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1. Introduction

When computing with numerical multivariate polynomials and polynomial systems, it
is often effective and even necessary to work with an implicit representation. That is, we
represent a polynomial by its values at a sufficient number of points. Computationally, a
black box for a multivariate polynomial is a procedure that, for any given input, outputs
the evaluation of the polynomial at that input. Black boxes may also represent “approx-
imate polynomials”, where we expect the evaluations may have error or noise. In this
case we might think of the coefficients (in the power basis) as being approximate values
as well, though the number of non-zero terms generally remains fixed. In this paper we
demonstrate robust numerical algorithms for the sparse interpolation problem for ap-
proximate black-box polynomials: how to reconstruct an accurate representation of the
polynomial in the power basis. This representation is parameterized by the sparsity —
the number of non-zero terms — and its cost will be proportional to this sparsity (instead
of the dense representation size). Multivariate polynomial interpolation is a component
in recent approximate multivariate factorization algorithms (see [8, 12, 31]) and in the
decomposition of approximately specified polynomial systems [32, 33]. Numerically ro-
bust interpolation methods for sparse polynomials are important for speed and reliability
of these methods, especially when there are more than two variables. Our prototypical
situation is when there is an implicit underlying polynomial which can be evaluated, with
noise, and auxiliary information that it has a sparse representation in the standard basis.
Our goal is to identify this representation in a numerically robust manner, with as few
evaluations as possible. We will speak of this as an interpolation technique to recover an
existent sparse (and exact) polynomial, though to mitigate the effects of the noise, we
will also address approximation methods in Subsection 4.8.

Suppose we have a black box for a multivariate polynomial f ∈ C[x1, . . . , xn] which
we know to be t-sparse, that is,

f =
∑

1≤j≤t

cjx
dj1
1 x

dj2
2 · · ·xdjn

n ∈ C[x1, . . . , xn], (1.1)

where c1, . . . , ct ∈ C, (dj1 , . . . , djn) ∈ Z≥0 are distinct for 1 ≤ j ≤ t, and t is “small.”
Evaluating

α1 = f(ν1), α2 = f(ν2), . . . , ακ = f(νκ),
at our own choice of points ν1, ν2, . . . νκ ∈ Cn, where κ = O(t), we would like to determine
the coefficients c1, . . . , ct ∈ C and the exponents dj1 , . . . , djn , for 1 ≤ j ≤ t, of f . If the
evaluation points are not exact, this may not be possible, so we ask that our algorithms
are numerically robust: if the evaluations α̃1, . . . , α̃κ are relatively close to their true
values, we want the coefficients c̃1, . . . , c̃t ∈ C we compute to also be relatively close
to their values in the exact computation. Of course, if the polynomial is not sparse
(i.e., t is large) then we are left with a standard interpolation problem, and should
apply to techniques appropriate to that problem. The fact that a polynomial is sparse is
significant structural information both algebraically and geometrically and our problem
is to capitalize on this algorithmically.

Black-box polynomials appear naturally in applications such as polynomial systems [9]
and the manipulation of sparse polynomials (e.g., factoring polynomials [11, 23]). Sparsity
with respect to the power (or other) basis is also playing an ever more important role
in computer algebra. As problem sizes increase, we must be able to capitalize on the
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structure, and develop algorithms whose costs are proportional only to the size of the
support for the algebraic structures with which we are computing. A primary example is
that of (exact) sparse interpolation of f as in (1.1), reconstructing the exponents djk and
non-zero coefficients c1, . . . , ct from a small number of evaluations of f . The best known
exact interpolation methods that are sensitive to the sparsity of the target polynomial
are the algorithms of Ben-Or/Tiwari [4] and of Zippel [36]. Although both approaches
have been generalized and improved (see [20, 22, 35, 37]), they all depend upon exact
arithmetic.

With recent advances in approximate polynomial computation, we are led to investi-
gate the problem of sparse interpolation in an approximate setting. Black-box polynomi-
als can capture an implicit model of an object which can only be sampled approximately.
Moreover, sheer size and complexity requires that we exploit sparsity and use efficient
(i.e., IEEE floating point) arithmetic in a numerically sound manner.

The problem of multivariate polynomial interpolation is not new, with early work go-
ing back at least to Kronecker [26]. See [13] for a survey of early work in this area. More
recently there has been much activity on the topic, of both an algorithmic and mathe-
matical nature. See [27] for a good survey of the state of the art. To our knowledge, none
of the previous numerical work has considered the problems of identifying the (sparse)
support and sparse multivariate interpolation. Sparsity is considered in a different, bit-
complexity model, using arbitrary precision arithmetic by Mansour [28], who presents a
randomized algorithm for interpolating a sparse integer polynomial from (limited preci-
sion) interpolation points (wherein bits of guaranteed accuracy can be extracted at unit
cost). The algorithm guarantees an answer with controllably high probability, though
its cost is dependent on the absolute size L of the largest coefficient in f , as well as
the sparsity t and degree. Moreover, it would also seem to be quite expensive, requiring
about O((logL)8 · t log deg f) bit operations.

In Section 2, we present the algorithm of Gaspard Riche, Baron de Prony, from 1795
[30] (generally referred to as “Prony’s algorithm”) for interpolating sums of exponential
functions. We show that it is very similar to the algorithm for sparse polynomial inter-
polation of Ben-Or and Tiwari [4]. In Section 3 we adapt Ben-Or and Tiwari’s method
to floating-point arithmetic and identify the numerical difficulties encountered. We also
adapt a recent, and much more stable, variant of Prony’s algorithm by Golub, Milanfar
and Varah [18, 29] to the problem of polynomial interpolation. This algorithm, developed
for the shape from moments problem, makes use of generalized eigenvalues for added nu-
merical stability. Our goal is a numerically stable algorithm in the sense of Wilkinson,
or normwise backward stability as defined by Higham [21, Section 7.6]. Ultimately, we
will not quite achieve this, but obtain an algorithm which is a composition of two stable
steps.

