B−1 = K(r)
u H−1

u K(`)
u , and A−1 = DK(r)

u H−1
u K(`)

u D

for computing the matrix inverse.

1. Computation of uT , uT B, . . . , uT B2m−1 and K
(`)
u .

We can compute this sequence, hence K
(r)
u , with m−1

applications of B to vectors using O(nφ(n)) operations
in F.

2. Computation of Hu.

Due to the special form (2.1) of u, one may then com-
pute wu for any w ∈ F

s×n with O(sn) operations.
Hence we can now compute uT Biu for 0 ≤ i ≤ 2m− 1
with O(n2) operations in F.

3. Computation of H−1
u .

The off-diagonal inverse representation of H−1
u as in

(A.4) in the Appendix can be found with O (̃sωm) op-
erations by Proposition A.1.

4. Computation of H−1
u K

(`)
u .

From Corollary A.2 in the Appendix, we can compute
the product H−1

u M for any matrix M ∈ F
n×n with

O (̃sωm2) operations.

5. Computation of K
(r)
u · (H−1

u K
(`)
u ).

We can compute K
(r)
u M = [u, Bu, . . . , Bm−1u]M , for

any M ∈ F
n×n by splitting M into m blocks of s

consecutive rows Mi, for 0 ≤ i ≤ m− 1:

KuM =

m−1X

i=0

Bi(uMi)

=uM0 + B(uM1 + B(uM2 + · · ·
· · ·+ B(uMm−2 + BuMm−1) · · · ).

(4.1)

Because of the special form (2.1) of u, each product
uMi ∈ F

n×n requires O(n2) operations, and hence all
such products involved in (4.1) can be computed in
O(mn2) operations. Because applying B to an n × n

matrix costs nφ(n) operations, K
(r)
u M is computed in

O(mnφ(n) + mn2) operations using the iterative form
of (4.1)

In total, the above process requires O(mn) applications
of A to a vector (the same as for B), and O(sωm2 + mn2)

additional operations. If φ(n) = O (̃n), the overall number
of field operations is minimized with the blocking factor s =
n1/(ω−1).

Theorem 4.1. Let A ∈ F
n×n, where n = ms and s =

n1/(ω−1), be such that all leading ks × ks minors are non-
singular for 1 ≤ k ≤ m. Let B = DAD, for D = diag(d1,
. . . , d1, . . . , dm, . . . , dm), such that d1, . . . , dm are non-zero
and each of the matrices Km(DAD, u) and Km((DAD)T , u)
is invertible. Then the inverse matrix A−1 can be computed
using O(n2−1/(ω−1)) black box operations and an additional

O (̃n3−1/(ω−1)) operations in F.

The above discussion makes a number of assumptions.
First, it assumes that the blocking factor s exactly divides

n. This is easily accommodated by simply extending n to
the nearest multiple of s, placing A in the top left corner
of the augmented matrix, and adding diagonal ones in the
bottom right corner.

Theorem 4.1 also makes the assumptions that all the lead-
ing ks × ks minors of A are non-singular and that the de-
terminants of Km(DAD, u) and Km((DAD)T , u) are each
non-zero. Although we know of no way to ensure this de-
terministically in the times given, standard techniques can
be used to obtain these properties probabilistically if F is
sufficiently large.

Suppose, in particular, that n ≥ 16 and that #F > 2(m+
1)ndlog2 ne. Fix a set S of at least 2(m + 1)ndlog2 ne non-
zero elements of F. We can ensure that the leading ks ×
ks minors of A are non-zero by pre- and post-multiplying
by butterfly network preconditioners X and Y respectively,
with parameters chosen uniformly and randomly from S. If
X and Y are constructed using the generic exchange matrix
of [4, §6.2], then it will use at most ndlog2 ne/2 random el-
ements from S, and from [4, Theorem 6.3] it follows that

all leading ks × ks minors of eA = XAY will be non-zero
simultaneously with probability at least 3/4. This proba-
bility of success can be made arbitrarily close to 1 with a

choice from a larger S. We note that A−1 = Y eA−1X. Thus,

once we have computed eA−1 we can compute A−1 with an
additional O (̃n2) operations in F, using the fact that multi-
plication of an arbitrary n× n matrix by an n× n butterfly
preconditioner can be done with O (̃n2) operations.

