
A Practical Implementation of a Modular Algorithm
for Ore Polynomial Matrices

Howard Cheng1∗ and George Labahn2

1 Department of Mathematics and Computer Science
University of Lethbridge, Lethbridge, Canada

howard.cheng@uleth.ca

2 Symbolic Computation Group
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada
glabahn@uwaterloo.ca

...........

Abstract

We briefly review a modular algorithm to perform row reduction of a matrix of
Ore polynomials with coefficients in Z[t], and describe a practical implementation in
Maple that improves over previous modular and fraction-free versions. The algorithm
can be used for finding the rank, left nullspace, and the Popov form of such matrices.

1 Introduction

Ore domains provide a general setting for describing the arithmetic of linear differential,
difference, and q-difference operators. Systems of differential, difference and q-difference
equations can then be defined via matrices of Ore operators (polynomials) evaluated at
unknown functions. One can then make use of matrix constructions to investigate such
systems. For example, performing row reduction on a matrix of Ore polynomials to simpler
forms allows one to determine its rank and left nullspace which give the minimum number
of equations needed to represent the system of equations [1]. When a transformation is
invertible, then the normal form gives the matrix representing an equivalent system with
a minimum number of equations. When the leading coefficient is triangular (as in the
weak Popov form), then the normal form allows one to rewrite high-order operators (e.g.
derivatives) in terms of lower ones [3]. These transformations can also be applied to the
computation of greatest common right divisors (GCRDs) and least common left multiples
(LCLMs) [2, 7, 8, 9], which represents the intersection and the union of the solution spaces
of systems of equations.

The FFreduce algorithm [2] is a procedure for row reducing a matrix of Ore operators
which performs row operations in a fraction-free way to reduce to simpler form while still
controlling coefficient growth. This algorithm computes the rank and left nullspace of these
matrices, and can be used to compute the row-reduced and weak Popov forms of shift
polynomial matrices [2], as well as the Popov form of general Ore polynomial matrices [4].
It can also be used to compute a greatest common right divisor (GCRD) and a least common
left multiple (LCLM) of such matrices. Besides their general use with systems of equations,
LCLMs are also used in nonlinear control theory in order to define the notion of transfer
function in some cases [6].

∗Correspondence to: University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4,
Canada.

A modular version of the FFreduce algorithm was developed by the authors to reduce the
computational complexity [3]. In the modular algorithm, it was observed that the evaluation
reduction Zp[t][Z;σ, δ]→ Zp[Z;σ, δ] is not generally an Ore ring homomorphism [9]. Instead
of performing the row operations on the Ore polynomial matrices directly, the problem was
converted to one involving a system of linear equations over Zp. Larger striped Krylov
matrices over Zp was constructed and row reductions were performed on these matrices.
Each Krylov matrix was constructed dynamically—rows were added depending on which
row is selected as the pivot in each step. This was needed to ensure that the correct image
was computed during the reduction in the presence of potential unlucky homomorphisms,
even though unlucky homomorphisms occur rarely in practice. Thus, the modular algorithm
was a trade-off between not exploiting polynomial arithmetic (or equivalently, the structure
of the matrix) and the improved efficiency of coefficient arithmetic in simpler domains.

One obstacle in obtaining further improvement was that the row operations to reduce
the Krylov matrix have to be done one step at a time, because it is not possible to construct
the entire Krylov matrix a priori or the wrong system of solutions may have been solved.
As a result, the only linear algebra subroutines in the LinearAlgebra:-Modular package in
Maple used to accelerate the computation were operations on individual rows instead of the
entire matrix. The resulting implementation has to switch back and forth between high-
level Maple code and low-level compiled linear algebra subroutines that are significantly
faster. In practice, the resulting modular algorithm was only faster than the corresponding
fraction-free algorithm for very large inputs.

In this work, we investigate the applicability of linear algebra subroutines on blocks of
matrices to speed up the computation. Assuming that the first evaluation point is “lucky,”
the Krylov matrices for the remaining evaluation points can be constructed and the entire
matrix can be reduced with a few calls to the appropriate linear algebra subroutines. This
allows more sophisticated implementations of linear algebra subroutines to speed up the
reduction process (e.g. [5]).

