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Abstract— In symbolic computation, polynomial multipli-
cation is a fundamental operation akin to matrix multiplication
in numerical computation. We present efficient implementa-
tion strategies for FFT-based dense polynomial multiplication
targeting multi-cores. We show that balanced input datacan
maximize parallel speedup and minimize cache complexity
for bivariate multiplication. However, unbalanced input data,
which are common in symbolic computation, are challenging.
We provide efficient techniques, what we callcontractionand
extension, to reduce multivariate (and univariate) multiplication
to balanced bivariate multiplication. Our implementation in
Cilk++ demonstrates good speedup on multi-cores.

Keywords- parallel symbolic computation; parallel poly-
nomial multiplication; parallel multi-dimensional FFT/TFT;
Cilk++; multi-core;

I. I NTRODUCTION

Polynomials and matrices are the fundamental objects on
which most computer algebra algorithms operate. In the last
decade, significant efforts have been deployed by different
groups of researchers for delivering highly efficient soft-
ware packages for computing symbolically with polynomials
and matrices. Among them: LinBox [12], MAGMA [13],
NTL [16]. However, most of these works are dedicated to se-
rial implementation, in particular in the case of polynomials.
None of the computer algebra software packages available
today offers parallel implementation of asymptotically fast
algorithms for polynomial arithmetic. The work reported
hereafter aims at filling this gap.

We present high-performance techniques for the imple-
mentation of multivariate polynomial multiplication target-
ing multi-cores. Symbolic computations with polynomials
rely, indeed, directly or indirectly on multiplication. We
commit ourselves to polynomials over finite fields since
the so-calledmodular techniquesreduce all computations
to such fields of coefficients. In addition, we focus on
dense polynomial arithmetic because most computer algebra
algorithms, such as the Euclidean Algorithm and its variants,
tend to densify intermediate data, even when the input and
output polynomials are sparse. See Chapter 5 in [8] for an
extensive presentation of these ideas.

Dense representations permit the use of multiplication
algorithms based onFast Fourier Transform(FFT) which
run in quasi-linear sequential time w.r.t. output size, when
counting the number of operations on coefficients. This
result holds for univariate as well as for multivariate polyno-
mials. We observe that reducing multivariate multiplication
to univariate one through Kronecker’s substitution is not

an option in our context. Indeed, this would lead us to
manipulate univariate polynomials of very large degrees,
say in the order of a machine word. Meanwhile, we aim
at computing over fieldZ/pZ wherep is a machine word
prime number, for efficiency reasons. Therefore, we would
not always be able to find inZ/pZ the appropriate primitive
roots of unity for performing a Cooley-Tukey 1-D FFT.

In the multivariate case, the row-column algorithm for
multi-dimensional FFT, reviewed in Section II, proceeds
one dimension after another and performs several one-
dimensional FFTs along one dimension at a time. This yields
concurrent execution without even requiring that each one-
dimensional FFT is computed in a parallel fashion. We take
advantage of this flexibility to make use of non-standard and
memory-efficient one-dimensional FFT techniques, such as
Truncated Fourier Transform (TFT), for which no efficient
parallel algorithm is known. More importantly, we do not
seek a very fine grain of parallelism in our multiplication
code since it will itself be a low-level routine in higher-level
codes for computing polynomial GCDs and solving polyno-
mial systems, for which parallel algorithms are available and
distributed computing is desired.

Efficient implementation of algorithms on multi-cores
makes necessary to consider complexity measures such as
parallel speedup and cache complexity. We analyze the
performances of dense multiplication based on row-column
multi-dimensional FFT for these complexity measures in
Section III. On bivariate input and when the partial degrees
of the product are equal, the performances are nearly op-
timal; we call balanced this degree configuration. When
the ratio between these two partial degrees is large, our
experimentation confirms poor performances.

Motivated by these theoretical and experimental results,
we show how multivariate multiplication can be efficiently
reduced tobalanced bivariate multiplication, based on 2-
D FFT. With respect to a multiplication based onn-
dimensional FFT, our approach may increase the input data
size by at most of factor of2. However, it provides much
larger parallel speedup as reported in our experimentation.

Our approach combines two fundamental techniques that
we call contractionandextension, presented in Sections IV
and V. The first one reduces multivariate multiplication to
bivariate one, without ensuring that dimension sizes are
equal; however, the work remains unchanged and in many
practical cases the parallelism and cache complexity are
improved substantially.



The technique of extension turns univariate multiplication
to bivariate one. This has several applications. First, it
permits to overcome the difficult cases where primitive roots
of unity of “large” orders cannot be found in the field
of coefficients. Secondly, combined with the technique of
contraction, this leads in Section VI to balanced bivariate
multiplication.

The techniques proposed in this paper are implemented in
the Cilk++ language [3], which extends C++ to the realm of
multi-core programming based on the multi-threaded model
realized in [7]. The Cilk++ language is also equipped with
a provably efficient parallel scheduler by work-stealing [2].
We use the serial C routines for 1-D FFT and 1-D TFT
from themodpn library [10]. Our integer arithmetic modulo
a prime number relies also on the efficient functions from
modpn, in particular the improved Montgomery trick [14],
presented in [11]. This trick is another important specificity
of 1-D FFTs over finite fields which makes their paralleliza-
tion even more difficult. All our benchmarks are carried out
on a 16-core machine with 16 GB memory and 4096 KB L2
cache. All the processors are Intel Xeon E7340 @ 2.40GHz.

II. BACKGROUND

Throughout this paperK designates the finite fieldZ/pZ
with p elements, wherep > 2 is a prime number. In this
section, we review algorithms and complexity results for
multiplying multivariate polynomials overK by means of
FFT techniques. We start by stressing the specificities of
performing FFTs over finite fields.