Once again let ∆ be the products of the determinants
of the matrices Km(DAD, u) and Km((DAD)T , u), so that
∆ is non-zero with total degree at most 2n(m − 1). If we
choose randomly selected values from S for δ1, . . . , δm, be-
cause #S ≥ 2(m + 1)ndlog2 ne > 4 deg ∆ the probability
that ∆ is zero at this point is at most 1/4 by the Schwartz-
Zippel Lemma [21, 23].

In summary, for randomly selected butterfly precondition-
ers X, Y as above, and independently and randomly chosen

values d1, d2, . . . , dm the probability that eA = XAY has
non-singular leading ks × ks minors for 1 ≤ k ≤ m and
∆(d1, d2, . . . , dm) is non-zero is at least 9/16 > 1/2 when
random choices are made uniformly and independently from
a finite subset S of F\{0} with size at least 2(m+1)ndlog2 ne.

When #F ≤ 2(m + 1)ndlog2 ne, we can easily construct
a field extension E of F that has size greater than 2(m +
1)ndlog2 ne and perform the computation in that extension.
Because this extension will have degree O(log#F

n) over F, it
will add only a logarithmic factor to the final cost. While we
certainly do not claim that this is not of practical concern,
it does not affect the asymptotic complexity.



This algorithm is Las Vegas (or trivially modified to be
so): For if either Km(DAD, u) or Km((DAD)T , u) is singular
then so is Hu and this is detected at step 3. On the other
hand, if Km(DAD, u) and Km((DAD)T , u) are both non-
singular then the algorithm’s output is correct.

Theorem 4.2. Let A ∈ F
n×n be non-singular. Then the

inverse matrix A−1 can be computed by a Las Vegas algo-
rithm whose expected cost is O (̃n2−1/(ω−1)) black box oper-

ations and O (̃n3−1/(ω−1)) additional operations in F.

Table 4.1 (below) states the expected costs to compute
the inverse using various values of ω when φ(n) = O (̃n).

ω Black-box Blocking Inversion
applications factor cost

3 (Standard) 1.5 n1/2 O (̃n2.5)

2.807 (Strassen) 1.446 n0.553 O (̃n2.446)

2.3755 (Cop/Win) 1.273 n0.728 O (̃n2.273)

Table 4.1: Exponents of matrix inversion with a ma-

trix × vector cost φ(n) = O (̃n).

Remark 4.3. The structure (2.1) of the projection u plays
a central role in computing the product of the block Krylov
matrix by a n×n matrix. For a general projection u ∈ F

n×s,
how to do better than a general matrix multiplication, i.e.,
how to take advantage of the Krylov structure for computing
KuM , appears to be unknown.

Multiplying a Black-Box Matrix Inverse By
Any Matrix
The above method can also be used to compute A−1M for
any matrix M ∈ F

n×n with the same cost as in Theorem 4.2.
Consider the new step 1.5:

1.5. Computation of K
(`)
u ·M .

Split M into m blocks of s columns, so that M =
[M0, . . . , Mm−1] where Mk ∈ F

n×s. Now consider com-

puting K
(`)
u ·Mk for some k ∈ {0, . . . , m−1}. This can

be accomplished by computing BiMk for 0 ≤ i ≤ m−1
in sequence, and then multiplying on the left by uT to
compute uT BiMk for each iterate.

The cost for computing K
(`)
u Mk for a single k by the

above process is n − s multiplication of A to vectors
and O(ns) additional operations in F. The cost of
doing this for all k such that 0 ≤ k ≤ m − 1 is thus
m(n − s) < nm multiplications of A to vectors and
O(n2) additional operations. Since applying A (and
hence B) to an n×n matrix is assumed to cost nφ(n)

operations in F, K
(`)
u ·M is computed in O(mnφ(n) +

mn2) operations in F by the process described here.

Note that this is the same as the cost of Step 5, so the
overall cost estimate is not affected. Because Step 4 does

not rely on any special form for K
(`)
u , we can replace it with

a computation of H−1
u · (K(`)

u M) with the same cost. The
output is again easily certified with n additional black-box
evaluations. We obtain the following corollary.

