
Fast Arithmetics in Artin-Schreier Towers over Finite Fields

Luca De Feo
LIX, École Polytechnique

Palaiseau, France
luca.defeo@polytechnique.edu

Éric Schost
ORCCA and CSD

The University of Western Ontario, London, ON
eschost@uwo.ca

ABSTRACT
An Artin-Schreier tower over the finite field Fp is a tower
of field extensions generated by polynomials of the form
Xp − X − α. Following Cantor and Couveignes, we give
algorithms with quasi-linear time complexity for arithmetic
operations in such towers. As an application, we present
an implementation of Couveignes’ algorithm for computing
isogenies between elliptic curves using the p-torsion.

Categories and Subject Descriptors:
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms – Algebraic Algorithms

General Terms: Algorithms, Theory

Keywords: Algorithms, complexity, Artin-Schreier

1. INTRODUCTION
Definitions. If U is a field of characteristic p, polynomi-
als of the form P = Xp − X − α with α ∈ U are called
Artin-Schreier polynomials; a field extension U′/U is Artin-
Schreier if it is of the form U′ = U[X]/P , with P an Artin-
Schreier polynomial.

An Artin-Schreier tower of height k is a sequence of Artin-
Schreier extensions Ui/Ui−1, for 1 6 i 6 k; it is denoted by
(U0, . . . ,Uk). In what follows, we only consider extensions
of finite degree over Fp. Thus, Ui is of degree pi over U0,
and of degree pid over Fp, with d = [U0 : Fp].

The importance of this concept comes from the fact that
all Galois extensions of degree p are Artin-Schreier. As such,
they arise frequently, e.g., in number theory (for instance,
when computing pk-torsion groups of Abelian varieties over
Fp). The need for fast arithmetics in these towers is moti-
vated in particular by applications to isogeny computation
and point-counting in cryptology, as in [7].

Our contribution. We give fast algorithms for arithmetic
operations in Artin-Schreier towers. Prior results for this
task are due to Cantor [6] and Couveignes [8]. However, the
algorithms of [8] need as a prerequisite a fast multiplication
algorithm in some towers of a special kind (called “Cantor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$10.00.

towers” in [8]). Such an algorithm is unfortunately not in
the literature, making the results of [8] non practical.

This paper fills the gap. Technically, our main algorithmic
contribution is a fast change-of-basis algorithm; it makes it
possible to obtain fast multiplication routines, and by ex-
tension completely explicit versions of all algorithms of [8].
Along the way, we also extend constructions of Cantor to
the case of a general finite base field U0, where Cantor had
U0 = Fp. As an application, we put to practice Couveignes’
isogeny computation algorithm [7].

Complexity notation. We count time complexity in num-
ber of operations in Fp. Then, notation being as before, op-
timal algorithms in Uk would have complexity O(pkd); most
of our results are (up to logarithmic factors) of the form
O(pk+αd1+β), for small constants α, β such as 0, 1, 2 or 3.

Many algorithms below rely on fast multiplication; thus,
we let M : N → N be a multiplication function, such that
polynomials of degree less than n can be multiplied in M(n)
operations, under the conditions of [11, Ch. 8.3]. Typical
orders of magnitude for M(n) are O(nlog2 3) for Karatsuba
multiplication or O(n log n log log n) for FFT multiplication.
Using fast multiplication, fast algorithms are available for
Euclidean division or extended GCD [11, Ch. 9 & 11].

For several operations, different algorithms will be avail-
able, and their relative efficiencies can depend on the values
of p, d and k. In these situations, we always give details for
the case where p is small, since cases such as p = 2 or p = 3
are especially useful in practice. Some of our algorithms
could be slightly improved, but we usually prefer giving the
simpler solutions.

Previous work. As said above, this paper builds on former
results of Cantor [6] and Couveignes [8, 7]; to our knowledge,
prior to this paper, no previous work provided the missing
ingredients to put Couveignes’ algorithms to practice. Part
of Cantor’s results were independently discovered by Wang
and Zhu [26] and have been extended in another direction
(fast polynomial multiplication over arbitrary finite fields)
by von zur Gathen and Gerhard [12] and Mateer [20].

Organization of the paper. Section 2 consists in prelimi-
naries: trace computations, duality, basics on Artin-Schreier
extensions. In Section 3, we define a specific Artin-Schreier
tower, where arithmetic operations will be fast. Our key
change-of-basis algorithm for this tower is in Section 4. In
Sections 5 and 6, we revisit Couveignes’ isomorphism al-
gorithm [8] in our context, giving fast arithmetics for any
Artin-Schreier tower. Finally, Section 7 gives experimental
results obtained by applying our algorithms to Couveignes’
isogeny algorithm [7] for elliptic curves.

2. PRELIMINARIES
As a general rule, variables and polynomials are in upper
case; elements algebraic over Fp (or some other field, that
will be clear from the context) are in lower case.

2.1 Element representation
Let Q0 be in Fp[X0] and let (Gi)06i<k be a sequence of
polynomials over Fp, with Gi in Fp[X0, . . . , Xi]. We say
that the sequence (Gi)06i<k defines the tower (U0, . . . ,Uk)
if for i > 0, Ui = Fp[X0, . . . , Xi]/Ki, where Ki is the ideal
generated by

˛̨
˛̨
˛̨
˛̨
˛

Pi = Xp
i −Xi −Gi−1(X0, . . . , Xi−1)

...
P1 = Xp

1 −X1 −G0(X0)
Q0(X0)

in Fp[X0, . . . , Xi], and if Ui is a field. The residue class of Xi

(resp. Gi) in Ui, and thus in Ui+1, . . . , is written xi (resp.
γi), so that we have xp

i − xi = γi−1.
Finding a suitable Fp-basis to represent elements of a

tower (U0, . . . ,Uk) is a crucial question. If d = deg(Q0), a
natural basis of Ui is the multivariate basis Bi = {xe0

0 · · ·xei
i }

with 0 6 e0 < d and 0 6 ej < p for 1 6 j 6 i. However,
in this basis, we do not have very efficient arithmetic oper-
ations, starting from multiplication. See [18] for details.

As a workaround, we introduce the notion of a primitive
tower, where for all i, xi generates Ui over Fp. In this case,
we let Qi ∈ Fp[X] be its minimal polynomial, of degree pid.
In a primitive tower, unless otherwise stated, we represent

the elements of Ui on the Fp-basis Ci = (1, xi, . . . , x
pid−1
i).

To stress the fact that v ∈ Ui is represented on the basis
Ci, we write v a Ui. In this basis, additions and subtractions
are done in time pid, multiplications in time O(M(pid)) [11,
Ch. 9] and inversions in time O(M(pid) log(pid)) [11, Ch. 11].