A. FFTs over Finite Fields

Using the Cooley-Tukey algorithm [4] (and its extensions
such as Bluestein’s algorithm) one can compute theDiscrete
Fourier Transform(DFT) of a vector ofs complex numbers
within O(s lg(s)) scalar operations. For vectors with coordi-
nates in the prime fieldK two difficulties appear with respect
to the complex case.

First, in the context of symbolic computation, it is de-
sirable to restrict ourselves to radix 2 FFTs since the radix
must be invertible inK and one may want to keep the ability
of computing modulo small primesp, evenp = 3, 5, 7, . . .
for certain types modular methods, such as those for poly-
nomial factorization; see [8, Chapter 14] for details. As a
consequence the FFT of a vector of sizes over K has
the same running time for alls in a range of the form
[2ℓ, 2ℓ+1). This staircasephenomenon can be smoothened
by the so-calledTruncated Fourier Transform(TFT) [9].
In most practical cases, the TFT performs better in terms
of running time and memory consumption than the radix-2
Cooley-Tukey Algorithm; see the experimentation reported
in [11]. However, the TFT has its own practical limitations.
In particular, no efficient parallel algorithm is known for it.

Another difficulty with FFTs over finite fields comes from
the following fact: a primitives-th root of unity exists inK

if and only if s divides p − 1. Therefore, the product of
two univariate polynomialsf, g overK can be computed by
evaluation and interpolation based on the radix 2 Cooley-
Tukey Algorithm (see the algorithm of Section II-B with
n = 1) if and only if the degreed of the productfg is less
than the largest power of2 dividing p−1. When this holds,
computingfg amounts to9

2 lg(s)s+3s operations inK using
the Cooley-Tukey Algorithm (and92 (lg(s) + 1)(d + 1) + 3s
operations inK using TFT) wheres is the smallest power
of 2 greater thand. When this does not hold, one can
use other techniques, such as the Schönage-Strassen Al-
gorithm [8, Chapter 8], which introduces “virtual primitive
roots of unity”. However, this increases the running time to
O(s lg(s) lg(lg(s))) scalar operations.

B. Multivariate Multiplication

Let f, g ∈ K[x1, . . . , xn] be two multivariate polynomials
with coefficients inK and with n ordered variablesx1 <
· · · < xn. For eachi, let di andd′i be the degree inxi of
f and g respectively. For instance, iff = x3

1x2 + x3x
2
2 +

x2
3x

2
1 + 1 we haved1 = 3 and d2 = d3 = 2. We assume

the existence of primitivesi-th roots of unityωi, for all i,
wheresi is a power of 2 satisfyingsi ≥ di + d′i + 1. Then,
the productfg is computed as follows.

Step 1: Evaluate f and g at each point of then-
dimensional grid ((ωe1

1 , . . . , ωen

n ), 0 ≤ e1 <
s1, . . . , 0 ≤ en < sn) via multi-dimensional FFT.

Step 2: Evaluatefg at each pointP of the grid, simply
by computingf(P ) g(P ),

Step 3: Interpolatefg (from its values on the grid) via
multi-dimensional FFT.

The above procedure amounts to

9

2

n∑

i=1

(
∏

j 6=i

sj)si lg(si)+(n+1)s =
9

2
s lg(s)+(n+1)s (1)

operations inK, wheres = s1 · · · sn. In practice the benefit
of using 1-D TFT instead of 1-D FFT increases with the
number of variables and the number of cores in use. The cut-
off criteria and a detail performance evaluation are reported
in [15].

Consider now the following map from the monomials of
K[x1, . . . , xn] to those ofK[x1]:

xe1

1 xe2

2 xe3

3 · · ·xen

n 7−→ xe1+α2e2+α3e3+···+αnen

1

whereα2 = d1 +d′1 +1, α3 = α2(d2 +d′2 +1), . . . , αn =
αn−1(dn−1 + d′n−1 + 1). This induces a polynomial ring
homomorphismΨ (called the Kronecker substitution) from
K[x1, . . . , xn] to K[x1], hence a map satisfyingΨ(a + b) =
Ψ(a) + Ψ(b) and Ψ(ab) = Ψ(a)Ψ(b), for all polynomials
a, b. Moreover, one can check thatfg is the only pre-image
of Ψ(f)Ψ(g). This latter polynomial has degree

δn := (d1 + d′1 + 1) · · · (dn + d′n + 1) − 1.



It follows from this construction that one can reduce multi-
variate multiplication to univariate one. IfK admits primitive
s-th roots of unity forδn < s = 2ℓ for someℓ, then using
the FFT-based multiplication, one can computefg in at most
9
2 lg(s)s+3s operations inK. Using the TFT approach, this
upper bound becomes92 (lg(s) + 1)(δn + 1) + 3s.

Multivariate multiplications based on multi-dimensional
FFT and Kronecker substitution have similar serial run-
ning time. However, the latter approach has at least two
drawbacks. First, the fieldK may not admit primitives-
th roots of unity. Recall that primitives-th roots of unity
exist in K if and only if s divides p − 1, see [8, Chapter
8]. Secondly, as mentioned above, it is desirable to achieve
efficient parallel multiplication without assuming that 1-D
FFTs are performed in a parallel fashion.