Corollary 4.4. Let A ∈ F
n×n be non-singular and let

M ∈ F
n×n. We can compute A−1M with a Las Vegas algo-

rithm whose expected cost is O (̃n2−1/(ω−1)) black box oper-

ations and O (̃n3−1/(ω−1)) additional operations in F.

The estimates in Table 4.1 apply to this computation as
well.

5. APPLICATIONS TO BLACK-BOX
MATRICES OVER A FIELD

The algorithms of the previous section have applications
in some important computations with black-box matrices
over an arbitrary field F. In particular, we consider the
problems of computing the nullspace and rank of a black-
box matrix. Each of these algorithms is probabilistic of the
Las Vegas type; the output is certified to be correct.

Kaltofen and Saunders [17] present algorithms for com-
puting the rank of a matrix and for randomly sampling the
nullspace, building upon the work of Wiedemann [22]. In
particular, they show for random lower upper and lower tri-
angular Toeplitz matrices U, L ∈ F

n×n, and random diag-

onal D, that all leading k × k minors of eA = UALD are

non-singular for 1 ≤ k ≤ r = rank A, and that if f
eA ∈ F[x]

is the minimal polynomial of eA, then it has degree r+1 if A
is singular (and degree n if A is non-singular). This is proved
to be true for any input A ∈ F

n×n, and for random choice of
U , L and D, with high probability. The cost of computing

f
eA (and hence rank A) is shown to be O(n) applications of

the black-box for A and O(n2) additional operations in F.
However, no certificate is provided that the rank is correct
within this cost (and we do not know of one or provide one
here). Kaltofen and Saunders [17] also show how to gener-
ate a vector uniformly and randomly from the nullspace of
A with this cost (and, of course, this is certifiable with a
single evaluation of the black box for A). We also note that
the algorithms of Wiedemann and Kaltofen and Saunders
require only a linear amount of extra space, which will not
be the case for our algorithms.

We first employ the random preconditioning of [17] and let
eA = UALD as above. We will thus assume in what follows
that A has all leading i×i minors non-singular for 1 ≤ i ≤ r.
Although an unlucky choice may make this statement false,
this case will be identified in our method. Also assume that
we have computed the rank r of A with high probability.
Again, this will be certified in what follows.

1. Inverting the leading minor.

Let A0 be the leading r × r minor of A and partition
A as

A =

„
A0 A1

A2 A3

«
.

Using the algorithm of the previous section, compute
A−1

0 . If this fails, and the leading r × r minor is
singular, then either the randomized conditioning or
the rank estimate has failed and we either report this
failure or try again with a different randomized pre-
conditioning. If we can compute A−1

0 , then the rank
of A is at least the estimated r.

2. Applying the inverted leading minor.

Compute A−1
0 A1 ∈ F

r×(n−r) using the algorithm of
the previous section (this could in fact be merged into
the first step).



3. Confirming the nullspace.

Note that
„

A0 A1

A2 A3

«„
A−1

0 A1

−I

«

| {z }
N

=

„
0

A2A
−1
0 A1 −A3

«
= 0,

and the Schur complement A2A
−1
0 A1 − A3 must be

zero if the rank r is correct. This can be checked with
n− r evaluations of the black box for A. We note that

because of its structure, N =
“

A−1

0
A1

−I

”
has rank n−r.

4. Output rank and nullspace basis.

If the Schur complement is zero, then output the rank
r and N , whose columns give a basis for the nullspace
of A. Otherwise, output “fail” (and possibly retry with
a different randomized pre-conditioning).

Theorem 5.1. Let A ∈ F
n×n have rank r. Then a basis

for the nullspace of A and rank r of A can be computed with
an expected number of O (̃n2−1/(ω−1)) applications of A to a

vector, plus an additional expected number of O (̃n3−1/(ω−1))
operations in F. The algorithm is probabilistic of the Las
Vegas type.

6. APPLICATIONS TO SPARSE RATIONAL
LINEAR SYSTEMS

Given a non-singular A ∈ Z
n×n and b ∈ Z

n×1, in [10]
we presented an algorithm and implementation to compute
A−1b with O (̃n1.5(log(‖A‖+ ‖b‖))) matrix-vector products
v 7→ A mod p for a machine-word sized prime p and any v ∈
Z

n×1
p plus O (̃n2.5(log(‖A‖+‖b‖))) additional bit-operations.