In Section 4, we give a detailed analysis of the numerical behaviour of our algorithms
and sensitivity of the underlying problems. In particular, we show that the stability of
our algorithms is governed by ‖V −1‖2/min |cj |, where V is a (hidden) Vandermonde
matrix of the support terms of the polynomial evaluated at the sample points. Here, and
throughout, ‖A‖ = ‖A‖2 is the matrix 2-norm of the matrix A, unless otherwise indicated
by a subscript (i.e., ‖A‖1 is the 1-norm of A, etc.) The coefficients c1, . . . , ct are intrinsic
to the problem, and in some sense having one of them too small may indicate an incorrect
choice of t. On the other hand, the condition of V (as indicated by ‖V −1‖ or perhaps
more exactly by a structured condition number) is really a property of the method, and
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we address this directly. Note that we consider only the unstructured condition number,
and will ultimately show that this is small with reasonable probability (and hence our
algorithms stable). The unstructured condition number may well be smaller still, but we
will not analyse this further in this work.

A key technique in this regard is the use of evaluation points at roots of unity, and the
random choice of such roots. The use of roots of unity for interpolation is well-established,
and adds numerical stability by reducing large variations in magnitude incurred by eval-
uating polynomials of high degree. In particular, the Vandermonde matrix V discussed
above will have entries which are roots of unity. Still, difficulties can arise when the values
of different terms in the target polynomial become clustered, and a näıve floating point
implementation of Ben-Or/Tiwari may still be unstable, even when evaluating at roots
of unity [3]. We show that by randomly choosing a primitive root of unity we can avoid
this clustering with high probability. Choosing random evaluation points is, of course,
a well-established method in symbolic computation (e.g., [36]) and symbolic-numeric
computation (e.g., [7, 25]).

We prove modest theoretical bounds to demonstrate this improvement by exhibiting
a bound on ‖V −1‖ which is dependent only on the sparsity (and not on the degree
or number of variables in f). Moreover, we show that in practice the improvement in
stability is far more dramatic, and discuss why this might be so.

In Section 5, the numerical robustness of our algorithms is demonstrated. We show
the effects of varying noise and term clustering and the potential numerical instability it
can cause. We demonstrate the effectiveness of our randomization at increasing stability
dramatically, with high probability, in such circumstances.

An extended abstract of some of this work appears in [17].

2. Prony and Ben-Or/Tiwari’s methods for exact interpolation

In this section we describe Prony’s method for interpolating sums of exponentials
and the Ben-Or/Tiwari algorithm for multivariate polynomials. We show that these two
algorithms are closely related.

2.1. Prony’s method

Prony’s method seeks to interpolate a univariate function F (x) as a sum of exponential
functions. That is, it tries to determine c1, . . . , ct ∈ C and µ1, . . . , µt ∈ C such that

F (x) =
t∑

j=1

cje
µjx with cj 6= 0. (2.1)

Since there are 2t unknowns, one would expect to need a system of at least the same
number of equations in order to determine these unknowns. If bj = eµj , by evaluating
F (0), F (1), . . . ,F (2t − 1) we can obtain a non-linear system of 2t equations relating
the 2t variables µ1, . . . , µt, c1, . . . , ct. Prony’s method solves this non-linear system by
converting it into a problem of root finding for a single, univariate polynomial, and the
solving of (structured) linear equations. Let Λ(z) be the monic polynomial having the
bj ’s as zeros:

Λ(z) =
t∏

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·λ1z + λ0.
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It is straightforward to derive that λ0, . . . , λt−1 satisfy
F (0) F (1) . . . F (t− 1)

F (1) F (2) . . . F (t)
...

...
. . .

...

F (t− 1) F (t) . . . F (2t− 2)




λ0

λ1

...

λt−1

 = −


F (t)

F (t+ 1)
...

F (2t− 1)

 .

After solving the above system for coefficients λ0, . . . , λt−1 of Λ(z), b1, . . . , bt (hence also
µ1, . . . , µt) can be determined by finding the roots of Λ(z). The remaining unknown
coefficients c1, . . . , ct can then be computed by solving the transposed Vandermonde
system: 

1 · · · 1

b1 · · · bt
...

. . .
...

bt−1
1 · · · bt−1

t




c1

c2
...

ct

 =


F (0)

F (1)
...

F (t− 1)

 . (2.2)

While Prony’s method is relatively well-known, it has largely been abandoned in the
numerical literature due to its numerical instability. Indeed, on evaluation points 0, 1,
. . . , 2t − 1 as above the problem is highly ill-conditioned. Recent developments in [18]
and subsequent work have revived interest for the shape from moments problem, and we
will examine these advances below.

2.2. The Ben-Or/Tiwari method

For a given black-box polynomial f with n variables, in exact arithmetic the Ben-
Or/Tiwari method finds coefficients cj and integer exponents (dj1 , . . . , djn) such that

f(x1, . . . , xn) =
t∑

j=1

cjx
dj1
1 · · ·xdjn

n , (2.3)

for 1 ≤ j ≤ t, with c1, . . . , ct 6= 0. Let βj(x1, . . . , xn) = x
dj1
1 · · ·xdjn

n be the jth term
in f . The interpolation method assumes that f is defined over a unique factorization
domain D. Select elements ω1, . . . , ωn ∈ D, with the sole condition that they be pairwise
relatively prime. The polynomial f will be evaluated at powers of (ω1, . . . , ωn). Define

bj = βj(ω1, . . . , ωn) = ω
dj1
1 · · ·ωdjn

n

and note that bkj = βj(ωk1 , . . . , ω
k
n) for any power k.

If we define a function F on integer values by F (k) = f(ωk1 , . . . , ω
k
n), then the Ben-

Or/Tiwari algorithm solves for the bj and the cj , much as is done in Prony’s method,
from evaluations of F (0), F (1), F (2), . . . . That is, it finds a generating polynomial
Λ(z), determines its roots, and then solves a Vandermonde system. In addition, once the
individual terms bj are found as the roots of Λ(z) = 0, the exponents (dj1 , . . . , djn) are
determined by looking at their unique factorizations: bj = ω

dj1
1 ω

dj2
2 . . . , ω

djn
n , which can

be easily achieved through repeated division of bj by ω1, . . . , ωn.
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We note that, as an alternative which we employ in the our algorithms in the next
section, we could also choose ω1, . . . , ωn to be roots of unity of relatively prime order
(i.e., ωpi

i = 1, ωji 6= 1 for 1 ≤ j < pi, and pi > degxi
f , gcd(pi, pj) = 1 whenever i 6= j).