III. M AIN RESULTS

The specificities of 1-D FFTs over finite fields, see
Section II-A, lead us to the following hypothesis. We assume
throughout this paper that we have at our disposal ablack
box computing the DFT at a primitive2ℓ-th root of unity
(when K admits such value) of any vector of sizes in
the range(2ℓ−1, 2ℓ] in time O(s lg(s))). However, we do
not make any assumptions about the algorithm and its
implementation. In particular, we do not assume that this
implementation is a parallel one. As mentioned in the intro-
duction, we do not seek a very fine-grained parallelism for
our polynomial multiplication since it is meant to be a core-
routine in higher-level parallel code. Therefore, we rely on
the row-column multi-dimensional FFT to create concurrent
execution in the algorithm presented in Section II-B.

This strategy has its own challenges. Suppose that one
dimensionx1 has a small sizes1, say in the order of units,
whereas another dimensionx2 has sizes2 in the thousands.
Then a lot of small FFTs have to be performed alongx1

while only a few large FFTs can be run simultaneously along
x2. In the former case, the parallel overhead may dominate,
reducing severely the benefits of concurrent runs. In the latter
case, the measured speedup factor may simply be too small
by lack of parallelism.

We formalize this remark in Section III-A where we
give a lower bound for the parallel running time of the
algorithm of Section II-B. Then, in Section III-B we give
an upper bound for the number of cache misses of the
same algorithm. We observe that these lower and upper
bounds reach a “local” maximum and minimum respectively,
when the numbern of variables equals2 and the dimension
sizes of the 2-D FFT are equal. Therefore, the algorithm of
Section II-B performs very well in terms of parallelism and
cache complexity on bivariate polynomial input when the
partial degrees of the product are equal. For this reason, we
introduce in Section III-C the concept ofbalanced bivariate
multiplication.

In Section III-D, we claim that dense multivariate mul-
tiplication can be efficiently reduced to balanced bivariate
multiplication. Efficiently means here that the overheads of
the reduction are in general much less than the performance
gains. Sections IV to VI formally establish this reduction
and prove its performances, including experimental results.

A. Parallel Running Time Estimates

Let us consider the parallel running time of the algorithm
of Section II-B with the multi-threaded programming model
of [7]. Under the assumption that 1-D FFT may be run
sequentially, the following estimate holds for the span of
Step 1:

9

2
(s1 lg(s1) + · · · + sn lg(sn)) .

Therefore, the parallelism (i.e. theoretical speedup) ofStep
1 is lower bounded by

s1 · · · sn lg(s1 · · · sn)

s1 lg(s1) + · · · + sn lg(sn)

and thus by

s/max(s1, . . . , sn). (2)

Similar estimates can be given forStep 3 while the costs of
Step 2 can be neglected comparing to the others.

Observe thatmax(s1, . . . , sn) is lower bounded bys1/n.
Hence, for a fixeds, one could conclude that the larger is
n, the better. In practice, this would be a mistake. Suppose
for instance thats = 2ℓ for someℓ. Assume first that each
si can be set to2, implying n = ℓ. In this case the serial
and parallel running time forStep 1 are respectively given
by 9

2ℓ2ℓ and 9
2ℓ2; hence the theoretical speedup is2ℓ−1.

Alternatively, we can set eachsi to be2ℓ/2, implying n =
2. The parallel running time now becomes92ℓ2ℓ/2; hence
the theoretical speedup is2ℓ/2. Apparently the parallelism
for the casen = ℓ is more attractive than that ofn =
2. But this is neglecting parallel overhead! In our analysis
of the casen = ℓ, we are implicitly assuming that one
can run concurrently2ℓ−1 threads with each of them doing
very little work (actually computing a 1-D FFT of size2).
Not only is this not realistic asℓ becomes large, but also
this makes simply no sense since the overhead of executing
a thread is certainly greater than the cost of executing an
FFT of size2. In the casen = 2, a theoretical speedup
of 2ℓ/2 is already good, say forℓ ≥ 20. In addition, the
work performed by each thread is an FFT of size2ℓ/2 which
is larger (for theCilk++ concurrency platform) than the
overhead of executing that thread.

Our experimentation hereafter confirms that the casen =
2 performs better thann = ℓ for a fixeds = 2ℓ. Finally, we
observe that forn = 2 and for a fixeds the lower bound
s/max(s1, . . . , sn) is maximum ats1 = s2 =

√
s.



B. Cache Complexity Estimates

We now turn to cache complexity estimates, using the
theoretical model introduced in [6]. We focus onStep 1
again. LetL be the size of a cache line. We assume that the
cache size is large enough such that all data involved byP
concurrent runs of 1-D FFT (whereP is the number of pro-
cessors) fit in cache. This is justified in the experimentation
with our balanced bivariate multiplication(see Section VI)
where our 16-core machine has 4MB of L2 unified cache and
each FFT vector has at most size 128KB. We also assume
that our n-D FFT is performed without data transposition
by loading directly from main memory to cache the vectors
on which 1-D FFT is run. This technique is used in the
implementation of the FFTW [5]. Therefore, cache misses
arise essentially when reading data before performing a 1-D
FFT. For a vector of sizesi the number of cache misses is
at mostsi/L + 1. Thus the number of cache misses atStep
1 andStep 3 fits in

O(Σi=1···n (Πj 6=isj)(si/L + 1)).

At Step 2, this number is withinO( s
L + 1). Hence, if

Q(s1, . . . , sn) denotes the total number of cache misses for
the whole algorithm, we obtain

Q(s1, . . . , sn) ≤ cs
n + 1

L
+ cs(

1

s1
+ · · · + 1

sn
) (3)

for some constantc. As in Section III-A let us consider
s = s1 · · · sn to be fixed. The following is easy to prove:

n

s1/n
≤ 1

s1
+ · · · + 1

sn
.