2 Notation and Definitions

The definitions given here are similar to those in our previous works [2, 3].
For any vector of integers (also called multi-index) ~ω = (ω1, . . . , ωp), we denote by

|~ω| =
∑p

i=1 ωi. The vector ~ei denotes the i-th unit vector (of the appropriate dimension)
such that (ei)j = δij ; we also have ~e = (1, . . . , 1) (of the appropriate dimension). We denote
by Z~ω the diagonal matrix having Zωi on the diagonal.

Let k be any field and let σ : k → k be an injective endomorphism of k. Then, a
derivation δ : k → k with respect to σ is an endomorphism of the additive group of k
satisfying

δ(rs) = σ(r)δ(s) + δ(r)s

for all r, s ∈ k. In this paper, we will examine Ore polynomial rings with coefficients in
Z[t]. That is, the ring Z[t][Z;σ, δ] with σ an automorphism, δ a derivation and with the
multiplication rule

Z · a = σ(a)Z + δ(a)

for all a ∈ Z[t]. When δ = 0, we call the polynomials shift polynomials. For brevity, we will
use Z[t][Z] when the specific choices of σ and δ are not important.

Let Z[t][Z]m×n be the ring of m × n Ore polynomial matrices over Z[t]. We shall
adapt the following conventions for the remainder of this paper. Let F(Z) ∈ Z[t][Z]m×n,

N = deg F(Z), and write

F(Z) =
N∑

j=0

F (j)Zj , with F (j) ∈ Z[t]m×n.

We also write cj (F(Z)) = F (j) to denote the j-th coefficient matrix. The row degree of an
Ore polynomial matrix F(Z) is ~ν = rdeg F(Z) if the i-th row has degree νi. Some useful
properties of matrices of Ore polynomials, such as linear independence and rank, can be
found in [2].

The problem of row reduction of Ore polynomial matrices can be formalized as follows.
An Ore polynomial vector P(Z) ∈ Z[t][Z]1×m is said to have order∗ ~ω with respect to F(Z)
if

P(Z) · F(Z) = R(Z) · Z~ω (1)

for some residual R(Z). The set of all vectors of a particular order ~ω forms a Q[t][Z]-
module. An order basis for this module, M(Z) ∈ Z[t][Z]m×m of row degree ~µ, is a basis
such that

1. every row, M(Z)i,∗, has order ~ω for all 1 ≤ i ≤ m;

2. the rows of M(Z) form a basis of the module of all vectors of order ~ω. That is,
every P(Z) ∈ Q[t][Z]1×m of order ~ω can be written as P(Z) = Q(Z) ·M(Z) for some
Q(Z) ∈ Q[t][Z]1×m;

3. the leading column coefficient is normalized. That is, there exists a nonzero d ∈ Z[t]
such that

M(Z) = d · Z~µ + L(Z)

where deg L(Z)k,l ≤ µl − 1.

An order basis represents all row operations to eliminate a specified number of low-order
coefficients. An order basis of a particular order and degree, if it exists, is unique up to a
constant multiple [2, Theorem 4.4]. When ~ω = (mN +1) ·~e and R(Z) is the corresponding
residual, the rows in M(Z) corresponding to the zero rows in R(Z) give a basis for the left
nullspace of F(Z). However, it is not known a priori the row degree ~µ of the order basis.
A row-reduced form and weak Popov form, together with the unimodular transformation
matrix, can be extracted from M(Z) and R(Z) if F(Z) is a matrix of shift polynomials [2].
In the general case of matrices of Ore polynomials, the computation of the Popov form can
be formulated as a left nullspace computation and can be extracted from the result of an
order basis computation [3].

3 The Modular Algorithm

A modular algorithm was given in [3] to compute the order basis and the residual. The
fraction-free algorithm [2] can be reduced easily from Z[t][Z] to Zp[t][Z] using Chinese
remaindering. The usual issue of normalization of the image, detecting unlucky homomor-
phisms, and termination can be dealt with as described in [3]. It should be noted that the

∗Orders in this paper will be with respect to F(Z) and it will not be explicitly stated for the remainder
of the paper.

algorithm is output-sensitive in that the number of primes used is determined by the output
size, and there is no need to verify the result (e.g. by trial division).