Then, given bj , we can again uniquely determine (dj1 , . . . , djn).

3. Numerical methods for sparse interpolation

In this section we present two methods for black-box interpolation of sparse multi-
variate polynomials in floating-point arithmetic. One is a straightforward modification
of the Ben-Or/Tiwari algorithm, while the other method makes use of a reformulation
of Prony’s method using generalized eigenvalues [18].

3.1. A Modified Numeric Ben-Or/Tiwari Algorithm

If the steps of the Ben-Or/Tiwari algorithm are directly implemented in floating-point
arithmetic, then difficulties arise at various stages of the computation. The first difficulty
is that the subroutines employed for linear system solving and root finding in the Ben-
Or/Tiwari algorithm need to use floating-point arithmetic. Hence, they may encounter
significant numerical errors. The second difficulty is that we can no longer employ exact
divisions to recover the exponents of each variable in a multivariate term.

While it is well-known that Hankel and Vandermonde matrices can often be ill-
conditioned, this is particularly true when the input is real, as it is in the Ben-Or/Tiwari
algorithm. For example, when all the coefficients of f are positive, the Hankel matrix in
Prony’s algorithm is positive definite, and its condition number may grow exponentially
with the dimension [2]. The Vandermonde structured condition number may be better,
and a structured analysis of a related Vandermonde system is presented in [3].

Instead, our modified numeric Ben-Or/Tiwari algorithm uses evaluation points at
appropriate primitive (complex) roots of unity. This turns out to reduce our conditioning
problems with the encountered Hankel and Vandermonde systems (see Subsection 4.1),
and has the added advantage that it allows us to recover the exponent of each variable
in a multivariate term. We also assume that we have an upper bound on the degree of
each variable in f ; this is necessary to recover the correct exponents. Let f be as in (2.3).
Choose p1, . . . , pn ∈ Z>0 pairwise relatively prime such that pk > degxk

f for 1 ≤ k ≤ n.
The complex root of unity ωk = exp(2πi/pk) has order pk, which is relatively prime to
the product of other pj ’s. Now consider the following sequence for interpolation:

αs = f(ωs1, ω
s
2, . . . , ω

s
n) for 0 ≤ s ≤ 2t− 1, (3.1)

with ωk = exp(2πi/pk). Setting m = p1 · · · pn and ω = exp(2πi/m), we see ωk = ωm/pk

for 1 ≤ k ≤ n.
Each term βj(x1, . . . , xn) in f is evaluated as βj(ω1, . . . , ωn) = ωdj , and each dj

can be computed by rounding logω(ωdj ) = logω(βj(ω1, . . . , ωn)) to the nearest integer.
Note that this logarithm is defined modulo m = p1 · · · pn. Because the pk’s are relatively
prime, the exponent for each variable (dj1 , . . . , djn) ∈ Zn>0 can be uniquely determined
by the reverse steps of the Chinese remainder algorithm (see, e.g., [16]). That is, we have
dj ≡ djk mod pk for 1 ≤ k ≤ n and

dj = dj1 ·
(
m

p1

)
+ · · ·+ djn ·

(
m

pn

)
. (3.2)

We present our modified Ben-Or/Tiwari algorithm.
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Algorithm: ModBOTInterp

Input: I a floating-point black box f : the target polynomial;

I t, the number of terms in f ;

I D1, . . . , Dn: Dk ≥ deg(fxk
).

Output:I cj and (dj1 , . . . , djn) for 1 ≤ j ≤ t such that
∑t
j=1 cjx

dj1
1 · · ·xdjn

n approximately
interpolates f .

(1) [Evaluate f at roots of unity.]

(1.1) Choose p1, . . . , pn pairwise relatively prime and pj > Dj . Let m = p1 · · · pn,
ω = exp(2πi/m), and ωk = exp(2πi/pk) = ωm/pk .

(1.2) Evaluate αs = f(ωs1, ω
s
2, . . . , ω

s
n), 0 ≤ s ≤ 2t− 1.

(2) [Recover (dj1 , . . . , djn).]

(2.1) Solve the associated Hankel system
α0 . . . αt−1

α1 . . . αt
...

. . .
...

αt−1 . . . α2t−2


︸ ︷︷ ︸

H0


λ0

λ1

...

λt−1

 = −


αt

αt+1

...

α2t−1

 . (3.3)

(2.2) Find roots b1, . . . , bt for Λ(z) = zt + λt−1z
t−1 + · · ·+ λ0 = 0.

(2.3) Recover (dj1 , . . . , djn) from dj = round(logω bj) via (3.2) by the reverse Chi-
nese remainder algorithm.

(3) [Compute the coefficients cj.]

Solve an associated Vandermonde system: (now βj = x
dj1
1 · · ·xdjn

n are recovered,
b̃j can be either bj or βj(ω1, . . . , ωn))

1 · · · 1

b̃1 · · · b̃t
...

. . .
...

b̃t−1
1 · · · b̃t−1

t




c1

c2
...

ct

 =


α0

α1

...

αt−1

 . (3.4)

3.2. Interpolation via Generalized Eigenvalues

We now give another algorithm which avoids the solving for a Hankel system and the
subsequent root finding. This is done by using a reformulation of Prony’s method as a gen-
eralized eigenvalue problem, following [18]. In our subsequent analysis we will show that
in fact both methods are theoretically numerically robust. In practice, the method below
using generalized eigenvalues is generally more resilient to “unlucky” random choices.
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As before, consider f as in (2.3) evaluated at primitive roots of unity as in (3.1). Define
Hankel systems

H0 =


α0 · · · αt−1

...
. . .

...

αt−1 · · · α2t−2

 , and H1 =


α1 . . . αt
...

. . .
...

αt . . . α2t−1

 .
Let bj = βj(ω1, . . . , ωn). If we set Y = diag(b1, . . . , bt), D = diag(c1, . . . , ct), and

V =


1 1 . . . 1

b1 b2 . . . bt
...

...
. . .