Moreover this latter inequality is an equality when eachsi

equalss1/n. Noting n+1
n ≤ 2 for n ≥ 1 we deduce:

Q(s1, . . . , sn) ≤ ncs(
2

L
+

1

s1/n
) (4)

whensi = s1/n holds for alli. This suggests to minimizen,
thus settingn = 2. Therefore, for fixeds, the upper bound
of (3) reaches a local minimum atn = 2 ands1 = s2 =

√
s.

C. Balanced Bivariate Multiplication

The analysis of Sections III-A and III-B suggests that,
for bivariate input, the algorithm of Section II-B is nearly
optimum in terms of parallelism and cache complexity when
s1 = s2, that is, when the partial degrees of the product are
equal. This brings the definition and proposition below.

Definition 1: The pair of polynomials f, g ∈
K[x1, . . . , xn] is balanced if all the partial degrees of
their product are equal, that is, ifd1 + d′1 = di + d′i holds
for all 2 ≤ i ≤ n.

Proposition 1: Under our assumption of 1-D FFT black
box, for two multivariate polynomialsf, g the theoretical
speedup of the algorithm in Section II-B is lower bounded

by s/max(s1, . . . , sn) and its cache complexity is within
O(sn+1

L + s( 1
s1

+ · · · + 1
sn

)). For fixed s and n, these
lower and upper bounds are respectively maximized and
minimized when the pairf, g is balanced. The second bound
reaches a local minimum atn = 2 ands1 = s2 =

√
s.
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Figure 1. Speedup of bivariate multiplication on balanced input.

8 00

10.00

12.00

14.00

16.00

d
u
p

Multiplication

linear�speedup

bivariate�(32765,�63)

8rvariate�(�all�4)

4rvariate�(1023,�1,�1,�1023)

univariate�(25427968)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number�of�Cores

Multiplication

linear�speedup

bivariate�(32765,�63)

8rvariate�(�all�4)

4rvariate�(1023,�1,�1,�1023)

univariate�(25427968)

Figure 2. Speedup of multiplication for non-bivariate or non-
balanced input.

We present here experimental results which confirm the
above analysis. Figure 1 provides speedup factors of dif-
ferent balanced pairs of bivariate polynomials. The number
associated with each curve is the common partial degree
of the input. This illustrates the good performances of the
algorithm of Section II-B for such input. For the partial
degree 8191, our implementation reaches a speedup factor
of 14 on 16 cores. Figure 2 provides speedup factors
of different pairs which are either non-bivariate or non-
balanced. The performances reported there are clearly much
less satisfactory than what could be observed on Figure 1.
Note that these poor results are obtained on both non-
balanced bivariate and balanced non-bivariate input.



D. Reduction to Balanced Bivariate Multiplication

The results of Sections III-A to III-C indicate that a
reduction to bivariate multiplication with balanced input
could improve the performance of multivariate multiplica-
tion based on FFT techniques. This is, indeed, possible and
we achieve this reduction through the rest of the paper.

In Section IV we describe a first fundamental technique,
that we callcontraction. This generalization of Kronecker’s
substitution allows us to turn an-variate multiplication (for
n > 2) into a bivariate multiplication without any overheads
in terms of serial running time. This technique provides
performance improvements on many practical cases.

In Section V, we study how univariate polynomial multi-
plication can be performed efficiently via bivariate multipli-
cation based on 2-D TFT. This technique, that we callex-
tension, has several motivations. First, under our assumption
of 1-D FFT black-box (which may be a serial program) this
trick creates concurrent execution for FFT-based univariate
multiplication. Secondly, when the base fieldK does not
possess primitive roots of unity of sufficiently large orders
for performing a Cooley-Tukey radix-2 FFT, this trick can
reduce the computations to a case where this latter algorithm
can be applied. Finally, this technique of extension, together
with that of contraction studied in Section IV, is the basis
of dense multivariate multiplication viabalanced bivariate
multiplication, presented in Section VI.
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Figure 3. Timing of 4-variate multiplication with unbalanced input
via 4-D TFT vs balanced 2-D TFT methods.

Figures 3 gives the timing of a 4-variate multiplication
with unblanced input via 4-D TFT method vs balanced 2-
D TFT method. Even on1 core, the balanced 2-D TFT
method is2.5 times faster. The work by the two methods
is essentially the same. However, our balanced 2-D TFT
method has better cache efficiency. Moreover, it scales well
on 16 cores. As a result, the total “net speedup” using
balanced 2-D TFT method instead of the direct 4-D TFT
method reaches31 on 16 cores.

IV. CONTRACTION

Before introducing the concept of contraction in Defi-
nition 3, we specify in Definition 2 how polynomials are
represented in our implementation. Proposition 2 states that
contraction can be performed essentially “at no cost” with
this representation. The experimental results reported atthe
end of this section illustrate the benefits of contraction.

As in Section II, letf, g ∈ K[x1, . . . , xn] be multivariate
polynomials with coefficients in the prime fieldK = Z/pZ
and with ordered variablesx1 < · · · < xn. For eachi, let
di andd′i be the degree inxi of f andg respectively.

Definition 2: Let ℓ1, . . . , ℓn be positive integers such that
ℓi > di holds for all 1 ≤ i ≤ n. Define ℓ := (ℓ1, . . . , ℓn).
We call ℓ-recursive dense representation(RDR, for short)
of f any one-dimensional arrayF of sizeℓ := ℓ1 · · · ℓn and
with integer indices in the range0 · · · (ℓ − 1) such that the
following two conditions hold.