2.2 Trace and pseudotrace
We continue with a few useful facts on traces. Let U be a
field and let U′ = U[X]/Q be a separable field extension of
U, with deg(Q) = d. For a ∈ U′, the trace Tr(a) is the trace
of the U-linear map Ma of multiplication by a in U′.

The trace is a U-linear form; in other words, Tr is in the
dual space U′∗ of the U-vector space U′; we write it TrU′/U
when the context requires it. In finite fields, we also have
the following well-known properties:

TrFqn /Fq : a 7→Pn−1
`=0 aq`

, (P1)

TrFqmn /Fq = TrFqm /Fq ◦TrFqmn /Fqm . (P2)

Besides, if U′/U is an Artin-Schreier extension generated
by a polynomial Q and x is a root of Q in U′, then

TrU′/U(x
j)=0 for j < p− 1; TrU′/U(x

p−1)=−1. (P3)

Following [8], we also use a generalization of the trace. The
nth pseudotrace of order m is the Fpm -linear operator

T(n,m) : a 7→Pn−1
`=0 apm`

;

for m = 1, we call it the nth pseudotrace and write Tn.
In our context, for n = [Ui : Uj] = pi−j and m = [Uj :

Fp] = pjd, T(n,m)(v) coincides with TrUi/Uj
(v) for v in Ui;

however T(n,m)(v) remains defined for v not in Ui, whereas
TrUi/Uj

(v) is not.

2.3 Duality
Finally, we discuss two useful topics related to duality, start-
ing with the transposition of algorithms.

Introduced by Kaltofen and Shoup, the transposition prin-
ciple relates the cost of computing an Fp-linear map f : V →
W to that of computing the transposed map f∗ : W ∗ → V ∗.
Explicitly, from an algorithm that performs an r×s matrix-
vector product b 7→ Mb, one can deduce an algorithm with
the same complexity, up to O(r+s), that performs the trans-
posed product c 7→ M tc; see [5, 14, 1].

We give here first consequences of this principle, after [24,
25]. Consider a field extension U → U′ = U[X]/Q. For w
in U′, recall that Mw : U′ → U′ is the multiplication map
Mw(v) = vw. Its dual M∗

w : U′∗ → U′∗ acts on ` ∈ U′∗ by
M∗

w(`)(v) = ` (Mw(v)) = `(vw) for v in U′. We prefer to
denote the linear form M∗

w(`) by w · `, keeping in mind that
(w · `)(v) = `(vw).

Suppose then that D is a U-basis of U′, in which we can
perform multiplication in time T . Then by the transposition
principle, given w on D and ` on the dual basis D∗, we can
compute w · ` on the dual basis D∗ in time T + O(deg(Q)).
We will discuss this in more detail in Section 4.

Suppose finally that U′ is separable over U and that b ∈
U′ generates U′ over U; given w in U′, we want to find an
expression w = A(b), for some A ∈ U[X]. Hereafter, for P ∈
U[X] of degree at most e, we write reve(P) = XeP (1/X) ∈
U[X]. Then, we define ` = w · TrU′/U ∈ U′∗ and

M =
P

j<d `(bj)Xj , N =M revd(Q) mod Xd. (1)

This construction solves our problem: Theorem 3.1 in [22]

shows that w = A(b), with A = revd−1(N)Q′−1
mod Q.

We will hereafter denote by FindParametrization(b, w) a
subroutine that computes this polynomial A. If Q is Artin-
Schreier, the cost of FindParametrization is O(p2) operations
(+,×) in U: finding the requested values of ` fits into this
bound, by the proof of [24, Th. 4]; the remaining operations
are cheaper (and involve no division), since Q′ = −1 in the
Artin-Schreier case.

3. A PRIMITIVE TOWER
Our first task in this section is to describe a specific Artin-
Schreier tower where arithmetics will be fast; then, we ex-
plain how to construct this tower. This extends results by
Cantor [6, Th. 1.2], who dealt with the case U0 = Fp.

Theorem 1. Let U0 = Fp[X0]/Q0, with Q0 irreducible of
degree d, let x0 = X0 mod Q0 and assume that TrU0/Fp(x0) 6=
0. Let (Gi)06i<k be defined by

8
><
>:

G0 = X0

G1 = X1 if p = 2 and d is odd,

Gi = X2p−1
i in any other case.

Then, (Gi)06i<k defines a primitive tower (U0, . . . ,Uk).

As before, for i > 1, let Pi = Xp
i −Xi−Gi−1 and for i > 0,

let Ki be the ideal 〈Q0, P1, . . . , Pi〉 in Fp[X0, . . . , Xi]. Then
the theorem says that for i > 0, Ui = Fp[X0, . . . , Xi]/Ki

is a field, and that xi = Xi mod Ki generates it over Fp.
Hereafter, recall that we write γi = Gi mod Ki. We first
prove the case p 6= 2; we then indicate the modifications to
bring for p = 2.

Lemma 2. For i > 0, Ui is a field and, for i > 1,
TrUi/Ui−1(γi) = −γi−1.

Proof. Induction on i: for i = 0, this is true by hypoth-
esis. For i > 1, assuming that Ui is a field, we prove
that TrUi/Fp(γi) 6= 0, which, by [19, Th. 2.25], implies that
Xp

i+1 − Xi+1 − γi is irreducible in Ui[Xi+1]. For i = 0,
TrU0/Fp(γ0) = TrU0/Fp(x0) is non-zero. For i > 1, we know

that γi = x2p−1
i = xp

i xp−1
i , which rewrites

(xi + γi−1)x
p−1
i = xp

i + γi−1x
p−1
i = γi−1 + xi + γi−1x

p−1
i .

By P3, we get TrUi/Ui−1(γi) = −γi−1 and by P2, we deduce
TrUi/Fp(γi) = −TrUi−1/Fp(γi−1). The induction assumption
implies that this is non-zero, and the claim follows. ¤

Lemma 3. For i > 0, γi generates Ui over Fp.

Proof. Let di = [Fp[γi] : Fp], we want to prove that di =
pid. Let d = psr with r prime to p, then pi+s|di; indeed, if

it is not the case, TrUi/Fpγi = pi+sr
di

γi = 0, which con-

tradicts Lemma 2. Furthermore, d|di, in fact TrUi/U0(γi) ∈
Fp[γi], but by Lemma 2 and by P3, TrUi/U0(γi) = (−1)iγ0,

which generates U0 by hypothesis. Since (pi+s, d) = ps,
di > pid and the claim follows. ¤
The theorem is now an easy consequence of Lemmas 2 and 3
since clearly Fp[γi] ⊂ Fp[xi]. For p = 2, the same formulas
prove TrUi/U1(γi) = 1 + γ1 for i > 2 and

TrUi/U0(γi) =

(
1 + γ0 if d even,

1 if d odd.