...

bt−1
1 bt−1

2 . . . bt−1
t

 , (3.5)

then
H0 = V DV T, and H1 = V DY V T. (3.6)

The solutions for z ∈ C in the generalized eigenvalue problem

(H1 − zH0)v = 0, (3.7)

for a generalized eigenvector v ∈ Ct×1, are bj = βj(ω1, . . . ωn) for 1 ≤ j ≤ t. If ω1, . . . , ωn
are chosen as described in the previous subsection, we can also recover the multivariate
terms βj(x1, . . . , xn) through the same method. To complete the interpolation, we need
to compute the coefficients, which requires the solving of a transposed Vandermonde
system over a numerical domain. The cost of the entire procedure is bounded by the cost
of solving the generalized eigenvalue problem, which can be accomplished in a numerically
stable manner with O(t3) operations using the QZ algorithm (see, e.g., [19]).

The algorithm for sparse interpolation using generalized eigenvalues is the same as
ModBOTInterp with the exception of step (2), which we present here.

Algorithm: GEVInterp (Step 2)

(2) [Recover (dj1 , . . . , djn).]

(2.1) Find solutions b1, . . . , bt for z in the generalized eigenvalue problem H1v =
zH0v.

(2.2) Recover (dj1 , . . . , djn) from dj = round(logω bj) via (3.2) by the reverse Chi-
nese remainder algorithm.

4. Sensitivity analysis and randomized conditioning

In this section we focus on the numerical accuracy of the sparse interpolation algo-
rithms presented in the previous section. We also introduce a new randomized technique
which will dramatically improve the expected numerical stability of our algorithms.

Both the Ben-Or/Tiwari algorithm and the generalized eigenvalue method first recover
the polynomial support. That is, they determine which terms are non-zero in the target
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polynomial. We look at the numerical sensitivity of both techniques, and link it directly to
the choice of sparsity t and the condition of the associated Vandermonde system V . After
the non-zero terms are determined, both methods need to separate the exponents for
different variables and recover the corresponding coefficients, again via the Vandermonde
system V . Finally, we show how randomization of the choice of evaluation points can
substantially improve the conditioning of V , and hence improve the stability of the entire
interpolation process.

4.1. Conditioning of associated Hankel system

Consider the modified numeric Ben-Or/Tiwari algorithm described in Subsection 3.1.
In order to determine coefficients for the polynomial Λ(z) = zt + λt−1z

t−1 + · · ·+ λ0, we
need to solve a Hankel system as in (3.3). In general, if the polynomial f is evaluated at
powers of real values, the difference between the sizes of varying powers will contribute
detrimentally to the conditioning of the Hankel system. This problem of scaling is avoided
in our method, since our H0 is formed from the evaluations on the unit circle.

The following proposition links the condition of H0 directly to the condition of V and
to the size of the reciprocals 1/|cj | of the coefficients cj in the target polynomial (for
1 ≤ j ≤ t). It is useful to recall from Subsection 3.2 the definitions of H0, Vandermonde
matrix V , and diagonal matrix D = diag(c1, . . . , ct) such that H0 = V DV T.

Proposition 4.1.

(i) ‖H−1
0 ‖ ≥

1
t

max
j

1
|cj |

, and ‖H−1
0 ‖ ≥

‖V −1‖2∑
1≤j≤t |cj |

.

(ii) ‖H−1
0 ‖ ≤ ‖V −1‖2 ·max

j

1
|cj |

.

Proof. Define W = V D1/2, where D1/2 = diag(
√
c1, . . . ,

√
ct), choosing some fixed (pos-

sibly complex) square root of each cj . Thus, we can write H0 = WWT and H−1
0 =

W−TrW−1. We note that ‖H−1
0 ‖ = ‖W−1‖2.

For (i), let D1/2
j be be the matrix derived from D1/2 by replacing the jth diagonal

element by 0. Then V D
1/2
j is singular for 1 ≤ j ≤ t. By the Eckart-Young theorem, and

the fact that the bj ’s are on the unit circle, we obtain

1
‖W−1‖

= min
A
{‖W −A‖, A singular } ≤ min

j
{‖V D − V Dj‖}

= min
j
{‖V (D −Dj)‖} = ‖[1, bj , . . . , bt−1

j ]‖ · |√cj | ≤ |
√
tcj |,

and ‖H−1
0 ‖ = ‖W−1‖2 ≥ (1/t) · maxj(1/|cj |). Similarly, let Ṽ be singular such that

‖V − Ṽ ‖ is minimal, so Ṽ D1/2 and Ṽ DṼ T are singular, and ‖V − Ṽ ‖ = 1/‖V −1‖. Then

1
‖W−1‖

≤ ‖V D1/2 − Ṽ D1/2‖ = ‖(V − Ṽ )D1/2‖ ≤ ‖V − Ṽ ‖ · ‖D1/2‖ ≤ ‖D
1/2‖

‖V −1‖
,

and ‖H−1
0 ‖ = ‖W−1‖2 ≥ ‖V −1‖2/

∑
j |cj |, since ‖D1/2‖2 =

∑
j |cj |.

For (ii), write H−1
0 = V −TrD−1V −1, and note

‖H−1
0 ‖ ≤ ‖V −1‖2‖D−1‖ = ‖V −1‖2 ·max

j

1
|cj |

.
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Thus, bounds for ‖H−1
0 ‖ involve both the (inverses of) the coefficients of the inter-

polated polynomial c1, . . . , ct and the condition of the Vandermonde system V . In some
sense the coefficients c1, . . . , ct are intrinsic to a problem instance, and having them very
small (and hence with large reciprocals) means that we have chosen t too large. The Van-
dermonde matrix V , on the other hand, is a construction only of our algorithm (and not
intrinsic to the problem), and we will address its conditioning, and methods to improve
this conditioning, in the following sections.

4.2. Root finding on the generating polynomial

In our modified numeric Ben-Or/Tiwari algorithm, for recovering non-zero terms in f ,
we need to find the roots of Λ(z) = 0. In general, root finding can be very ill-conditioned
with respect to perturbations in the coefficients [34].

However, all the roots bj = βj(ω1, . . . , ωn) as (2.3) are on the unit circle by our choice of
evaluation points. Using Wilkinson’s argument for points on the unit circle, the following
theorem shows that the condition can be improved, and related to the separation of the
roots b1, . . . , bt.