(i) the coefficient inf of the monomialxe1

1 xe2

2 · · ·xen

n ,
for 0 ≤ ei ≤ di, is in the slotF [j] of F with index
j = e1 + ℓ1e2 + ℓ1ℓ2e3 + · · · + (ℓ1 · · · ℓn−1)en,

(i) the coefficientF [j] is 0 whenever the indexj equals
e1 + ℓ1e2 + ℓ1ℓ2e3 + · · ·+ (ℓ1 · · · ℓn−1)en where0 ≤
ei < ℓi for 1 ≤ i ≤ n anddi < ei holds for somei;
such a coefficientF [j] is called apadding zero.

Remark 1:Whenn = 1, an ℓ-RDR of f is given by any
vectorF of size at leastd1 +1 whereF [i] is the coefficient
of xi

1 in f when 0 ≤ i ≤ d1 and 0 otherwise. Consider
now n > 1 and letℓ1, . . . , ℓn be positive integers such that
ℓi > di holds for all 1 ≤ i ≤ n. For all 0 ≤ i ≤ dn, let
ci ∈ K[x1, . . . , xn−1] be the coefficient off regarded as a
univariate polynomial inxn and Ci be an(ℓ1, . . . , ℓn−1)-
RDR of ci. Let Zdn+1, . . . , Zℓn−1 be zero-vectors, all of
size ℓ1 · · · ℓn−1. Then anℓ-RDR of f is obtained by con-
catenatingC0, C1, . . . , Cdn

, Zdn+1, . . . , Zℓn−1 in this order.
This fact justifies the termrecursive dense representation.

Recall how the productfg can be computed in parallel via
n-dimensional FFT in the context of our implementation.
During Step 1 andStep 3 of the algorithm of Section II-B,
n-dimensional FFT’s are performed by computing in par-
allel one-dimensional FFT’s alongxi, for i = 1, . . . , n
successively. As pointed out in Section III, this approach
suffers from the following bottleneck. In practice (and in
particular when solving systems of polynomial equations)
the partial degreed1 is likely to be large whereasd2, . . . , dn

are likely to be as small as1 or 2. This implies that the
n-dimensional FFT approach will compute a lot of “small
1-D FFTs” (whereas such 1-D FFTs of short vectors are
not worth the game) and only a few “large 1-D FFTs”
concurrently (leading to poor parallelism). To deal with this
“unbalanced work” the techniques developed in this paper
aim at transforming the polynomialsf andg into bivariate
ones in a way that they can be efficiently multiplied by a



2-D FFT approach. In this section, we accomplish a first
step toward this goal using the notion ofcontraction.

Definition 3: Let ℓ1, . . . , ℓn be positive integers such that
ℓi > di holds for all 1 ≤ i ≤ n. Let m be an integer
satisfying 1 ≤ m < n. Define α1 = 1, α2 = ℓ1,
α3 = ℓ1ℓ2, . . . , αm = ℓ1ℓ2 · · · ℓm−1, αm+1 = 1,
αm+2 = ℓm+1, . . . , αn = ℓm+1ℓm+2 · · · ℓn−1. Then, we
set α := (α1, . . . , αn). Consider the following map from
the monomials ofK[x1, . . . , xn] to those ofK[x1, xm+1]:

xe1

1 xe2

2 · · ·xen

n 7−→ xc1

1 xc2

m+1

where c1 = α1e1 + α2e2 + · · · + αmem and c2 =
αm+1em+1 + αm+2em+2 + · · · + αnen. This induces a
polynomial ring homomorphismΨα, from K[x1, . . . , xn] to
K[x1, xm+1], that we callα-contraction. Hence, this map
satisfiesΨα(ab) = Ψα(a)Ψα(b), for all polynomialsa, b.

Proposition 2: With the notations of Definition 3, define
t1 = ℓ1ℓ2 · · · ℓm, t2 = ℓm+1 · · · ℓn andt = (t1, t2). Let F be
an one-dimensional array of sizet1t2 = ℓ1 · · · ℓn. If F is an
ℓ-RDR of f , thenF is also at-RDR of Ψα(f). Conversely,
if F is a t-RDR of Ψα(f), then it is anℓ-RDR of f .

Proposition 2 follows easily from therecursive structure
of RDR’s, as pointed out in Remark 1. We explain now
how we make use of contraction for computing the product
fg. We defineℓi := di + d′i + 1, for all i. Then, we set
ℓ := (ℓ1, . . . , ℓn). Let F andG beℓ-RDR of f andg respec-
tively. We choose an integerm such that the “distance” given
by |ℓ1 · · · ℓm − ℓm+1 · · · ℓn| is minimum. With these values
for ℓ and m, consider theα-contraction of Definition 3.
Then Ψα(f) and Ψα(g) are two bivariate polynomials in
K[x1, xm]. By the choice ofℓi’s, the polynomialfg is the
only pre-image ofΨα(f)×Ψα(g) underΨα. Therefore, this
map can be used to computefg via a 2-D FFT approach.
Moreover, it follows from Proposition 2 that this change of
representation is made at no cost! In addition, by the choice
of m, the degrees ofΨα(fg) w.r.t. x1 andxm+1 are as close
to each other as possible.

Let us compare the work, the parallelism and the cache
complexity of the multiplication based onn-D FFT with the
multiplication based on contraction and 2-D FFT approach.
To keep the discussion simple, let us assume that we can
choosesi = ℓi for all i. (Recall thatsi is the size of our
1-D FFT input vectors alongxi.) This is actually realistic
if all 1-D FFTs are computed by TFT, which is the case
in our implementation. It follows from Proposition 2 and
Expression (1) that the work is unchanged. The inequality

3

L
+(

1

s1 · · · sm−1
+

1

sm · · · sn
) ≤ n + 1

L
+(

1

s1
+ · · ·+ 1

sn
)

combined with Expression (3) suggests that contraction
is likely to reduce cache misses. As discussed in Sec-
tion III-A, “contracting dimensions” will keep enough the-
oretical speedup while reducing parallel overhead.