In both cases TrUi/Fp(γi) = 1, proving the analogue of Lem-
ma 2. Lemma 3 is shown the same way by observing that
γ0 ∈ Fp[γi], for any d.

Composition. We give next an algorithm for polynomial
composition, to be used in the construction of the tower
defined before. Given P and R in Fp[X], we want to compute
P (R). For the cost analysis, it will be useful later on to
consider both the degree k and the number of terms ` of R.

Compose is a recursive process that cuts P into c+1“slices”
of degree less than pn, recursively composes them with R,
and concludes using Horner’s scheme and the linearity of the
p-power. At the leaves of the recursion tree, we use a naive
algorithm of cost O(deg(P)2k`).

Compose

Input P, R ∈ Fp[X] and c, n ∈ N.
Output P (R).

1. let n = blogp(deg(P))c and c = deg(P) div pn

2. If n = 0, return NaiveCompose(P, R)

3. write P =
Pc

i=0 PiX
ipn

, with Pi ∈ Fp[X], deg Pi < pn

4. for i ∈ [0, . . . , c], let Qi =Compose(Pi, R)
5. let Q = 0

6. for i ∈ [c, . . . , 0], let Q = QR(Xpn
) + Qi

7. return Q

Theorem 4. If R has degree k and ` non-zero coefficients
and if deg(P) = s, then Compose(P, R) outputs P (R) in
time O(ps logp(s)k`).

Proof. Correctness is clear, since Rpn

= R(Xpn

). To an-
alyze the cost, we let C(c, n) be the cost of Compose when
deg(P) 6 (c+1)pn, with c < p. Then C(c, 0) ∈ O(c2k`). For
n > 0, at each pass in the loop at step 6, deg(Q) < cpnk,
so that the multiplication (using the naive algorithm) and

addition take time O(cpnk`). Thus the time spent in the
loop is O(c2pnk`), and the running time satisfies

C(c, n) 6 (c + 1)C(p− 1, n− 1) + O(c2pnk`).

Let then C′(n) = C(p− 1, n), so that we have

C′(0) ∈ O(p2k`), C′(n) 6 pC′(n− 1) + O(pn+2k`).

We deduce that C′(n) ∈ O(pn+2nk`), and finally C(c, n) ∈
O(cpn+1nk` + c2pnk`). The values c, n computed at step 1
of the top-level call to Compose satisfy cpn 6 s and n 6
logp(s); this gives our conclusion. ¤
A binary divide-and-conquer algorithm [11, Ex. 9.20] has
cost O(M(sk) log(s)). Our algorithm has a slightly better
dependency on s, but adds a polynomial cost in p and l.
However, we have in mind cases with p small and ` = 2,
where the latter solution is advantageous.

Computing the minimal polynomials. Theorem 1 shows
that we have defined a primitive tower. To be able to work
with it, we explain now how to compute the minimal poly-
nomial Qi of xi over Fp. This is done by extending Cantor’s
construction [6], which had U0 = Fp.

For i = 0, we are given Q0 ∈ Fp[X0] such that U0 =
Fp[X0]/Q0(X0), so there is nothing to do; we assume that
TrU0/Fp(x0) 6= 0 to meet the hypotheses of Theorem 1. Re-
mark that if this trace was zero, assuming gcd(d, p) = 1,
we could replace Q0 by Q0(X0 − 1); this is done by taking
R = X0−1 in algorithm Compose, so by Theorem 4 the cost
is O(pd logp(d)).

For i = 1, we know that xp
1 − x1 = x0, so x1 is a root

of Q0(X
p
1 − X1). Since Q0(X

p
1 − X1) is monic of degree

pd, we deduce that Q1 = Q0(X
p
1 − X1). To compute it,

we use algorithm Compose with arguments Q0 and R =
Xp

1 − X1; the cost is O(p2d logp(d)) by Theorem 4. The
same arguments hold for i = 2 when p = 2 and d is odd.

To deal with other indexes i, we follow Cantor’s construc-
tion. Let Φ ∈ Fp[X] be the reduction modulo p of the
(2p − 1)th cyclotomic polynomial. Cantor implicitly works
modulo an irreducible factor of Φ. The following shows that
we can avoid factorization, by working modulo Φ.

Lemma 5. Let A = Fp[X]/Φ and let x = X mod Φ. For
Q ∈ Fp[Y], define Q? =

Q2p−2
i=0 Q(xiY). Then Q? is in Fp[Y]

and there exists q? ∈ Fp[Y] such that Q? = q?(Y 2p−1).

Proof. Let F1, . . . , Fe be the irreducible factors of Φ and
let f be their common degree. To prove that Q? is in Fp[Y],
we prove that for j 6 e, Q?

j = Q? mod Fj is in Fp[Y] and
independent from j; the claim follows by Chinese Remain-
dering.

For j 6 e, let aj be a root of Fj in the algebraic closure
of Fp, so that Q?

j =
Q2p−2

i=0 Q(ai
jY). Since gcd(pf , 2p− 1) =

1, Q?
j is invariant under Gal(Fpf /Fp), and thus in Fp[Y].

Besides, for j, j′ 6 e, aj = ak
j′ , for some k coprime to 2p−1,

so that Q?
j = Q?

j′ , as needed.
To conclude, note that for j 6 e, Q?

j (ajY) = Q?
j (Y), so

that all coefficients of degree not a multiple of 2p−1 are zero.
Thus, Q?

j has the form q?
j (Y 2p−1); by Chinese Remaindering,

this proves the existence of the polynomial q?. ¤
We conclude as in [6]: supposing that we know the minimal
polynomial Qi of xi over Fp, we compute Qi+1 as follows.
Since xi is a root of Qi, it is a root of Q?

i , so γi = x2p−1
i

is a root of q?
i and xi+1 is a root of q?

i (Y p − Y). Since the
latter polynomial is monic of degree pi+1d, it is the minimal
polynomial Qi+1 of xi+1 over Fp.

Theorem 6. Given Qi, one can compute Qi+1 in time
O(pi+2d logp(pid) + M(pi+2d) log(p)).

Proof. Let A = Fp[X]/Φ. The algorithm of [3] computes
Φ in time O(p2); then, polynomial multiplications in degree
s in A[Y] can be done in time O(M(sp)) by Kronecker substi-
tution. The overall cost of computing Q?

i is O(M(pi+2d) log p)
using [11, Algo. 10.3]. To get Qi+1 we use algorithm Com-
pose with R = Y p − Y , which costs O(pi+2d logp(pid)). ¤
The former cost is linear in pi+2d, up to logarithmic factors,
for an input of size pid and an output of size pi+1d.

Some further operations will be performed when we con-
struct the tower: we will precompute quantities that will be
of use in the algorithms of the next sections. Details are
given in the next sections, when needed.