However, the reduction from Zp[t][Z] to Zp[Z] was not possible because the evaluation
homomorphism t ← α is generally not an Ore ring homomorphism. Instead, we formulate
the order basis problem as a system of linear equations over Zp and perform Gaussian
elimination on the coefficient matrix. The method we follow is similar to polynomial GCD
computation by Gaussian elimination on the well-known Sylvester matrix [10]. It can also be
considered an extension to the modular algorithm for Ore polynomial GCRD computation
of Li and Nemes [9].

Given row degree ~µ and order ~ω, the coefficients in the order basis M(Z) can be viewed
as a solution to a linear system of equations over the coefficient ring. By equating the
coefficients of like powers, each row of the order basis satisfies a system of equations of the
form

Z0 · · · Zµk−1+δ1,k[
· · · p(0)

k p
(0)
k · · · p

(µk−1+δ1,k)
k · · · p(0)

k

]
·

Z0 · · · Z~ω−~e

...
· · · Z0 · Fk,·(Z) · · ·

...
· · · Zµk−1+δ1,k · Fk,·(Z) · · ·

...

= 0.

(2)
More formally, for any P(Z) ∈ Q[t][Z]m×n we define

P~v =
[
P

(0)
∗,1 · · · P

(v1)
∗,1 | · · · |P

(0)
∗,n · · · P

(vn)
∗,n

]
. (3)

We also define (recall that ~ω = σ · ~e)

K(~µ, ~ω) =

c0(F(Z)1,∗) · · · cσ−1(F(Z)1,∗)
...

...
c0(Zµ1 · F(Z)1,∗) · · · cσ−1(Zµ1 · F(Z)1,∗)

...
...

c0(F(Z)m,∗) · · · cσ−1(F(Z)m,∗)
...

...
c0(Zµm · F(Z)m,∗) · · · cσ−1(Zµm · F(Z)m,∗)

. (4)

Then the i-th row of the order basis satisfies

(Mi,∗)~µ−~e+~ei
·K(~µ− ~e + ~ei, ~ω) = 0. (5)

The matrix K(~µ, ~ω) has dimensions |~µ+~e|× |~ω|, and is called a striped Krylov matrix (with
m stripes). This is a generalization of the well-known Sylvester matrix when m = 2 and
n = 1. We also define K∗(~µ, ~ω) to be the matrix K(~µ, ~ω) with linearly dependent columns
removed.

Example 3.1 Let ~µ = (2, 2), ~ω = (3, 3), and

F(Z) =
[
2Z2 + 3tZ + 6t2 Z2 − Z + 2
(t− 1)Z + 3t3 3tZ + t

]
∈ Z[t][Z;σ, δ]2×2, (6)

with σ(a(t)) = a(t) and δ(a(t)) = d
dta(t). Then

K(~µ, ~ω) =

6t2 2 3t −1 2 1
12t 0 6t2 + 3 2 3t −1
12 0 24t 0 6t2 + 6 2
3t3 t t− 1 3t 0 0
9t2 1 3t3 + 1 t + 3 t− 1 3t
18t 0 18t2 2 3t3 + 2 t + 6

 . (7)

One way to obtain an order basis of degree ~µ and order ~ω is to perform Gaussian
elimination on K(~µ, ~ω) so that the first ~ω columns are eliminated. The rows in the sub-
matrix K(~µ− ~e, ~ω) are used for pivots in the elimination process, and the remaining rows
give the residual R(Z). The order basis can be recovered from the transformation matrix
corresponding to these rows.