Assuming that A and b had constant sized entries, and that a
matrix-vector product by A mod p could be performed with
O (̃n) operations modulo p, the algorithm presented could
solve a system with O (̃n2.5) bit operations. Unfortunately,
this result was conditional upon the unproven Conjecture
2.1 of [10]: the existence of an efficient block projection.
This conjecture was established in Corollary 2.3 of the cur-
rent paper. We can now unconditionally state the following
theorem.

Theorem 6.1. Given any invertible A ∈ Z
n×n and b ∈

Z
n×1, we can compute A−1b using a Las Vegas algorithm.

The expected number of matrix-vector products v 7→ Av mod
p is in O (̃n1.5(log(‖A‖ + ‖b‖))), and the expected num-
ber of additional bit-operations used by this algorithm is in
O (̃n2.5(log(‖A‖+ ‖b‖))).

Sparse Integer Determinant and Smith Form
The efficient block projection of Theorem 2.1 can also be
employed relatively directly into the block baby-steps/giant-
steps methods of [18] for computing the determinant of an
integer matrix. This will yield improved algorithms for the
determinant and Smith form of a sparse integer matrix. Un-
fortunately, the new techniques do not obviously improve
the asymptotic cost of their algorithms in the case for which
they were designed, namely, for computations of the deter-
minants of dense integer matrices.

We only sketch the method for computing the determinant
here following the algorithm in Section 4 of [18], and esti-
mate its complexity. Throughout we assume that A ∈ Z

n×n

is non-singular and assume that we can compute v 7→ Av

with φ(n) integer operations, where the bit-lengths of these
integers are bounded by O (̃log(n + ‖v‖+ ‖A‖)).

1. Preconditioning and setup.

Precondition A ← B = D1UAD2, where D1, D2 are
random diagonal matrices, and U is a unimodular pre-
conditioner from [22, §5]. While we will not provide
the detailed analysis here, selecting coefficients for these
randomly from a set S1 of size n3 is sufficient to ensure
a high probability of success. This preconditioning will
ensure that all leading minors are non-singular and
that the characteristic polynomial is squarefree with
high probability (see [4] Theorem 4.3 for a proof of
the latter condition). From Theorem 2.1, we also see
that Km(B, u) has full rank with high probability.

Let p be a prime that is larger than the a priori bound
on the coefficients of the characteristic polynomial of
A; this is easily determined to be (n log ‖A‖)n+o(1).
Fix a blocking factor s to be optimized later, and as-
sume n = ms.

2. Choosing projections.

Let u ∈ Z
n×s be an efficient block projection as in

(2.1) and v ∈ Z
n×s a random (dense) block projection

with coefficients chosen from a set S2 of size at least
2n2.

3. Forming the sequence αi = uAiv ∈ Z
s×s.

Compute this sequence for i = 0 . . . 2m. Computing
all the Aiv takes O (̃nφ(n) ·m log ‖A‖) bit operations.
Computing all the uAiv takes O (̃n2 · m log ‖A‖) bit
operations.

4. Computing the minimal matrix generator.

The minimal matrix generator F (λ) modulo p can be
computed from the initial sequence segment α0, . . . ,
α2m−1. See [18, §4]. This can be accomplished with
O (̃msω · n log ‖A‖) bit operations.

5. Extracting the determinant.

Following the algorithm in [18, §4], we first check if
its degree is less than n and if so, return “failure”.
Otherwise, we know det F A(λ) = det(λI−A). Return
det A = det F (0) mod p.

The correctness of the algorithm, and specifically the block
projections, follows from fact that [u, Au, . . . , Am−1u] is of
full rank with high probability by Theorem 2.1. Because the
projection v is dense, the analysis of [18, (2.6)] is applicable,
and the minimal generating polynomial will have full degree
m with high probability, and hence its determinant at λ = 0
will be the determinant of A.