Experimental results. In our experimentation illustrated in
Figure 4, we study the case of multiplying two4-variate
polynomialsf and g. Their partial degreesd2, d3, d

′
2, d

′
3

are all equal to1 while d1 = d′1 and d4 = d′4 vary in
the range1024 · · · 2047. These degree patterns are typical
in computing normal forms based on the algorithm in [11].
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Figure 4. Timing (s) for4-variate multiplication by direct 4-D TFT
on1 core vs Kronecker’s substitution on1 core vs contraction from
4-D to 2-D TFT on1 core and16 cores.

On 1 core, we compare three methods for computing
the productfg: direct 4-D TFT, 1-D TFT via Kronecker
substitution (see Section II-B) and our contraction to 2-
D method. We should observe first that the Kronecker
substitution method fails on most input due to the fact thatK

does not have primitive roots of unity of sufficiently large
order; in those cases our contraction method clearly out-
performs the direct 4-D TFT method, which was expected,
based on our complexity estimates. When the Kronecker
substitution method does not fail, our contraction method
is clearly the most efficient technique. The fact that the
contraction outperforms Kronecker’s substitution in thiscase
can probably be explained by cache complexity arguments,
see the discussion on FFT computation in [6]. The results
also show that the contraction method scales very well on
16 cores, reaching a speedup factor between8.2 to 13.2 for
this large range of problems. The net speedup on 16 cores
w.r.t. the direct 4-D method on1 core is between16 and30.

V. EXTENSION

Let f, g ∈ K[x1] be two non-constant univariate polyno-
mials with coefficients in the prime fieldK = Z/pZ and
with respective degreesdf , dg. Let b ≥ 2 be an integer. We
consider the mapΦb from K[x1] to K[x1, x2] that replaces
any monomialxa

1 by xu
1xv

2, whereu, v are the remainder
and quotient in the Euclidean division ofa by b, and that
leaves all coefficients unchanged. More formallyΦb is the
canonical ring homomorphism fromK[x1] to the residue
class ringK[x1, x2]/〈xb

1 − x2〉.
We determine a value forb such that the productfg

can be obtained by computingΦb(f)Φb(g) using a number



of operations inK which is at most twice the number of
operations for a direct computation inK[x1]. Moreover, we
impose that the pairΦb(f),Φb(g) is balanced, or nearly
balanced. Indeed, the cache complexity upper bound given
by Expression (3) is minimized in this case.

To this end, we need some notation. Lets1, s2 be positive
integers andF,G,H be (s1, s2)-RDR’s of Φb(f), Φb(g)
and Φb(f)Φb(g). Since the productΦb(f)Φb(g) will be
computed by means of 2-D TFTs applied toF and G,
we shall determineb, s1, s2 such that boths := s1s2 and
|s1 − s2| are as small as possible in order to reduce work
and cache complexity, and improve parallelism as well. Let
qf , rf (resp. qg, rg) be the quotient and remainder in the
Euclidean division ofdf (resp.dg) by b. SinceΦb(f)Φb(g)
will be calculated by 2-D TFTs overK, this polynomial
product will be obtained as an element ofK[x1, x2] (not one
of K[x1, x2]/〈xb

1 − x2〉). Hence the degrees ofΦb(f)Φb(g)
w.r.t. x1 andx2 will be at most2b− 2 andqf + qg, respec-
tively. Thus we should sets1 = 2b−1 ands2 = qf +qg +1.
Roughly speaking, the RDR’sF,G of f and g contain at
least 50% of padding zeros. More precisely, the size (i.e.
number of slots) of each of the arraysF,G,H is

s = 2b(qf + qg) + (s1 − s2) + 1.

It follows from Lemma 1 hereafter that it is always possible
to chooseb such that the absolute value|s1 − s2| is at most
equal to2. This implies the following:s ≤ 2(df + dg) + 3.
Since the size of the univariate polynomialfg is df +dg +1,
this b “essentially” realizes our objectives of increasing the
data size at most by a factor of 2, while ensuring that our
2-D TFT’s will operate on (nearly) square 2-D arrays.

Lemma 1:With df , dg, b, qf , qg, rf , rg as above, given a
positive integerσ, definet1 := (2b−1) andt2 := (qf +qg +
1)σ. There exists at least one integerb such that we have
−1 ≤ t1 − t2 ≤ 2σ. In particular, forσ = 1, the inequality
|s1 − s2| ≤ 2 can be achieved. If, in addition,df = dg is
satisfied, there existsb such that|s1 − s2| ≤ 1 holds.

Proof: We solve forb (as positive integer) the quadratic
equation2b2 −σb− (df + dg)σ = 0, which meanss1 = s2.
Its discriminant is∆ := (σ + 1)2 + 8(df + dg)σ. Let k be
the positive integer satisfyingk2 ≤ δ < (k +1)2. We define
bi := σ+k+i

4 . For i = −1, 0, 1, 2, elementary calculations
bring the inequalities:−2 ≤ t1 − t2 ≤ 2σ, −1 ≤ t1 − t2 ≤
2σ, −1 ≤ t1 − t2 ≤ 2σ and1 ≤ t1 − t2 ≤ 2σ. For the case
whereσ = 1 anddf = dg, we have|s1 − s2| ≤ 1 for either
b = k′ or b = k′ + 1 with k′2 ≤ df < (k′ + 1)2.