Theorem 4.1. Let Λ(z) be a polynomial with roots bk on the unit circle. Let Λ̃(z) =
Λ(z) + εΓ(z) be a perturbation of Λ(z) with roots b̃k. Then

|bk − b̃k| <
ε · ‖Γ(z)‖1

|
∏
j 6=k(bk − bj)|

+Kε2. (4.1)

Proof. From Wilkinson [34, Page 39], we know that

|bk − b̃k| ≤ ε ·
|Γ(bk)|
|Λ′(bk)|

+Kε2,

where Λ′ is the first derivative of Λ and K is some constant. Since Λ(z) =
∏
k(z − bk)

we know that Λ′(bk) =
∏
j 6=k(bk − bj). Assume Γ(z) =

∑
j γjz

j . Then, since the bk’s are
on the unit circle, we have

|Γ(bk)| = |
t∑

j=1

γjb
j
k| ≤

t∑
j=1

|γj | · |bjk| ≤
t∑

j=1

|γj | = ‖Γ(z)‖1,

giving us the desired inequality. 2

Note that ε · ‖Γ(z)‖1 is an upper bound for the perturbation of the polynomial Λ(z)
evaluated on the unit circle, which is also a measure of the size of a perturbation in the
solution of the Hankel system (3.3). The value of |

∏
j 6=k(bk − bj)| is directly related to

the condition of the Vandermonde system (3.5), and depends on the distribution of bj ’s
on the unit circle (see Subsection 4.6).

We remark that the above results may be improved though a characterization in terms
of pseudo-zeros (see [10]). This will not be necessary for our purposes here, though is
certainly worthy of further pursuit.
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4.3. Error bounds for generalized eigenvalues

We can further analyze the generalized eigenvalue approach described in Subsection
3.2. In particular, we once again link the sensitivity directly to the condition of V , that
is, to ‖V −1‖, and to the magnitude of the smallest coefficient. Along similar lines to [18],
we can prove the following:

Theorem 4.2. Assume the generalized eigenvalue problem in (3.7) has generalized eigen-
values b1, . . . , bt ∈ C and corresponding eigenvectors v1, . . . , vt ∈ Ct×1. Consider the
perturbed problem (

(H1 + ε Ĥ1)− z(H0 + ε Ĥ0)
)
v = 0 (4.2)

for ε > 0 and normalized perturbations Ĥ0, Ĥ1 ∈ Ct×t with ‖Ĥ0‖ = ‖H0‖ and ‖Ĥ1‖ =
‖H1‖. Then (4.2) has solutions (generalized eigenvalues) b̃1, . . . , b̃t ∈ C, with

|̃bj − bj | < ε · 2t2 · ‖(c1, . . . , ct)‖∞ · ‖V −1‖2

|cj |

for 1 ≤ j ≤ t.

Proof. Assume that

(H1 + ε Ĥ1)(v + ε v̂) = (z + ε ẑ)(H0 + ε Ĥ0)(v + ε v̂),

where z ∈ C is an eigenvalue of the unperturbed system (3.7) and v ∈ Ct×1 is its
corresponding eigenvector, and ẑ ∈ C and v̂ ∈ Ct×1 are (scaled) perturbations. Then

(H1 − zH0)v̂ = (ẑH0 + zĤ0 − Ĥ1)v. (4.3)

Following [18], we premultiply both sides of (4.3) by vT and rearrange, to obtain

ẑ =
vT(Ĥ1 − zĤ0)v

vTH0v
, and hence ‖ẑ‖ ≤ ‖v

T‖2 · (‖H1‖+ ‖H0‖‖z‖)
|vTH0v|

.

Note that ‖z‖ = 1 since all the nodes lie on the unit circle, and that ‖D‖ = ‖(c1, . . . , ct)‖∞
and ‖Y ‖ = 1 since they are diagonal matrices, and that ‖V ‖ ≤ t since all the entries
have absolute value 1. Then from (3.5), we see that

‖H0‖ = ‖V TrDV ‖ ≤ ·‖V ‖2 · ‖D‖ ≤ t2 · ‖(c1, . . . , ct)‖∞ , and

‖H1‖ = ‖V TrDY V ‖ ≤ ‖V ‖2 · ‖Y ‖ · ‖D‖ ≤ t2 · ‖(c1, . . . , ct)‖∞.
(4.4)

Now recall that any eigenvalue z = bj ∈ C of (3.7) has eigenvector vj = (V T)−1ej . We
thus see

vT
j H0vj = vT

j V DV
Tvj = cj .

Substituting a specific z = bj (for some 1 ≤ j ≤ t) into the above inequalities, and letting
b̂j = ẑ, we see any eigenvalue b̃j = bj + b̂j of (4.2) satisfies

|̂bj | = |̃bj − bj | ≤ ε ·
2t2 · ‖(c1, . . . , ct)‖∞ · ‖V −1‖2

|cj |
.

as required. 2
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4.4. Separation of powers

After computing approximations b̃1, . . . , b̃t for the term values b1, . . . , bt, we still need
to consider the precision required for correctly recovering the integer exponents (with
respect to ω = exp(2πi/m)) by taking the logarithms of bj = ωdj (with respect to ω), for
1 ≤ j ≤ t, as in (3.2). Since each bj lies on the unit circle, we really need only consider
the argument of b̃j in determining its logarithm with respect to ω (i.e., we normalize
b̃j := b̃j/|̃bj |).

Two consecutive mth roots of unity on the unit circle are separated by an angle of
radian 2π

m , and the distance between these two points is bounded below by twice the
sine of half the angle between them. Thus, in order to separate any two such points by
rounding one must have the computed values b̃1, . . . , b̃t of b1, . . . , bt correct to

|bj − b̃j | ≤
1
2
|2 sin(

π

m
)| < π

m
, and m = p1 · · · pn,

for 1 ≤ j ≤ t, where pk > deg fxk
for 1 ≤ k ≤ n.

We note that π/m is not a particularly demanding bound, and is easily achieved (for
fixed-precision, floating-point numbers) when H is well-conditioned, for reasonable size
m. In particular, we need only O(logm) bits correct to identify the non-zero terms in
our target sparse polynomial.

4.5. Recovering the coefficients

Once the values of b1, . . . , bt, and hence exponents of the non-zero terms, have been
determined, it still remains to compute their coefficients c1, . . . , ct, which can be done in
a number of ways. Most straightforwardly, we can solve the Vandermonde system V in
equation (3.4) (Step 3 in algorithm ModBOTInterp) to determine the coefficients c1, . . . , ct.
The main issue in this case is the condition of V , which is not obviously good. We
examine this in Subsection 4.6. If the term are determined as general eigenvalues in (3.7)
by the QZ algorithm, the computed eigenvectors v1, . . . , vt can be used to reconstruct
the coefficients. See [18].