Example 3.2 Continuing from Example 3.1, we perform Gaussian elimination on
K((2, 2), (3, 3)) using the first two rows of each stripe as pivots. After removing some
common factors in each row to reduce the results, the resulting matrix is
266666664

6 t2 2 3 t −1 2 1
0 −4 6 t3 − 3 t 2 t + 2 3 t2 − 4 −t − 2
0 0 0 0 −252 t5 + 270 t4 − 234 t3 − 22 t2 − 16 t + 16 882 t4 − 104 t2 − 56 t − 10
0 0 −3 t2 + 2 t − 2 7 t −2 t −t

0 0 0 21 t2 − 14 9 t4 − 12 t3 + 10 t2 − 8 t + 8 −21 t3 + 11 t2 − 14 t + 2
0 0 0 0 −126 t6 + 135 t5 − 180 t4 − 11 t3 + 118 t2 − 20 t 441 t5 − 52 t3 − 28 t2 − 103 t

377777775
(8)

with the corresponding transformation matrix
26666664

1 0 0 0 0 0
−2 t 0 0 0 0

−6 t2 + 4 −126 t4 + 6 t3 − 4 t2 + 4 t + 14 21 t3 − 14 t −252 t2 + 24 t + 34 252 t3 − 12 t2 − 34 t − 8 0
−t 0 0 2 0 0

−3 t2 + 2 3 t3 − 2 t2 + 2 t 0 12 t − 4 −6 t2 + 4 t − 4 0
−3 t3 + 2 t −63 t5 + 3 t4 − 2 t3 + 2 t2 + 21 t 0 −126 t3 + 12 t2 + 59 t 126 t4 − 6 t3 − 59 t2 − 4 t 21 t3 − 14 t

37777775 .

(9)

The order basis M(Z) of degree ~µ = (2, 2) and order ~ω = (3, 3) can be easily extracted. The
rows of M(Z) are:

[(21t3 − 14t)Z2 + (−126t4 + 6t3 − 4t2 + 4t + 14)Z − 6t2 + 4 (252t3 − 12t2 − 34t − 8)Z − 252t2 + 24t + 34]

and

[(−63t4 + 3t3 − 2t2 + 2t + 21)Z − 3t2 + 2 (21t3 − 14t)Z2 + (126t3 − 6t2 − 59t − 4)Z − 126t2 + 12t + 59] .

Unfortunately, the row degree ~µ of the order basis M(Z) of order ~ω is not known a
priori. In practice, one starts with ~µ0 = ~0 and performs elimination on K(~µ0, ~ω). For
any i ≥ 0, ~µi+1 is determined by the pivoting needed to reduce K(~µi, ~ω) by one more
column. Thus, each step in the algorithm involves performing Gaussian elimination of one
column followed by adding one row to the matrix. Unlucky homomorphisms occur when the
determinant of K∗(~µ, ~ω) vanishes under the evaluation t ← α. In such case, the pivoting
that occurs during the elimination is different. Unlucky homomorphisms can be detected by
comparing the different row degrees of the final order basis computed under each evaluation
homomorphism.

The LinearAlgebra:-Modular package in Maple was used to perform efficient compu-
tations over Zp. The use of Gaussian elimination for solving the system of linear equations
instead of working on the Ore polynomial matrices directly means that the modular al-
gorithm is no longer exploiting the structure present in the Krylov matrix. On the other

hand, coefficient arithmetic over Z[t] can be replaced by simpler coefficient arithmetic over
Zp. For larger problems, the gain in simpler coefficient arithmetic more than offsets the loss
in efficiency by not exploiting the structure. The algorithm outperforms the fraction-free
algorithm [2] for very large problems even though the fraction-free algorithm exploits the
structure of the Krylov matrix. However, the modular algorithm is not competitive for
small input [3].

4 Improved Implementation

The implementation of the modular algorithm described in [3] has two drawbacks. First,
the interleaving between matrix construction and row elimination means that routines
such as Gaussian elimination (on an entire matrix) or block matrix multiplication can-
not be applied to speed up the computation further. The implementation would have
to switch between high-level Maple code and the faster, low-level compiled code in the
LinearAlgebra:-Modular package. Second, the extra work and bookkeeping required for
incremental matrix construction reduce the advantage of the modular algorithm. We would
like to make use of low-level compiled linear algebra routines as much as possible without
switching to Maple code.

In order to improve the modular algorithm, we note the unpredictability of the final row
degree is mostly due to the presence of unlucky homomorphisms, but they occur rarely in
practice. Therefore, the incremental elimination algorithm given previously [3] is used on
one evaluation point in Zp. Assuming that the evaluation point (and the prime p) is not
unlucky, the order basis computed has the correct degree ~µ. If ~µ turns out to be incorrect,
it will be detected when combined with the results from other primes. In that case, we
perform extra computations in Zp that are wasted. However, it does not occur often in
practice.