4. LEVEL EMBEDDING
We discuss here change-of-basis algorithms for the tower
(U0, . . . ,Uk) of the previous section; these algorithms are
needed for most further operations. We detail the main case
where Pi = Xp

i −Xi −X2p−1
i−1 ; the case P1 = Xp

1 −X1 −X0

(and P2 = X2
2 + X2 + X1 for p = 2 and d odd) is easier.

By Theorem 1, Ui equals Fp[Xi−1, Xi]/I, where the ideal
I admits the following Gröbner bases, for respectively the
lexicographic orders Xi > Xi−1 and Xi−1 > Xi:˛̨

˛̨ Xp
i −Xi −X2p−1

i−1

Qi−1(Xi−1)
and

˛̨
˛̨ Xi−1 −Ri(Xi)

Qi(Xi),

with Ri in Fp[Xi]. Since deg(Qi−1) = pi−1d and deg(Qi) =
pid, we associate the following Fp-bases of Ui to each system:

Di = (xj
i , xi−1x

j
i , . . . , xpi−1d−1

i−1 xj
i)06j<p,

Ci = (1, xi, . . . , xpid−1
i). (2)

We describe an algorithm called Push-down which takes v
written on the basis Ci and returns its coordinates on the
basis Di; we also describe the inverse operation, called Lift-
up. In other words, Push-down inputs v a Ui and outputs
the representation of v as

v = v0 + v1xi + · · ·+ vp−1x
p−1
i , with all vj a Ui−1 (3)

and Lift-up does the opposite.
Hereafter, we let L : N−{0} → N be such that both Push-

down and Lift-up can be performed in time L(i); to simplify
some expressions appearing later on, we add the mild con-
straints that p L(i) 6 L(i + 1) and p M(pid) ∈ O(L(i)). To
reflect the implementation’s behavior, we also allow precom-
putations. These precomputations are performed when we
build the tower; further details are at the end of this section.

Theorem 7. One can take L(i) in O(pi+1d logp(pid)2 +

p M(pid)).

Remark that the input and output have size pid; using fast
multiplication, the cost is linear in pi+1d, up to logarith-
mic factors. The rest of this section is devoted to proving
this theorem. Push-down is a divide-and-conquer process,
adapted to the shape of our tower; Lift-up uses classical ideas
of trace computations (as in 2.3); the values we need will be
obtained using the transposed version Push-down.

As said before, the algorithms of this section (and of the
following ones) use precomputed quantities. To keep the
pseudo-code simple, we do not explicitly list them in the
inputs of the algorithms; we show, later, that the precom-
putation is fast too.

4.1 Modular multiplication
We first discuss a routine for multiplication by Xpn

i in
Fp[Y, Xi]/(Xp

i − Xi − Y), and its transpose. We start by

remarking that Xpn

i = Xi + Rn mod Xp
i −Xi − Y , with

Rn =
Pn−1

j=0 Y pj

. (4)

Then, precisely, for k in N, we are interested in the operation
MulModk,n : A 7→ (Xi + Rn)A mod Xp

i − Xi − Y , with
A ∈ Fp[Y, Xi], deg(A, Y) < k and deg(A, Xi) < p.

Since Rn is sparse, it is advantageous to use the naive
algorithm; besides, to make transposition easy, we explicitly
give the matrix of MulModk,n. Let m0 be the (k +pn−1)×k
matrix having 1’s on the diagonal only, and for ` 6 pn−1, let
m` be the matrix obtained from m0 by shifting the diagonal
down by ` places. Let finally m′ be the sum Σn−1

j=0 mpj . Then
one verifies that the matrix of MulModk,n is

2
666664

m′ m1

m0 m′ m0

m0 m′

. . .
. . .

m0 m′

3
777775

,

with columns indexed by (Xj
i , . . . , Y k−1Xj

i)j<p and rows by

(Xj
i , . . . , Y k+pn−1−1Xj

i)j<p. Since this matrix has O(pnk)
non-zero entries, we can compute both MulModk,n and its
dual MulMod∗k,n in time O(pnk).

4.2 Push-down
The input of Push-down is v a Ui, that is, given on the
basis Ci; we see it as a polynomial V ∈ Fp[Xi] of degree
less than pid. The output is the normal form of V modulo
Xp

i −Xi−X2p−1
i−1 and Qi−1(Xi−1). We first use a divide-and-

conquer subroutine to reduce V modulo Xp
i −Xi −X2p−1

i−1 ;
then, the result is reduced modulo Qi−1(Xi−1) coefficient-
wise.

To reduce V modulo Xp
i −Xi −X2p−1

i−1 , we first compute

W = V mod Xp
i −Xi−Y , then we replace Y by X2p−1

i−1 in W .
Because our algorithm will be recursive, we let deg(V) be
arbitrary; then, we have the following estimate for W .

Lemma 8. We have deg(W, Y) 6 deg(V)/p.

Proof. Consider the matrix M of multiplication by Xp
i

modulo Xp
i − Xi − Y ; it has entries in Fp[Y]. Due to the

sparseness of the modulus, one sees that M has degree at
most 1, and so Mk has coefficients of degree at most k. Thus,
the remainders of Xpk

i , . . . , Xpk+p−1
i modulo Xp

i − Xi − Y
have degree at most k in Y . ¤
We compute W by a recursive subroutine Push-down-rec,
similar to Compose. As before, we let c, n be such that
1 6 c < p and deg(V) < (c + 1)pn, so that we have

V = V0 + V1X
pn

i + · · ·+ VcX
cpn

i ,

with all Vj in Fp[Xi] of degree less than pn. First, we re-
cursively reduce V0, . . . , Vc modulo Xp

i −Xi − Y , to obtain
bivariate polynomials W0, . . . , Wc. Let Rn be the polyno-
mial defined in Equation (4). Then, we get W by comput-
ing Σc

j=0Wj(Xi +Rn)j modulo Xp
i −Xi−Y , using Horner’s

scheme as in Compose. Multiplications by Xi + Rn modulo
Xp

i −Xi − Y are done using MulMod.

Push-down-rec

Input V ∈ Fp[Xi] and c, n ∈ N.
Output W ∈ Fp[Y, Xi].