4.6. Condition of the Vandermonde System

While Vandermonde matrices can be poorly conditioned, particularly for real number
data [2, 15], our problem will be better behaved. First, all our nodes (b1, . . . , bt) lie on
the unit circle. For example, in the case of t × t Vandermonde matrices as in (3.5), the
2-norm condition number has the optimal value of 1 when the nodes are all the mth
roots of unity [14, example 6.4]. A slightly less uniform sequence of nodes is studied in
[6], where the nodes are chosen according to a Van der Corput sequence, to achieve a 2-
norm condition number of

√
2t of a t× t Vandermonde matrix (for any t). While we have

no way of choosing our nodes to be in a Van der Corput sequence, this result suggests
the possibility of well-conditioning of complex Vandermonde matrices, especially when
the spacing of the nodes is relatively regular. See also [21, Section 22.1].

When b1, . . . , bt are all mth roots of unity (for m ≥ t) we have the following bounds
for ‖V −1‖ from [14]:

max
1≤k≤t

1/
√
t∏

j 6=k |bj − bk|
< ‖V −1‖ ≤ max

1≤k≤t

2t−1
√
t∏

j 6=k |bj − bk|
. (4.5)
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These bounds may still be dependent exponentially on t and m, particularly if b1, . . . , bt
are clustered. In the worst case, we find

‖V −1‖ > 1√
t
·
(

m

2π(t− 1)

)t−1

.

For a more general discussion, see [3].
This indicates that as m, as well as t, gets larger, the condition of V can get dramat-

ically worse, particularly if m is large. As an example, if m = 1000 (which might occur
with a tri-variate polynomial of degree 10 in each variable) with 10 terms, V could have
condition number greater than 1016. This is quite worrisome, as m is proportional to the
number of possible terms in the dense representation, and in particular is exponential
in the number of variables n. Moreover, the bound seems surprisingly bad, as one might
hope for better conditioning as m gets larger, when there is greater “opportunity” for
node distribution. This is addressed in the next subsection.

4.7. Randomized reconditioning

We now demonstrate how a small amount of randomization ameliorates the problem
of potential ill-conditioning in the Vandermonde matrix dramatically.

Suppose p1, . . . , pn are distinct primes, pk > degxk
f , and ω = exp(2πi/m) for m =

p1 · · · pn. If the target polynomial f is evaluated at powers of (ω1, . . ., ωn) for ωk =
ωm/pk (cf. Subsection 3.1), the distribution of term values on the unit circle is fixed
because the polynomial terms are fixed. We may well end up in a situation where the
Vandermonde matrix is ill-conditioned as discussed above. To eliminate this possibility
with high probability, we will introduce a randomization as follows. Instead of using ωk =
ωm/pk = exp(2πi/pk), the principal pkth primitive root of unity, we choose a random
pkth primitive root of unity, ωk = exp(2πirk/pk), for some 1 ≤ rk < pk. Equivalently, we
choose a single r with r ≡ rk mod pk, 1 ≤ r < m, so that ωk = ωmr/pk (see (3.2)).

To analyze the distribution of term values, instead of the multivariate polynomial
f =

∑t
j=1 cjx

dj1
1 · · ·xdjn

n , we equivalently consider the univariate polynomial f̃(x) =∑t
j=1 cjx

dj where dj = dj1(m/p1)+ · · ·+djn(m/pn) (cf. Subsection 3.1). The term values
are ωd1 , . . . , ωdt , and the stability of recovering the djs depends upon the condition of
the Vandermonde matrix V on the nodes ωd1 , . . . , ωdt . This is inversely related to the
product of differences |ωdj − ωdk | for 1 ≤ j < k ≤ t as described in (4.5).

For each interpolation attempt, we pick an r uniformly and randomly from 1 . . .m−1.
The condition number of the new Vandermonde matrix Ṽ , with nodes bj = ωrdj for
1 ≤ j ≤ t is now inversely related to the differences |rdj − rdk| = r|dj − dk| mod
m. In some sense we are multiplying each difference by (the same) random number r,
hopefully minimizing the chance that there are many small differences. Once the Hankel
matrix H0 is constructed, we can check the conditioning, and if it is poor, we can choose
another random r and repeat the process. The next theorem, and especially the following
discussion, gives us some assurance that we never have to do this very often.

Theorem 4.3. Let p1, . . . , pn > t2/2 be distinct primes as above, with m = p1 . . . pt and
ω = exp(2πi/m). Let 0 ≤ d1, . . . , dt ≤ m− 1 be distinct. Suppose r is chosen uniformly
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and randomly from 1, . . . ,m−1 and let Ṽ be the Vandermonde matrix on nodes bi = ωrdi .
Then, with probability at least 1/2,

‖Ṽ −1‖ ≤
√
t

(
2t2

π

)t−1

.

Proof. For 1 ≤ j < k ≤ t, let ∆jk = |dj − dj | mod m. There are at most
(
t
2

)
≤ t2/2

distinct values of ∆jk. Fix ` := m/t2, and let c ∈ {1, . . . , `}. For each ∆jk there is at
most one r ∈ Zm such that r∆jk ≡ c mod m. Thus, there are at most t2/2 · ` = m/2
values of r such that for any ∆jk and any c ∈ {1, . . . , `} we have r∆jk 6≡ c mod m.

Assume that the chosen r is such that r∆jk 6≡ 1, . . . , `. Then for all 1 ≤ j < k ≤ t we
have

|ωrdj − ωrdk | = |ωr(dj−dk) − 1| ≥ |ωm/t
2
− 1| = |e2πi/t

2
− 1|

= 2 sin(π/t2) ≥ 2
(
π

t2
− π3

6t6

)
≥ π

t2
.

Using (4.5) this yields

‖Ṽ −1‖ ≤
√
t · max

1≤k≤t

2t−1∏
j 6=k |ωdj − ωdk |

≤
√
t

(
2t2

π

)t−1

.

2

This eliminates any dependence upon m, and hence any dependence upon the size of
the dense representation of the polynomial. However, we believe this is probably still far
from optimal. Considerable cancellation might be expected in the sizes of the entries of
V −1, though bounding these formally seems difficult. See [21] for a recent exposition on
Vandermonde conditioning.