When the correct degree ~µ of the order basis is known (as assumed), it is relatively
straightforward to compute the order basis and the residual:

1. construct A = [K(~µ, ~ω + (N + 1) · ~e) | I];

2. perform Gaussian elimination on A to compute a reduced row echelon form to elimi-
nate the first |~ω| columns, using only rows in K(~µ− ~e, ~ω) as pivots;

3. record the linearly dependent columns J as well as d = detK∗(~µ− ~e, ~ω) which is (up
to sign) the product of the pivots used;

4. construct B from −A∗,J after removing the pivot rows and inserting the m × m
identity matrix into the columns corresponding to those rows.

5. compute C = (−1)
Pm

i=2 µi · d ·B ·A;

6. if C is not zero in the first |~ω| columns, then the homomorphism is unlucky. Otherwise,
extract R(Z) from the left part and M(Z) from the right part of C.

The Gaussian elimination in Step 2 can be performed, for example, by calling the RowReduce
routine in the LinearAlgebra:-Modular package of Maple on the entire matrix A. The
matrix multiplication in Step 5 can be performed by the Multiply routine. As a result,
the new implementation can fully take advantage of good low-level implementation of block
Gaussian elimination and multiplication (e.g. [5]). Since there is no need to perform incre-
mental matrix construction, both memory management and bookkeeping are reduced. In

addition, the control of the program can stay inside the low-level LinearAlgebra:-Modular
subroutines instead of switching back and forth between them and Maple code.

Example 4.1 We apply this method to Example 3.1. We perform our calculations in Z31

and perform the evaluation t← 7. To conserve space, we only show A′ = [K(~µ, ~ω) | I] and
compute only M(Z). Initially,

A′ =

26666664
15 2 21 30 2 1 1 0 0 0 0 0
22 0 18 2 21 30 0 1 0 0 0 0
12 0 13 0 21 2 0 0 1 0 0 0
6 7 6 21 0 0 0 0 0 1 0 0
7 1 7 10 6 21 0 0 0 0 1 0
2 0 14 2 8 13 0 0 0 0 0 1

37777775 . (10)

Performing Gaussian elimination on rows 1, 2, 4, and 5, we obtain:26666664
1 0 0 0 14 14 29 5 0 27 1 0
0 1 0 0 25 9 11 1 0 24 28 0
12 0 13 0 21 2 0 0 1 0 0 0
0 0 1 0 14 25 0 23 0 6 20 0
0 0 0 1 25 8 22 2 0 21 26 0
2 0 14 2 8 13 0 0 0 0 0 1

37777775 . (11)

Here, J = {1, 2, 3, 4} and d = 26. Thus,

C = 26 ·
[
−12 0 1 −13 0 0
−2 0 0 −14 −2 1

]
·A′

=

[
0 0 0 0 2 6 4 28 26 26 27 0

0 0 0 0 28 14 14 6 0 1 27 26

]
,

where the highlighted entries are the identity matrix inserted to form B. Therefore, the
image of the order basis computed is

M(Z) = 5 ·
[
6Z2 + 16Z + 20 11Z + 6

30Z + 8 6Z2 + 11Z + 5

]
. (12)

One may easily verify that this is a scalar multiple of the image of the order basis computed
in Example 3.2 under the evaluation t← 7 in Z31.

The introduction of the scalar multiple is due to the removal of content in Example 3.2.
The implementation given here in fact computes exactly the same result (including the
scalar multiple) as the previous fraction-free and modular implementations for the order
basis problem [2, 3].

5 Experimental Results

Experiments were performed on Ore polynomial matrices in differential case. The results
of these experiments are shown in Tables 1 and 2. The application of block linear algebra
routines reduces the running time of the modular algorithm in all cases. The improve-
ment is more significant for smaller problems, where the original modular algorithm is not
competitive against the fraction-free problems.