The total cost of this algorithm is O (̃(nφ(n)m + n2m +
nmsω) log ‖A‖) bit operations, which is minimized when

s = n1/ω. This yields an algorithm for the determinant
which requires O (̃(n2−1/ωφ(n) + n3−1/ω) log ‖A‖) bit op-
erations. This is probably most interesting when ω = 3,
where it yields an algorithm for determinant that requires
O (̃n2.66 log ‖A‖) bit operations on a matrix with pseudo-
linear cost matrix-vector product.

We also note that a similar approach allows us to use the
Monte Carlo Smith form algorithm of [13], which is com-
puted by means of computing the characteristic polynomial
of random preconditionings of a matrix. This reduction is



explored in [18] in the dense matrix setting. The upshot
is that we obtain the Smith form with the same order of
complexity, to within a poly-logarithmic factor, as we have
obtained the determinant using the above techniques. See
[18, §7.1] and [13] for details. We make no claim that this
is practical in its present form.

Note: A referee has indicated that a “lifting” algorithm
of Pan et al [20] can also be used to solve integer systems
when efficient matrix-vector products (modulo small primes)
are supported for both the coefficient matrix and its inverse.
This would provide an alternate application of our central
results to solve integer systems. We wish to thank the referee
for this information.

APPENDIX
A. APPLYING THE INVERSE OF A

BLOCK-HANKEL MATRIX
In this appendix we address asymptotically fast techniques

for computing a representation of the inverse of a block Han-
kel matrix, for applying this inverse to an arbitrary matrix.
The fundamental technique we will employ is to use the off-
diagonal inversion formula of Beckermann & Labahn [1] and
its fast variants [14]. An alternative to using the inversion
formula would be to use the generalization of the Levinson-
Durbin algorithm in [16].

Again assume n = ms for integers m and s, and let

H =

2
66664

α0 α1 . . . αm−1

α1 α2 . .
. ...

... . .
.

α2m−2

αm−1 . . . α2m−2 α2m−1

3
77775
∈ F

n×n

(A.1)
be a non-singular block-Hankel matrix whose blocks are s×
s matrices over F, and let α2m be arbitrary in F

s×s. We
follow the approach of [19] for computing the inverse matrix
H−1. Since H is invertible, the following four linear systems
(see [19, (3.8)-(3.11)])

H [qm−1, · · · , q0]
t = [0, · · · , 0, I] ∈ F

n×s,

H [vm, · · · , v1]
t = − [αm, · · ·α2m−1α2m] ∈ F

n×s,
(A.2)

and

[q∗m−1 . . . q∗0 ] H = [0 . . . 0 I] ∈ F
s×n,

[v∗

m . . . v∗

1 ] H = − [αm . . . α2m−1 α2m] ∈ F
s×n,

(A.3)
have unique solutions given by the qk, q∗k ∈ F

s×s, (for 0 ≤
k ≤ m−1), and the vk, v∗

k ∈ F
s×s (for 1 ≤ k ≤ m). We then

obtain the following equation (see [19, Theorem 3.1]):

H−1 =

2
66664

vm−1 . . . v1 I
... . .

.
. .

.

v1 . .
.

I

3
77775

2
64

q∗m−1 . . . q∗0
. . .

...
q∗m−1

3
75

−

2
66664

qm−2 . . . q0 0
... . .

.
. .

.

q0 . .
.

0

3
77775

2
64

v∗

m . . . v∗

1

. . .
...

v∗

m

3
75 .

(A.4)

The linear systems (A.2) and (A.3) may also be formulated
in terms of matrix Padé approximation problems. We asso-
ciate to H the matrix polynomial A =

P2m
i=0 αix

i ∈ F
s×s[x].

The s × s matrix polynomials Q, P, Q∗, P ∗ in F
s×s[x] that

satisfy

A(x)Q(x) ≡ P (x) + x2m−1 mod x2m,

where deg Q ≤ m− 1 and deg P ≤ m− 2,

Q∗(x)A(x) ≡ P ∗(x) + x2m−1 mod x2m,

where deg Q∗ ≤ m− 1 and deg P ∗ ≤ m− 2

(A.5)