We have conducted intensive numerical experiments which suggest that the bound (in
terms of t) on the condition number (of H and V ) is much lower. For the experiments, we
assume the worst case before the randomization, with nodes clustered as ω, ω2, . . . , ωt. We
assume that we are in the univariate case, where m is prime. Neither of these assumptions
have any substantial effect on the results of the experiments. We ran the experiment 100
times for each value of m and sparsity percentage t, and report the median condition
number.

In the first set of experiments we consider the condition number of V in the worst
case and in the median case. In the median case, with randomization, we can expect
the condition number of V to be less than that stated in the table with probability at
least 50%. Recall that the condition number of H0 from (4.4) is directly related to the
condition of V . We can restart the interpolation at a different random root of unity
should ill-conditioning be encountered. A slightly greater tolerance for ill-conditioning
can reduce this need for restarting considerably.
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Sparsity(%)

0.1 1 2 5 10

101 3098.7 3098.7 66372. 2.1285e7 2.5308e10

211 13531 605760. 6.8249e8 1.05477e12 2.5710e12

503 76903. 1.4432e11 1.0677e13 9.7621e12 2.3882e13

701 149370. 8.0213e12 1.0877e13 9.75178e12 3.4346e13
D

eg
re

e

1009 309460. 4.6234e12 2.9241e12 2.1191e13 9.9263e13

Figure 4.1: Worst case condition number of V , without randomization.

Sparsity(%)

0.1 1 2 5 10

101 2.2137 2.1942 3.6469 9.9189 26.974

211 2.2551 3.6963 6.9576 25.279 69.442

503 2.3136 9.4414 22.311 80.068 247.65

701 2.2000 16.363 38.664 164.16 439.31

D
eg

re
e

1009 2.3247 29.810 72.378 481.44 765.84

Figure 4.2: Median condition number of V with randomization.

The actual condition number appears to be remarkably small, and a (perhaps naive)
conjecture might be that it is linear in t. In any case, the condition number is low, and in
practice this makes for a very stable recovery process from V . This will be fully validated
in the upcoming Section 5.

A difficult problem we have not addressed thus far is the determination of the sparsity
t. While do not offer a complete solution to this, we note that randomization is of potential
help. In particular, the randomization appears not only to ensure that H0 and H1 are
well-conditioned with high probability, but that in fact all leading minors of H1 are well-
conditioned. This leads us to a possible way to identify the sparsity t of f by simply
computing α0, α1, . . . (at a random root of unity) until the constructed H1 becomes ill-
conditioned. This can be determined efficiently with the algorithm of [5] along with the
system solution, and with high probability should identify t.

Numerical evidence suggests much better conditioning of the leading minors of H1,
and hence quite a strong criteria for identifying the sparsity of f . For these experiments
we choose a random D with coefficients between 0.5 and 1.5, and perform 10 random
selections per choice of D. We note (in superscripts) percentage of random trials for
which the condition numbers of any of the leading minors is greater than 5 times the
condition number of H1 itself.
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Sparsity(%)

0.1 1 2 5 10

101 2.6115 3.0043 4.9854 18.374(1) 36.318(3)

211 2.6987 5.8008 9.0093 49.780(4) 224.68(4)

503 2.8743 17.180 44.820(7) 400.97(5) 1488.0(9)

701 3.1494 24.488(3) 86.874(7) 384.20(8) 2113.1(12)
D

eg
re

e

1009 2.9034 46.154(6) 231.89(6) 766.00(6) 3779.2(8)

Figure 4.3: Median condition number of H1 with randomization.
Superscripts indicate the percentage of H1’s with condition number
less than median which have a leading minor of condition number
more than 5 times the median (entries with no superscripts encounter
no such exceptions).

Theoretical evidence supporting this is provided by [24, Theorem 4], where it is shown
that all leading minors of H1 are non-singular with high probability. (This may be true
for H0 under an additional condition that

∑t
j=1 cj 6= 0, but we do not have a proof,

and hence work with H1.) This is clearly a necessary condition for the leading minors to
be well-conditioned. The proof of [24, Theorem 4] makes use of the factorization of the
leading k × k minor H(k)

1 of H1,

H
(k)
1 = V (k)DY (V (k))T,

where matrix V (k) ∈ Ck×t consisting of the first k rows of V . Since Theorem 4.3 can easily
be generalized to the k× t matrix V (k), a well-conditioned V (k) provides an explanation
for a well-conditioned H

(k)
1 .

4.8. Oversampling for improved conditioning

When ill-conditioning is encountered we can use over oversampling — choosing more
than the minimally required number of sample points — to improve the stability of the
sparse interpolation problem. This is regarding our problem more as one of approximation
than interpolation, though this is potentially due to noise in the samples and not a
difference in the underlying sparse model.

Consider our modified numeric Ben-Or/Tiwari interpolation of a (univariate) t-sparse
polynomial f(x) =

∑t
j=1 cjx

dj evaluated at 2T points αi = f(ωi) for i = 0, . . . , 2T − 1
with T > t (the multivariate case follows as in Section 3). We can find the generating
polynomial Λ(z) = zt+λt−1z

t−1 + · · ·+λ0 of the sequence α0, α1, . . . as the least squares
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solution of the rectangular Hankel system
α0 . . . αt−1

α1 . . . αt
...

. . .
...

α2T−t−1 . . . α2T−2


︸ ︷︷ ︸

H0


λ0

λ1

...

λt−1

 = −


αt

αt+1

...

α2T−1

 . (4.6)

After approximating the roots ωd1 , . . . , ωdt of Λ, we can determine the coefficients of f
by solving another least squares problem that makes use all the polynomial evaluations
obtained so far: 

1 · · · 1

ωd1 · · · ωdt

...
. . .

...

ωd1(2T−1) · · · ωdt(2T−1)


︸ ︷︷ ︸

W2T


c1

c2
...

ct

 =


α0

α1

...