1. if n = 0 return V
2. write V =

Pc
j=0 VjXjpn

i , with Vj ∈ Fp[Xi], deg Vj < pn

3. for j ∈ [0, . . . , c], let Wj = Push-down-rec(Vj , p− 1, n− 1)
4. W = 0
5. for j ∈ [c, . . . , 0], let W = MulMod(c+1)pn−1,n(W) + Wj

6. return W

Push-down

Input v a Ui.
Output v written as v0 + · · ·+ vp−1xp−1

i with vj a Ui−1.
1. let V be the canonical preimage of v in Fp[Xi]
2. let n = blogp(pid− 1)c and c = (pid− 1) div pn

3. let W = Push-down-rec(V, c, n)

4. let Z = Evaluate(W, [X2p−1
i−1 , Xi])

5. let Z = Z mod Qi−1

6. return the residue class of Z mod (Xp
i −Xi−X2p−1

i−1 , Qi−1)

Proposition 9. Algorithm Push-down is correct and takes
time O(pi+1d logp(pid)2 + p M(pid)).

Proof. Correctness is straightforward; note that at step 5
of Push-down-rec, deg(W, Y) < (c + 1)pn−1, so our call to
MulMod(c+1)pn−1,n is justified. By the claim of Subsec-
tion 4.1 on the cost of MulMod, the total time spent in that
loop is O(nc2pn). As in Theorem 4, we deduce that the time
spent in Push-down-rec is O(n2c2pn).

In Push-down, we have cpn < pid and n < logp(pid), so

the previous cost is O(pi+1d logp(pid)2). Reducing one co-

efficient of Z modulo Qi−1 takes time O(M(pid)), so step 5
has cost O(p M(pid)). Step 6 is free, since at this stage Z is
already reduced. ¤

4.3 Transposed push-down
We discuss here the transpose of Push-down. Push-down is
the Fp-linear change-of-basis from the basis Ci to Di, so its
transpose takes an Fp-linear form ` ∈ U∗i given by its values
on Di, and outputs its values on Ci. The input is the (finite)
generating series L = Σa<pi−1d, b<p `(xa

i−1x
b
i)X

a
i−1X

b
i ; the

output is M = Σa<pid `(xa
i)Xa

i .
As in [1], the transposed algorithm is obtained by revers-

ing the initial algorithm step by step, and replacing subrou-
tines by their transposes. The overall cost remains the same;
we review here the main transformations.

In Push-down-rec, the initial loop at step 5 is a Horner
scheme; the transposed loop is run backward, and its core
becomes Lj = L mod Y n−1 and L = MulMod∗(c+1)pn−1,n(L);
a small simplification yields the pseudo-code we give. In
Push-down, after calling Push-down-rec, we evaluate W at
[X2p−1

i−1 , Xi]: the transposed operation Evaluate∗ maps the

series Σa,b `a,bX
a
i−1X

b
i to Σa,b `(2p−1)a,b Y aXb

i . Then, orig-
inally, we perform a Euclidean division by Qi−1 on Z: the
transposed algorithm mod∗ is in [1, Sect. 5.2].

Push-down-rec∗

Input L ∈ Fp[Y, Xi] and c, n ∈ N.
Output M ∈ Fp[Xi]

1. If n = 0 return L
2. for j ∈ [c, . . . , 0],

• let Lj = L mod Y n−1

• let Mj = Push-down-rec∗(Lj , p− 1, n− 1)
• let L = MulMod∗

(c+1)pn−1,n
(L)

3. return
Pc

j=0 MjXjpn

i

Push-down∗

Input L ∈ Fp[Xi−1, Xi]
Output M ∈ Fp[Xi]

1. let n = blogp(pid− 1)c and c = (pid− 1) div pn

2. let P = mod∗(L, Qi−1)

3. let M = Evaluate∗(P, [X2p−1
i−1 , Xi])

4. return Push-down-rec∗(M, c, n)

Lift-up

Input v written as v0 + · · ·+ vp−1xp−1
i with vj a Ui−1.

Output v a Ui.
1. let W be the canonical preimage of v in Fp[Xi−1, Xi]
2. let L = TransposedMul(W, Si)
3. let M = Push-down∗(L)

4. let N = M revpid(Qi) mod Xpid
i

5. let V = revpid−1(N)Q′i
−1 mod Qi

6. return the residue class of V modulo Qi

4.4 Lift-up
Let v be given on the basis Di and let W be its canonical
preimage in Fp[Xi−1, Xi]. The lift-up algorithm finds V in
Fp[Xi] such that W = V mod (Xp

i −Xi−X2p−1
i−1 , Qi−1) and

outputs the residue class of V modulo Qi. Hereafter, we
assume that both Q′−1

i mod Qi and

Si =
P

a<pi−1d, b<p TrUi/Fp(xa
i−1x

b
i)X

a
i−1X

b
i

are known (see the discussion below). Then, the algorithm
implements the trace formulas given in Subsection 2.3

Proposition 10. Algorithm Lift-up is correct and takes
time O(pi+1d logp(pid)2 + p M(pid)).

Proof. As said in Subsection 2.3, the transposed multi-
plication of W with Si gives values of ` = v · TrUi/Fp by

means of L = Σa<pi−1d, b<p `(xa
i−1x

b
i)X

a
i−1X

b
i . This is writ-

ten TransposedMul in the pseudo-code; an algorithm of cost
O(M(pid)) for this is in [21, Coro. 2]. The last subsection
showed that step 3 gives M = Σa<pid `(xa

i)Xa
i . Then, cor-

rectness follows from Equations (1); the costs of steps 4 and 5
are O(M(pid)) and step 6 is free since V is reduced. ¤
Propositions 9 and 10 prove Theorem 7. The precomputa-
tions, that are done at the construction of Ui, are as follows.
First, we need the values of the trace on the basis Di; they
are obtained in time O(M(pid)) by [21, Prop. 8]. Then, we

need Q′i
−1

mod Qi; this takes time O(M(pid) log(pid)) by
fast extended GCD computation. These precomputations
save logarithmic factors at best, but are useful in practice.

5. FROBENIUS AND PSEUDOTRACE
In this section, we describe algorithms computing Frobenius
and pseudotrace operators, specific to the tower of Section 3;
they are the keys to the algorithms of the next section.

The algorithms in this section and the next one closely
follow Couveignes’ [8]. However, the latter assumed the ex-
istence of a quasi-linear time algorithm for multiplication
in some specific towers in the multivariate basis Bi of Sub-
section 2.1. To our knowledge, no such algorithm exists.
We use here the univariate basis Ci introduced previously,
which makes multiplication straightforward. However, sev-
eral push-down and lift-up operations are now required to
accommodate the recursive nature of the algorithm.

Our main purpose here is to compute the pseudotrace

Tn : x 7→Pn−1
`=0 xp`

, for n of the form pjd. First, however,

we describe how to compute values of the iterated Frobe-

nius operator x 7→ xppjd

. Any v ∈ Uj is left invariant by
this latter map. For j < i, we get, similarly to (4):

xppjd

i = xi + βi−1,j , with βi−1,j = Tpjd(γi−1). (5)

The Frobenius algorithm follows: starting from v a Ui, we
first write v = v0 + · · · + vp−1x

p−1
i , with vh a Ui−1; by (5)

and the linearity of the Frobenius, we deduce that

vppjd

=
Pp−1

h=0 vppjd

h (xi + βi−1,j)
h .