are unique and provide the coefficients Q =
Pm−1

i=0 qix
i and

Q∗ =
Pm−1

i=0 q∗i xi for constructing H−1 using (A.4) (see [19,

Theorem 3.1]). The notation “mod xi” for i ≥ 0 indicates
that the terms of degree i or higher are ignored. The s× s
matrix polynomials V, U, V ∗, U∗ in F

s×s[x] that satisfy

A(x)V (x) ≡ U(x) mod x2m+1, V (0) = I,

where deg V ≤ m and deg U ≤ m− 1,

V ∗(x)A(x) ≡ U∗(x) mod x2m+1, V ∗(0) = I,

where deg Q∗ ≤ m− 1 and deg P ∗ ≤ m− 2,

(A.6)

are unique and provide the coefficients V = 1 +
Pm

i=1 vix
i

and Q∗ = 1 +
Pm

i=1 v∗

i xi for (A.4).
Using the matrix Padé formulation, the matrices Q, Q∗,

V , and V ∗ may be computed using the σ-basis algorithm
in [1], or its fast counterpart in [14, §2.2] that uses fast ma-
trix multiplication. For solving (A.5), the σ-basis algorithm
with σ = s(2m− 1) solves

[A − I]

»
Q
P

–
≡ Rx2m−1 mod x2m,

[Q
∗

P
∗

]

»
A
−I

–
≡ R∗x2m−1 mod x2m,

with Q, P , Q
∗

, P
∗ ∈ F

s×s[x] that satisfy the degree con-

straints deg Q ≤ m − 1, deg Q
∗ ≤ m − 1, and deg P ≤ m −

2, deg P
∗ ≤ m− 2. The residue matrices R and R∗ in F

s×s

are non-singular, hence Q = QR−1 and Q∗ = (R∗)Q
∗

are

solutions Q and Q
∗

for applying the inversion formula (A.4).
For (A.6), the σ-basis algorithm with σ = s(2m + 1) leads
to

[A − I]

»
V
U

–
≡ 0 mod x2m+1,

[V
∗

U
∗

]

»
A
−I

–
≡ 0 mod x2m+1

with deg V ≤ m, deg V
∗ ≤ m, and deg U ≤ m−1, deg U

∗ ≤
m−1. The constant terms V (0) and V

∗

(0) in F
s×s are non-

singular, hence V = V (V (0))−1 and V ∗ = (V
∗

(0))−1V
∗

are solutions for applying (A.4). Using Theorem 2.4 in [14]
together with the above material we get the following cost
estimate.

Proposition A.1. Computing the expression (A.4) of the
inverse of the block-Hankel matrix (A.1) reduces to multiply-
ing matrix polynomials of degree O(m) in F

s×s, and can be
done with O (̃sωm) operations in F.

Multiplying a block triangular Toeplitz or Hankel matrix
in F

n×n with blocks of size s×s by a matrix in F
n×n reduces



to the product of two matrix polynomials of degree O(m),
and of dimensions s×s and s×n. Using the fast algorithms
in [3] or [2], such a s × s product can be done in O (̃sωm)
operations. By splitting the s× n matrix into s× s blocks,
the s×s by s×n product can thus be done in O (̃m×sωm) =
O (̃sωm2) operations.

For n = sν let ω(1, 1, ν) be the exponent of the problem
of s× s by s×n matrix multiplication over F. The splitting
considered just above of the s× n matrix into s× s blocks,
corresponds to taking ω(1, 1, ν) = ω + ν − 1 < ν + 1.376

(ω < 2.376 due to [5]), with the total cost O (̃sω(1,1,ν)m) =
O (̃sωm2). Depending on σ ≥ 1, a slightly smaller bound
than ν + 1.376 for ω(1, 1, ν) may be used due the matrix
multiplication techniques specifically designed for rectangu-
lar matrices in [15]. This is true as soon as ν ≥ 1.171, and
gives for example ω(1, 1, ν) < ν + 1.334 for ν = 2, i.e., for
s =
√

n.

Corollary A.2. Let H be the block-Hankel matrix of (A.1).
If the representation (A.4) of H−1 is given, then computing
H−1M for an arbitrary M ∈ F

n×n reduces to four s× s by
s× n products of polynomial matrices of degree O(m). This

can be done with O (̃sω(1,1,ν)m) or O (̃sωm2) operations in
F (n = sν = ms).
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