Once the bivariate productΦb(f)Φb(g) is computed, one
task remains: converting this polynomial to the univariate
polynomialfg. This operation is non-trivial sincex2 stands
for xb

1 meanwhile the degree ofΦb(f)Φb(g) w.r.t. x1 can
be larger thanb, but at most equal to2b− 2. Elementary al-
gebraic manipulations lead to the pseudo-code below which

constructs an(df +dg +1)-RDR of fg from H, the(s1, s2)-
RDR of Φb(f)Φb(g). Recall thats1 ands2 have been set to
2b−1 andqf +qg +1 respectively. Defined := df +dg and
q := qf +qg. This procedure clearly runs inO(d) operations
in K. Finally, we obtain Proposition 3.

for u := 0 · · · (b − 1) do U [u] := H[u]; end do;
for w := 1 · · · q do

X := w b; Z := w(2b − 1);
Y := (w − 1)(2b − 1) + b;
for u := 0 · · · (b − 2) do

U [X + u] := H[Y + u] + H[Z + u]; end do;
U [X + (b − 1)] := H[Z + (b − 1)];

end do;
X := (q + 1)b; Z := d − X;
Y := q(2b − 1) + b;
for u := 0 · · ·Z do U [X + u] := H[Y + u]; end do;

Proposition 3: Let f, g ∈ K[x1] have respective positive
degreesdf , dg. Then, one can compute fromf, g a pair
of bivariate polynomialsh, k ∈ K[x1, x2] within O(d)
bit operations, such that the productfg can be recov-
ered fromhk within O(d) operations inK, and such that
s1s2 ≤ 2(df + dg) + 3 and |s1 − s2| ≤ 2 hold, where
deg(h, x1)+deg(k, k1) < s1, deg(h, x2)+deg(k, k2) < s2

andd = df + dg.
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Figure 5. Univariate multiplication timing (s) via extension to 2-D
TFT on 1, 8, 16 cores vs direct 1-D TFT.

We stress the fact that, the construction that has led
to Proposition 3 permits to efficiently multiply univariate
polynomials via 2-D TFT without requiring that 1-D TFTs
are computed in a parallel fashion. Moreover this strategy
allows us to take advantage of FFT techniques even ifK does
not admit primitive roots of unity of sufficiently large order
for using the radix 2 Cooley Tukey Algorithm. Corollary 1
states that over any field of characteristic different from
2 our techniques compute the product of two univariate
polynomials of degreed within O(d lg3(d)) coefficient oper-
ations. This is slower than Schönage-Strassen Algorithm [8,
Chapter 8] which runs inO(d lg(d) lg(lg(d))) but for which
no parallelism or cache complexity results are known.

Corollary 1: Let f, g ∈ K[x1] be non-zero polynomials
of degreed − 1. Then, one can compute the productfg



within O(d lg3(d)) operations inK.

Proof: The number of terms (null or not) infg is df +
dg +1, that is,2d−1. The number of terms inhk is bounded
by 2(df +dg)+2, that is,2(2d−2)+2 = 4d−2. (Here we
have used the fact that the degrees off andg are equal, see
Lemma 1.) Therefore the overhead factor between a radix 2
Cooley Tukey Algorithm (if the appropriate primitive roots
exist in K) and our extension method is(4d− 2) lg(4d− 2)
divided by(2d−1) lg(2d−1), which is at most4 for d ≥ 2.
Observe that each partial degree ofh, k is in O(

√
d). It could

happen that one of these degrees is still too large for running
the radix 2 Cooley Tukey Algorithm. One can, then, apply
to h, k the construction of Proposition 3 in order to extend to
4 variables. Observe that the number of consecutive calls to
this construction is at mostlg(lg(d))); hence the cumulative
overhead is within4lg(lg(d))) = lg2(d) yielding the result.

Experimental results.We compare the timings of univariate
polynomial multiplications based on direct 1-D TFT and our
extension method to 2D, for input degree ranging between
8126460 and32505900. The results are reported on Figure 5.
On 1 core, our extension method is slower than the direct
1-D TFT method for about30%. This is not a surprise since
we know that the extension from 1-D to 2-D can increase the
sizes of the product by (at most) a factor of2. On 2 cores,
the extension method provides a speedup factor between1.5
and1.7 with respect to the direct 1-D TFT method. On 16
cores, this gain ranges between6.5 and 11.5. These data
also show that extending univariate polynomials to balanced
bivariate pairs can create substantial parallelism even when
1-D FFTs are executed serially!

VI. BALANCED MULTIPLICATION

We turn now to the question of performing multivariate
polynomial multiplication efficiently via bivariate multipli-
cation, based on 2-D TFTs applied to (nearly) balanced
pairs. We callbalanced multiplicationthe resulting strategy.
As in Sections II and IV, letf, g ∈ K[x1, . . . , xn] be two
multivariate polynomials with coefficients in the prime field
K = Z/pZ and with ordered variablesx1 < · · · < xn.
For eachi, let di andd′i be the degree withxi of f andg
respectively.

A first approach for computing the productfg via bivari-
ate multiplication would be to convert the polynomialsf
andg to univariate polynomials via Kronecker’s substitution
and then, to apply the techniques ofextensiondeveloped in
Section V. This would have the following severe limitation.
RDR’s of the images off andg by Kronecker’s substitution
must have padding zeros such that the productfg can be
recovered. The extension technique of Section V requires
also the introduction of padding zeros. A naive combination
of these two transformations would introduce far too many
padding zeros. We actually checked experimentally that this
approach is unsuccessful.