Then, we compute all vppjd

h recursively; the final sum is com-
puted using Horner’s scheme. This algorithm requires the
values βi′,j for i′ < i: we suppose that they are precom-
puted (the discussion of how we precompute them follows).
To analyze costs, we use the function L of Section 4.

IterFrobenius

Input v, i, j with v a Ui and j > 0.

Output vppjd a Ui.
1. if i 6 j, return v

2. let v0 + v1xi + · · ·+ vp−1xp−1
i = Push-down(v)

3. for h ∈ [0, . . . , p− 1], let th = IterFrobenius(vh, i− 1, j)
4. let F = 0
5. for h ∈ [p− 1, . . . , 0], let F = th + (xi + βi−1,j)F
6. return Lift-up(F)

Theorem 11. Algorithm IterFrobenius is correct and takes
time O(i L(i)).

Proof. Correctness is clear. We note F(i, j) for the cost
for v ∈ Ui, so that F(0, j) = · · · = F(j, j) = 0. Each pass
through step 5 involves a multiplication by xi + βi−1,j , of
cost of O(pM(pi−1d)), assuming βi−1,j a Ui−1 is known.
Altogether, we deduce the recurrence relation

F(i, j) 6 p F(i− 1, j) + 2 L(i) + O(p2M(pi−1d)),

so F(i, j) 6 p F(i−1, j)+O(L(i)), by assumptions on M and
L. The conclusion follows, again by assumptions on L. ¤
Next, we compute pseudotraces. Given v a Ui, the naive al-
gorithm doing repeated squaring takes time O(nM(pid) log p)
for computing Tn(v). In particular, with n = d, we use a
function NaivePseudotrace with that cost in our pseudo-code.
For higher values of n of the form pjd, we use the following
relation, whose verification is straightforward:

Tpjd(v) =
Pp−1

`=0 Tpj−1d(v)ppj−1d`

.

Pseudotrace

Input v, i, j with v a Ui.
Output Tpjd(v) a Ui.

1. if j = 0 return NaivePseudotrace(v, d)
2. t0 =Pseudotrace(v, i, j − 1)
3. for h ∈ [1, . . . , p− 1], let th = IterFrobenius(th−1, i, j − 1)
4. return t0 + t1 + · · ·+ tp−1

Theorem 12. Algorithm Pseudotrace is correct and takes
time PT(i) = O(pi2L(i) + dM(pid) log p) for j 6 i.

Proof. Correctness is clear. For the cost analysis, we write
PT(i, j) for the cost on input i and j, so the naive algorithm
gives PT(i, 0) = O(dM(pid) log p). For j > 0, step 2 costs
PT(i, j−1), step 3 costs O(piL(i)) by Theorem 11 and step 4
costs O(pi+1d). This gives PT(i, j) = PT(i, j−1)+O(piL(i)),
and thus PT(i, j) ∈ O(pijL(i)) + PT(i, 0). ¤

The cost is thus O(pi+2d + pid2), up to logarithmic factors,
for an input and output size of pid. Better could be done
with respect to d, using fast modular composition algorithms
in the NaivePseudotrace algorithm, as in [13].

Finally, we discuss precomputations. When we construct
Ui+1, we compute all βi,j = Tpjd(γi) a Ui, for j 6 i, us-
ing the Pseudotrace algorithm. The inner calls to IterFrobe-
nius only use pseudotraces that are already known. Be-
sides, a single call to Pseudotrace(γi, i, i) actually computes
all Tpjd(γi) for j 6 i, in time O(pi2L(i) + dM(pid) log p).

6. ARBITRARY TOWERS
Finally, we bring our previous algorithms to an arbitrary
tower, using Couveignes’ isomorphism algorithm [8]. As in
the previous section, we adapt this algorithm to our context,
by adding suitable push-down and lift-up operations.

Let Q0 be irreducible of degree d in Fp[X0], such that
TrU0/Fp(x0) 6= 0, with as before U0 = Fp[X0]/Q0. We let
(Gi)06i<k and (U0, . . . ,Uk) be as in Section 3.

We also consider another sequence (G′i)06i<k, that de-
fines another tower (U′0, . . . ,U′k). Since (U′0, . . . ,U′k) is not
necessarily primitive, we fall back to the multivariate ba-
sis of Subsection 2.1: we write elements of U′i on the ba-
sis B′

i = {x′0e0 · · ·x′iei}, with x0 = x′0, 0 6 e0 < d and
0 6 ej < p for 1 6 j 6 i.

To compute in U′i, we will use an isomorphism U′i → Ui.
Such an isomorphism is determined by the images si =
(s0, . . . , si) of (x′0, . . . , x

′
i), with si a Ui (we always take

s0 = x0). This isomorphism, denoted by σsi , takes as input
v written on the basis B′

i and outputs σsi(v) a Ui.
To analyze costs, we use the functions L and PT intro-

duced in the previous sections. We also let 2 6 ω 6 3 be a
feasible exponent for linear algebra over Fp [11, Ch. 12].

Theorem 13. Given Q0 and (G′i)06i<k, one can find sk =
(s0, . . . , sk) in time O(dωk+PT(k)+M(pk+1d) log(p)). Once
they are known, one can apply σsk and σ−1

sk
in time O(k L(k)).

Thus, we can compute products, inverses, etc, in U′k for the
cost of the corresponding operation in Uk, plus O(k L(k)).

6.1 Solving Artin-Schreier equations
As a preliminary, given α a Ui, we discuss how to solve the
Artin-Schreier equation Xp−X = α in Ui. We assume that
TrUi/Fp(α) = 0, so this equation has solutions in Ui.

Because Xp − X is Fp-linear, the equation can be di-
rectly solved by linear algebra, but this is too costly. In [8],
Couveignes gives a solution adapted to our setting, that re-
duces the problem to solving Artin-Schreier equations in U0.
Given a solution δ ∈ Ui of the equation Xp − X = α, he
observes that any solution µ of

Xppi−1d −X = η, with η = Tpi−1d(α). (6)

is of the form µ = δ−∆ with ∆ ∈ Ui−1, hence ∆ is a root of

Xp −X − α + µp − µ. (7)

This equation has solutions in Ui−1 by hypothesis and hence
it can be solved recursively. First, however, we tackle the
problem of finding a solution of (6).

For this purpose, observe that the left hand side of (6) is

Ui−1-linear and its matrix on the basis (1, . . . , xp−1
i) is

2
6664

0
`
1
0

´
βi−1,i−1 . . .

`
p−1
0

´
βp−1

i−1,i−1

. . .
...