Table 1: Comparison of fraction-free, modular, and the new modular algorithm on random
m× n matrices with degt = 1 and integer coefficients having magnitude ≤ 5.

m, n N FFreduce (s) Modular (s) New Modular (s) Improvement

2 1 0.023 0.115 0.069 40%
2 2 0.107 0.242 0.192 21%
2 4 1.689 2.984 2.301 23%
2 8 15.047 28.499 23.232 18%
2 16 278.883 279.041 232.877 17%
2 32 5447.542 4669.801 3992.689 15%

3 1 0.472 1.060 0.723 32%
3 2 3.808 6.268 5.416 20%
3 4 41.549 51.498 44.253 14%
3 8 667.682 599.466 521.571 13%

4 2 41.348 47.841 41.765 13%
4 4 663.707 554.060 487.000 12%
4 6 3850.143 2561.281 2303.989 10%

5 2 293.122 260.021 227.314 13%
5 4 6179.169 3845.945 3362.376 13%

8 1 1660.258 1088.609 998.659 8%

10 1 16179.879 8019.137 7524.240 6%

Table 2: Comparison of fraction-free, modular, and the new modular algorithm on random
m× n matrices with degt = 2 and integer coefficients having magnitude ≤ 5.

m, n N FFreduce (s) Modular (s) New Modular (s) Improvement

2 2 0.470 1.647 1.378 16%
2 4 5.920 11.611 10.004 14%
2 8 86.214 128.528 109.911 14%
2 16 1237.410 1437.492 1300.804 10%

3 2 14.718 25.101 21.954 13%
3 4 216.214 267.295 238.497 11%
3 6 1157.705 1220.524 1114.106 9%
3 8 3933.234 3994.955 3735.837 6%

4 2 170.561 193.981 174.399 10%
4 4 2397.460 2270.272 2096.580 8%

For the larger problems, however, the improvement is less significant. For larger prob-
lems, the size of the coefficients in the output becomes larger as well. More time is spent
on the other parts of the algorithm such as reconstruction by Chinese remaindering and
memory management, and the amount of time spent on actual elimination is proportion-
ally smaller. Since the new implementation improves mainly the elimination process, the
improvement is less significant for larger problems. On the other hand, we see that the im-
proved implementation given in this paper increases the advantage of the modular algorithm

over the fraction-free algorithm, and allows the modular algorithm to be used beneficially
for smaller problems.

References and Notes

[1] B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of matrices of
skew polynomials. In Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, pages 8–15. ACM, 2002.

[2] B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of matrices of
Ore polynomials. Journal of Symbolic Computation, 41(5):513–543, 2006.

[3] H. Cheng and G. Labahn. Modular computation for matrices of Ore polynomials. In
Computer Algebra 2006: Latest Advances in Symbolic Algorithms, pages 43–66, 2007.

[4] P. Davies, H. Cheng, and G. Labahn. Computing Popov form of general Ore polynomial
matrices. In Milestones in Computer Algebra (MICA) 2008, pages 149–156, 2008.

[5] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: finite field linear algebra pack-
age. In Proceedings of the 2004 International Symposium on Symbolic and Algebraic
Computation, pages 119–126. ACM, 2004.

[6] M. Halas, U. Kotta, Z. Li, H. Wang, and C. Yuan. Submersive rational difference
systems and formal accessibility. In Proceedings of the 2009 International Symposium
on Symbolic and Algebraic Computation, pages 175–182. ACM, 2009.

[7] Z. Li. A Subresultant Theory for Linear Differential, Linear Difference and Ore Poly-
nomials, with Applications. PhD thesis, RISC-Linz, Johannes Kepler University, Linz,
Austria, 1996.

[8] Z. Li. A subresultant theory for ore polynomials with applications. In Proceedings
of the 1998 International Symposium on Symbolic and Algebraic Computation, pages
132–139. ACM, 1998.

[9] Z. Li and I. Nemes. A modular algorithm for computing greatest common right divisors
of ore polynomials. In Proceedings of the 1997 International Symposium on Symbolic
and Algebraic Computation, pages 282–289. ACM, 1997.

[10] R. Loos. Generalized polynomial remainder sequences. In Computer Algebra: Symbolic
and Algebraic Computation, pages 115–137. Springer-Verlag, 1982.