α2T−1

 . (4.7)

While in general the condition of the least squares problems (4.6) and (4.7) can be
larger than the conditions of H0 or W2T respectively (they can vary quadratically with
these quantities), when the residual is small in these systems the sensitivity of the cor-
responding least squares problem varies only linearly with the condition of H0 and W2T

(see, e.g., [19], Section 5.3).
Note that the rectangular Hankel matrix H0 in (4.6) factors similarly to H0 in (3.6)

as H0 = WTDV for

WT =


1 · · · 1

ωd1 · · · ωdt

...
. . .

...

ωd1(T−1) · · · ωdt(T−1)

 .
Thus, a larger number of samples should improve the overall stability due to the better
conditioning of WT and W2T . This is justified theoretically in [1], which shows that if
N = mt for some m, then the condition number of WN improves linearly with

√
m. This

improvement is consistent with our initial experimental results.
We remark that since there are at least 2t evaluations for our sparse interpolation, the

least squares problem (4.7) can always be used for recovering the t coefficients cj ’s in f .

5. Experiments

For our experiments we have tested both the modified Ben-Or/Tiwari and the gen-
eralized eigenvalue methods. Our computational environment is the computer algebra
system Maple 10 using hardware arithmetic (IEEE floating point).
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Our algorithms interpolate multivariate polynomials. However, during the computa-
tion, a multivariate polynomial is regarded as a univariate polynomial on the unit circle
through the (reverse) steps of the Chinese remainder algorithm (essentially variable sub-
stitution; see Subsection 3.1). Therefore, we concentrate our tests on sparse univariate
examples. Since the stability of our algorithms is directly dependent upon the condition
of the underlying Vandermonde system, we arrange our tests by the condition of this
system. We look at the case when it is well conditioned, and when it starts off poorly
conditioned, and examine how randomness generally avoids the poorly conditioned case.

Term values evenly distributed on the unit circle
This is the best and “easiest” case, wherein the Vandermonde system is well-conditioned.

We randomly generated 100 univariate polynomials, with the number of terms between
10 and 50, and roughly evenly distributed the term degrees between 0 and 1000. When
the non-zero coefficients are randomly distributed between −1 and 1, the following table
reveals the performance of both interpolation algorithms. Robustness is evaluated as the
2-norm distance between the interpolation result and the target polynomial. For this we
list both the mean and median for the performance of the interpolation of these 100
random polynomials.

Random noise Ben-Or/Tiwari Generalized Eigenvalue

0 Mean .12050598− 11 .12059459e− 11

Median .13384107e− 11 .13363611e− 11

±10−12 ∼ 10−9 Mean .58139807e− 9 .58139847e− 9

Median .58207511e− 9 .58207779e− 9

±10−9 ∼ 10−6 Mean .57076380e− 6 .57076380e− 6

Median .56946777e− 6 .56946777e− 6

±10−6 ∼ 10−3 Mean .57797593e− 3 .57797593e− 3

Median .58339174e− 3 .58339174e− 3

As the above table illustrates, well-conditioned Vandermonde systems give excellent
interpolation results, and the amount of the input noise is proportional to the error in
the output. We also note that there is little gain in using the generalized eigenvalue algo-
rithm in this case (and indeed, it is considerably slower). This should not be particularly
surprising given Proposition 4.1.

Clustered term values
For a second experiment, we interpolate polynomials with terms x0, x3, x6, xb

994
t−2 c+6,

xb
2·994
t−2 c+6, . . ., xb

(t−3)·994
t−2 c+6 at powers of ω = exp(2π/1000), in which terms x0, x3, and

x6 are close to each other while the remaining terms are relatively evenly distributed.
In our test, we encounter a (numerically) singular system when the (random) noise

is in the range of ±10−9 ∼ 10−6. We list the mean and median of all the non-singular
results. We also note that 11 of the 99 non-singular results are of distance less than or
around 0.0001 from the target polynomial.
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Random noise Ben-Or/Tiwari Generalized Eigenvalue

0 Mean .13690795e− 9 .13784763e− 9

Median .10103809e− 9 .10515025e− 9

±10−12 ∼ 10−9 Mean .11819143e− 6 .11819222e− 6

Median .70040445e− 7 .70045526e− 7

±10−9 ∼ 10−6 Mean .71372850 .71089183

Median .64123838 .64123838

±10−6 ∼ 10−3 Mean .84367533 .84366247

Median .75434586 .75434586

In this experiment, good interpolation results may still be obtained for Vandermonde
systems with a few nodes clustered on the unit circle. However, such results tend to be
very sensitive to noise.

Effective randomization to ameliorate term value accumulation
In our third set of tests we consider the effect of randomization to improve the numeri-

cal conditioning of the interpolation problems. Here we consider polynomial interpolation
associated with a Vandermonde system with 3 terms clustered. That is, the 100 random
univariate polynomials, with the number of terms between 10 and 50, all have terms
x0, x, and x2. All other remaining term are roughly evenly distributed the term degrees
between 3 and 1000.

We interpolate the polynomial at powers of exp(2πi/1009). As the following table
shows, the clustering greatly affects the effectiveness of both interpolation algorithms.

Random noise Ben-Or/Tiwari Generalized Eigenvalue

0 Mean 92.801972 92.801972

Median 73.482353 73.482353

However, after randomization, that is, instead of interpolating at powers of ω =
exp(2πi/1009), we interpolate at powers of ω = exp(2rπi/1009) for a random r ∈
{1, . . . , 1008}, for the same set of random polynomials, we have the following results.

Random noise Ben-Or/Tiwari Generalized Eigenvalue

0 Mean 27.998330 30.602222

Median .24279377e− 7 .24273472e− 7

±10−12 ∼ 10−9 Mean .86965287 .86342432

Median .17078161e− 6 .17079019e− 6
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In addition, when the random noise belongs to ±10−9 ∼ 10−6, a singular system is
encountered in our test, and 22 among the 99 non-singular results are of distance less
than 10−4 after randomization.

Notice that, although we do not obtain good interpolation results each time, the error
at the median is generally quite good (a terribly conditioned randomization can affect
the mean dramatically). In practice, upon obtaining an ill-conditioned result, we would
simply re-randomize and repeat the computation. Theorem 4.3 provides assurances that
we should never have to restart this many times before achieving a well-conditioned
Vandermonde matrix, and hence obtain reliable results.

The full Maple code along with a broader range of experiments (including the exam-
ples mentioned in [31], can be found at the web site: http://www.scg.uwaterloo.ca/
~ws2lee/sparse-interp.
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