0
`

p−1
p−2

´
βi−1,i−1

0

3
7775

Then, algorithm ApproximateAS finds the required solution.

ApproximateAS

Input η a Ui such that (6) has a solution.
Output µ a Ui solution of (6).

1. let η0 + η1xi + · · ·+ ηp−2xp−2
i = Push-down(η)

2. for j ∈ [p− 1, . . . , 1],

let µj = 1
jT

“
ηj−1 −

Pp−1
h=j+1

` h
j−1

´
βh−j+1

i−1,i−1µh

”

3. return Lift-up(µ1xi + . . . + µp−1xp−1
i)

Theorem 14. Algorithm ApproximateAS is correct and
takes time O(L(i)).

Proof. Correctness is clear from Gaussian elimination. For
the cost analysis, remark that βi−1,i−1 has already been
precomputed to permit iterated Frobenius and pseudotrace
computations. Step 2 takes O(p2) additions and scalar op-
erations in Ui−1; the overall cost is dominated by that of the
push-down and lift-up by assumptions on L. ¤
Writing the recursive algorithm is now straightforward. To
solve Artin-Schreier equations in U0, we use a naive algo-
rithm based on linear algebra, written NaiveSolve.

Artin-Schreier

Input α, i such that α a Ui and TrUi/Fp
(α) = 0.

Output δ a Ui such that δp − δ = α.
1. if i = 0, return NaiveSolve(Xp −X − α)
2. let η = Pseudotrace(α, i, i− 1)
3. let µ = ApproximateAS(η)
4. let α0 = Push-down(α− µp + µ)
5. let ∆ = Artin-Schreier(α0, i− 1)
6. return µ + Lift-up(∆)

Theorem 15. Algorithm Artin-Schreier is correct and takes
time O(dω + PT(i)).

Proof. Correctness follows from the previous discussion.
For the complexity, note AS(i) the cost for α a Ui. The cost
AS(0) of the naive algorithm is O(M(d) log(p) + dω), where
the first term is the cost of computing xp

0 and the second
one the cost of linear algebra.

When i > 1, step 2 has cost PT(i), steps 3, 4 and 6 all
contribute O(L(i)) and step 5 contributes AS(i − 1). The
most important contribution is at step 2, hence AS(i) =
AS(i− 1)+ O(PT(i)). The assumptions on L imply that the
sum PT(1) + · · ·+ PT(i) is O(PT(i)). ¤

6.2 Applying the isomorphism
We get back to the isomorphism question. We assume that
si = (s0, . . . , si) is known and we give the cost of applying
σsi and its inverse. We first discuss the forward direction.

As input, v ∈ U′i is written on the multivariate basis B′
i of

U′i; the output is t = σsi(v) a Ui. As before, the algorithm

is recursive: we write v = Σj<pvj(x
′
0, . . . , x

′
i−1)x

′
i
j
, whence

σsi(v) =
P

j<p σsi(vj)s
j
i =

P
j<p σsi−1(vj)s

j
i ;

the sum is computed by Horner’s scheme. To speed-up the
computation, it is better to perform the latter step in a
bivariate basis, that is, through a push-down and a lift-up.

Given t a Ui, to compute v = σ−1
si

(t), we run the previous
algorithm backward. We first push-down t, obtaining t =
t0 + · · · + tp−1x

p−1
i , with all tj a Ui−1. Next, we rewrite

this as t = t′0 + · · · + t′p−1s
p−1
i , with all t′j a Ui−1, and it

suffices to apply σ−1
si

(or equivalently σ−1
si−1) to all t′i. The

non-trivial part is the computation of the t′j : this is done
by applying the algorithm FindParametrization mentioned in
Subsection 2.3, in the extension Ui = Ui−1[Xi]/Pi.

ApplyIsomorphism

Input v, i with v ∈ U′i written on the basis B′i.
Output σsi (v) a Ui.

1. if i = 0 then return v
2. write v = Σj<pvj(x

′
0, . . . , x′i−1)x′i

j

3. let si,0 + · · ·+ si,p−1xp−1
i = Push-down(si)

4. for j ∈ [0, . . . , p− 1] let tj = ApplyIsomorphism(vj , i− 1)
5. let t = 0
6. for j ∈ [p− 1, . . . , 0] let t = (si,0 + · · ·+ si,p−1xp−1

i)t + tj
7. return Lift-up(t)

ApplyInverse

Input t, i with t a Ui.
Output σ−1

si
(t) ∈ U′i written on the basis B′i.

1. if i = 0 then return t
2. let t0 + · · ·+ tp−1xp−1

i = Push-down(t)

3. let si,0 + · · ·+ si,p−1xp−1
i = Push-down(si)

4. let t′0 + · · · + t′p−1Xp−1 = FindParametrization(t0 + · · · +
tp−1xp−1

i , si,0 + · · ·+ si,p−1xp−1
i)

5. return Σj<pApplyInverse(t′j , i− 1)x′i
j

Proposition 16. Algorithms ApplyIsomorphism and Ap-
plyInverse are correct and both take time O(iL(i)).

Proof. In both cases, correctness is clear, since the algo-
rithms translate the former discussion. As to complexity, in
both cases, we do p recursive calls, O(1) push-downs and
lift-ups, and a few extra operations: for ApplyIsomorphism,
these are p multiplications / additions in the bivariate basis
Di of Section 4; for ApplyInverse, this is calling the algo-
rithm FindParametrization of Subsection 2.3. The costs are
O(pM(pid)) and O(p2M(pi−1d)), which are in O(L(i)) by
assumption on L. We conclude as in Theorem 11. ¤

6.3 Proof of Theorem 13
Finally, assuming that only (s0, . . . , si−1) are known, we de-
scribe how to determine si. Several choices are possible: the
only constraint is that si should be a root of Xp

i − Xi −
σsi(γ

′
i−1) = Xp

i −Xi − σsi−1(γ
′
i−1) in Ui.

Using Proposition 16, we can compute α = σsi−1(γ
′
i−1) a

Ui−1 in time O((i− 1)L(i− 1)) ⊂ O(iL(i)). Applying a lift-
up to α, we are then in the conditions of Theorem 15, so we
can find si for an extra O(dω + PT(i)) operations.

We can then summarize the cost of all precomputations:
to the cost of determining si, we add the costs related to the
tower (U0, . . . ,Ui), given in Sections 3, 4 and 5. After a few
simplifications, we obtain the upper bound O(dω + PT(i) +
M(pi+1d) log(p)). Summing over i gives the first claim of the
theorem. The second is a restatement of Proposition 16.

7. EXPERIMENTAL RESULTS
We describe here the implementation of our algorithms and
an application coming from elliptic curve cryptology.