In this section, we develop a “short cut” which combines
extension and contraction in a single transformation. In
order to focus on the main ideas, we shall assume first
that the input polynomials are inShape Lemma position,
see Definition 4. This assumption is actually a practical
observation (formalized by the so-calledShape Lemma[1])
for the polynomials describing the symbolic solutions of
polynomial systems with finitely many solutions. In Re-
mark 2 we describe how to relax this assumption.

Definition 4: The pairf, g ∈ K[x1, . . . , xn] is in Shape
Lemma positionif d1 + 1 andd′1 + 1 exceed the products
(d2 +1) · · · (dn +1) and(d′2 +1) · · · (d′n +1) respectively.

This assumption suggests to extend the variablex1 to two
variablesx1, y such thatf, g can be turned via a contraction
Ψα from K[x1, y, x2, . . . , xn] to K[x1, y] into a balanced
pair of bivariate polynomials.

For an integer b ≥ 2, we consider the mapΦb

from K[x1, x2, . . . , xn] to K[x1, y, x2, . . . , xn] that replaces
any monomialxa

1 by xu
1yv, where u, v are the remain-

der and quotient in the Euclidean division ofa by b,
and that leaves all coefficients and other monomials un-
changed. More formallyΦb is the canonical ring homo-
morphism fromK[x1, x2, . . . , xn] to the residue class ring
K[x1, y, . . . , xn]/〈xb

1 − y〉.
We shall determineb such that after contracting the vari-

ablesy, x2, . . . , xn onto y in the polynomialsΦb(f)Φb(g),
the resulting bivariate polynomialsh andk form a balanced
pair. The construction is similar to that of Section V. Let
s1, s2 be positive integers andH,K be (s1, s2)-RDR’s of
h and k. Define σ := (d2 + d′2 + 1) · · · (dn + d′n + 1).
Let qf and qg be the quotients in the Euclidean division
by b of d1 andd′1 respectively. Following the reasoning of
Section V, we sets1 = 2b − 1 and s2 = (qf + qg + 1)σ
and we aim at determiningb such that boths := s1s2 and
|s1 − s2| are as small as possible, in order to reduce work
and cache complexity, and improve speedup factors. Since
σ is regarded as small (comparing tod1 andd′1), Lemma 1
provides us with a candidateb. Our experimental results
confirm that this choice achieves our goals.

Remark 2:To transform a pairf, g into a pair in Shape
Lemma position withinO(s) bit operations, we proceed as
follows. We re-order the variables such that there exists an
index j satisfying 1 ≤ j < n, (d1 + 1) · · · (dj + 1) ≥
(dj+1 +1) · · · (dn +1) and(d′1 +1) · · · (d′j +1) ≥ (d′j+1 +
1) · · · (d′n + 1). Then, contractx1, . . . , xj to x1. In rare
cases, such a variable ordering may not exist and one can
use Krocnecker’s substitution followed by extension.

Experimental results. We study the performance of our
balanced multiplication method for4-variate polynomial
input. All partial degreesd2, d3, d4, d

′
2, d

′
3, d

′
4 are set to2

while d1 andd′1 range between32768 and65536. Figure 6
illustrates our experimental results. On 1 core we compare
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Figure 6. 4-variate multiplication timing (s) via balanced multipli-
cation on 1, 2, 16 cores vs Kronecker substitution to 1-D TFT.

our balanced multiplication with the one through Kro-
necker’s substitution. The latter approach performs slightly
better than ours; indeed our method has a higher algebraic
complexity, even though it improves on cache complexity.
On 2 cores our method reaches a speedup gain of1.75 w.r.t
Kronecker’s substitution and a speedup factor of1.96 w.r.t.
itself on 1 core. On 16 cores, these maxima become10.3
and11.3. For comparison with the direct 4-D TFT approach,
see Figure 3 in Section III.

VII. C ONCLUDING REMARKS

We have presented strategies for the implementation of
dense polynomial multiplication on multi-core architectures.
We have focused on polynomial multiplication over finite
fields based on FFT techniques since this is a fundamental
operation for symbolic computation. The techniques that
we have developed for this operation are highly efficient in
terms of parallelism and cache complexity. Our results are
both theoretical and practical. We are not aware of similar
work in the context of symbolic computation.

The design of our techniques has mainly two motivations.
First, we aim at supporting higher-level parallel algorithms
for solving systems of non-linear equations. Therefore, our
multiplication must perform efficiently in terms of serial
running time, parallelism and cache complexity, on any
possible input degree patterns, insisting on those which put
code efficiency to challenge.

Secondly, we have integrated the specificities of 1-D FFT
computations over finite fields in the context of symbolic
computation with polynomials. On one hand, these 1-D
FFTs are applied to vectors which are large enough such
that the base field may not contain the appropriate primitive
roots of unity for a radix 2 Cooley Tukey Algorithm. On the
other hand, the length of these vectors is not large enough
for making efficient use of parallel code for 1-D FFT.

As a consequence of these constraints, we have assumed
that 1-D FFTs in our implementation could be computed
by a black box program, possibly a serial one. Therefore,

we had to take advantage of the row-column algorithm
for multidimensional FFT computations. Our theoretical
analysis has shown that balanced bivariate multiplication,
as defined in Section III-C, is a good kernel.

Based on this observation, we have developed two fun-
damental techniques, contraction and extension, in order to
efficiently reduce any dense multivariate polynomial multi-
plication to this kernel.

Our experimental results demonstrate that these tech-
niques can substantially improve performances with respect
to multiplication based on a direct (and potentially un-
balanced) multidimensional FFT. Moreover, they can lead to
efficient parallel code for univariate multiplication, despite
of our 1-D FFT black box assumption. We believe that
symbolic computation software packages such as MAPLE,
MAGMA , NTL can greatly benefit from our work.
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