Experimental results. The previous algorithms are im-
plemented on top the NTL C++ library [23] compiled with

the gf2x package [4], which provide the basic univariate poly-
nomial arithmetic needed here. Our implementation handles
three NTL classes of finite fields: GF2 for p = 2, zz_p for
word-size p and ZZ_p for arbitrary p.

We compare our timings with those obtained in Magma [2].
We take p = 2 and d = 1 (that is, U0 = Fp); the x-coordinate
gives the number of levels we construct and the y-coordinate
gives timings in seconds, in logarithmic scale. All results are
obtained on an AMD Opteron 250 (2.4GHz).

We have two ways of doing arithmetic modulo 2 in NTL:
GF2 is specialized to p = 2; zz_p is more general. In Magma,
there exist several ways to build field extensions:

quo<U|P> builds the quotient of the univariate polynomial
ring U by P ∈ U (written magma(1) hereafter);

ext<k|P> builds the extension of the field k by P ∈ k[X]
(magma(2));

ext<k|p> builds an extension of degree p of k (magma(3)).

0.00098

0.031

1

32

1e+03

3.3e+04

1e+06

 5 10 15 20 25

se
co

n
d

s

height

zz_p
GF2

magma(1)
magma(2)
magma(3)

 5 10 15 20 25

height

zz_p
GF2

magma(2)

Our first graph gives timings for the construction of the
tower of Section 3; the second one gives timings for con-
structing an isomorphism with an arbitrary tower (in Magma,
only the magma(2) approach was meaningful). The timings
of our code are significantly better.

Isogeny algorithm. An isogeny is a regular map between
two elliptic curves E and E ′ that is also a group morphism.
Our interest is Couveignes’ isogeny algorithm [7], which com-
putes isogenies of degree ∼ pk. Couveignes’ later paper [8]
described improvements to speed up the computation, but
as we already mentioned, a key component, fast arithmetic
in Artin-Schreier towers, was still missing. The original algo-
rithm of [7] was first implemented in [16]; using this paper’s
algorithms, it now becomes possible to have a completely
explicit version of the fast variant. The algorithm relies on
the interpolation of a rational function at special points in
an Artin-Schreier tower; the Master thesis [9] describes im-
proved algorithms for this task, along the lines of [10]. Its
running time is probabilistic; we plot the average running
times with bars around them for minimum/maximum times;
the distribution is uniform.

0.03125

1

32

1024

32768

1.0486e+06

 2 4 8 16 32 64 128 256 512

se
co

n
d
s

isogeny degree

zzp
GF2

magma(2)

To highlight the benefits of this paper, we compare a
Magma implementation to our C++ code, for the same
variant of the isogeny algorithm, on an Intel Xeon E5430
(2.6GHz). For p = 2, it should be noted that Lercier’s
isogeny algorithm [15] has better performance; for generic,
small, p we mention as well a new algorithm by Lercier and
Sirvent [17] which still lacks an implementation.

Acknowledgments. We thank J.-M. Couveignes and F.
Morain for useful discussions. We acknowledge financial sup-
port from the INRIA “Équipes associées” ECHECS team,
NSERC and the Canada Research Chair program.

8. REFERENCES
[1] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into

practice. In ISSAC’03, pages 37–44. ACM, 2003.

[2] W. Bosma, J. Cannon, C. Playoust. The Magma algebra system.
I. The user language. J. Symb. Comp., 24(3-4):235-265, 1997.

[3] R. P. Brent. On computing factors of cyclotomic polynomials.
Math. Comp. 61:131–149, 1993.

[4] R. Brent, P. Gaudry, E. Thomé, P. Zimmermann. Faster
multiplication in GF(2)[x]. In ANTS’08, 153-166. Springer, 2008.

[5] P. Bürgisser, M. Clausen, and A. Shokrollahi. Algebraic
complexity theory. Springer–Verlag, 1997.

[6] D. G. Cantor. On arithmetical algorithms over finite fields.
Journal of Combinatorial Theory, Series A 50, 285-300, 1989.

[7] J.-M. Couveignes. Computing `-isogenies using the p-torsion. in
ANTS’II, 59–65. Springer, 1996.

[8] J.-M. Couveignes. Isomorphisms between Artin-Schreier towers.
Math. Comp. 69(232): 1625–1631, 2000.

[9] L. De Feo. Calculs d’isogénies. M. Sc. Thesis, École
polytechnique, 2007, http://www.lix.polytechnique.fr/~defeo/

[10] A. Enge and F. Morain, Fast decomposition of polynomials with
known Galois group. in AAECC-15, 254–264. Springer, 2003.

[11] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, 1999.

[12] J. von zur Gathen and J. Gerhard, Arithmetic and factorization
of polynomials over F2. In ISSAC’96, pages 1–9. ACM, 1996.

[13] J. von zur Gathen and V. Shoup. Computing Frobenius maps
and factoring polynomials. Comp. Complex., 2(3):187–224, 1992.

[14] E. Kaltofen. Challenges of symbolic computation: my favorite
open problems. J. Symb. Comp., 29(6):891–919, 2000.

[15] R. Lercier. Computing isogenies in GF(2n). In ANTS-II, LNCS
vol 1122, pages 197–212. Springer, 1996.

[16] R. Lercier. Algorithmique des courbes elliptiques dans les corps

finis. Ph.D. Thesis, École polytechnique, 1997.

[17] R. Lercier, T. Sirvent. On Elkies subgroups of `-torsion points
in curves defined over a finite field. To appear in J. Théor.
Nombres Bordeaux.

[18] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for
triangular sets: from theory to practice. In ISSAC’07, pages
269–276. ACM, 2007.

[19] R. Lidl and H. Niederreiter. Finite Fields, second edition.
Cambridge University Press, 1997.

[20] T. Mateer. Fast Fourier transform algorithms with applications.
Ph.D. Thesis, Clemson University, August 2008.

[21] C. Pascal and É. Schost. Change of order for bivariate
triangular sets. In ISSAC’06, pages 277–284. ACM, 2006.

[22] F. Rouillier. Solving zero-dimensional systems through the
Rational Univariate Representation. Appl. Alg. in Eng. Comm.
Comput., 9(5):433–461, 1999.

[23] V. Shoup. NTL: A library for doing number theory.
http://www.shoup.net/ntl/.

[24] V. Shoup. Fast construction of irreducible polynomials over
finite fields. J. Symb. Comp. 17:371-391, 1994.

[25] V. Shoup. Efficient computation of minimal polynomials in
algebraic extensions of finite fields. In ISSAC’99, pages 53–58,
ACM, 1999.

[26] Y. Wang and X. Zhu. A Fast Algorithm for Fourier Transform
Over Finite Fields and its VLSI Implementation. IEEE Journal
on Selected Areas in Communications, 6 (3):572-7, 1988.

