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ABSTRACT
We discuss the parallelization of algorithms for solving poly-
nomial systems symbolically by way of triangular decom-
positions. We introduce a component-level parallelism for
which the number of processors in use depends on the ge-
ometry of the solution set of the input system. Our long
term goal is to achieve an efficient multi-level parallelism:
coarse grained (component) level for tasks computing geo-
metric objects in the solution sets, and medium/fine grained
level for polynomial arithmetic such as GCD/resultant com-
putation within each task.

Component-level parallelization of triangular decomposi-
tions belongs to the class of dynamic irregular parallel ap-
plications, which leads us to address the following question:
How to exploit geometrical information at an early stage of
the solving process that would be favorable to paralleliza-
tion? We report on the effectiveness of the approaches that
we have applied, including ”modular methods”, ”solving by
decreasing order of dimension”, ”task pool with dimension
and rank guided scheduling”. We have extended the Al-

dor programming language to support multiprocessed par-
allelism on SMPs and realized a preliminary implementa-
tion. Our experimentation shows promising speedups for
some well-known problems and proves that our component-
level parallelization is practically efficient. We expect that
this speedup would add a multiplicative factor to the speedup
of medium/fine grained level parallelization as parallel GCD
and resultant computations.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity. F.2.2 [Nonnumerical Algorithms and Problems]:
Computations on discrete structures; Sequencing and schedul-
ing.

General Terms: Algorithms, Theory, Experimentation,
Performance.
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1. INTRODUCTION
Symbolic solvers of polynomial systems are powerful tools

in scientific computing: they are well suited for problems
where the desired output must be exact and they have been
applied successfully in areas like digital signal processing,
robotics, theoretical physics, cryptology with many impor-
tant outcomes. See [15] for an overview of these applica-
tions. The implementation of symbolic methods is, however,
a highly difficult task. Indeed, they are extremely time con-
suming when applied to large examples. Moreover, interme-
diate expressions can grow to enormous size and may halt
the computations, even if the result is of moderate size.

The increasing availability of parallel computer architec-
tures, from SMPs to multi-core laptops, has revitalized the
need for developing mathematical algorithms and software
capable of exploiting these new computing resources. This
need is even more dramatic in the case of symbolic compu-
tations which offer exciting, but highly complex challenges
to computer scientists. This paper aims at investigating
new directions in the parallelization of symbolic solvers for
polynomial systems.

Ideally, one would like that each component of the solu-
tion set of a polynomial system could be produced by an
independent processor, or a set of processors. In practice,
the input polynomial system, which is hiding those com-
ponents, requires some transformations in order to split the
computations into subsystems and, then, lead to the desired
components. The efficiency of this approach depends on its
ability to detect and exploit geometrical information dur-
ing the solving process. Its implementation, which involves
parallel symbolic computations, is yet another challenge.

Several symbolic algorithms provide a decomposition of
the solution set of any system of algebraic equations into
components (which may be irreducible or with weaker prop-
erties): primary decompositions [14, 32], comprehensive Grö-
bner bases [35], triangular decompositions [36, 20, 21, 29, 34]
and others. These algorithms tend to split the input poly-
nomial system into subsystems and, therefore, seem to be
natural candidates for a component-level parallelization.

Unfortunately, such a parallelization is very likely to be
unsuccessful, bringing no practical speedup w.r.t. compa-
rable sequential implementations of the same algorithms.
Indeed, even if computations split into sub-problems which
can be processed concurrently, the computing cost of the
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corresponding tasks are extremely irregular. Even worse:
for input polynomial systems with coefficients in the field
Q of rational numbers, a single heavy task may dominate
the whole solving process, leading essentially to no oppor-
tunities for component-level parallel execution. This phe-
nomenon follows from the following observation. For most
polynomial systems with coefficients in Q that arise in the-
ory or in practice, see for instance www.SymbolicData.org,
the solution set can be described by a single component!
The theoretical justification is given by the celebrated Shape
Lemma [5] for systems with finitely many solutions.

We show, in this paper, how to achieve a successful compo-
nent-level parallelization for polynomial systems including
for the case of rational number coefficients. Among the al-
gorithms that decompose the solution set of a polynomial
system into components, we consider one computing trian-
gular decompositions, called Triade [29]. The first reason for
this choice is that, triangular decompositions of polynomial
systems with coefficients in Q can be reduced to triangu-
lar decompositions of polynomial systems modulo a prime
number [11], bringing rich opportunities for parallel execu-
tion. We discuss in Section 2 the main features of this algo-
rithm that are relevant to parallelism. The second reason is
that this algorithm has been implemented in the Aldor lan-
guage [2] and in the computer algebra systems AXIOM [19]
and Maple [27] as the RegularChains library [23]. This pro-
vides us with useful tools for our experimentation work. The
third and main reason is that the Triade algorithm can gener-
ate the (intermediate or output) components by decreasing
order of dimension. As we show in Section 3, this allows us
to exploit the opportunities for parallel execution created by
modular techniques, leading to successfully component-level
parallel execution.

Our objective is to develop a parallel solver for which the
number of processors in use depends on the intrinsic com-
plexity of the input system, that is on the geometry of its
solution set. This approach is not aimed to bring scalability.
For instance, for systems over Z/pZ with finitely many so-
lutions, if the output consists of s components with similar
degrees, we cannot expect a speed-up much larger than s by
relying only on a component-level parallelism. We do not
aim neither at replacing the previous approaches for paral-
lel polynomial system solving. On the contrary, we aim at
adding an extra level of parallelism.

The parallelization of two other algorithms for solving
polynomial systems symbolically have already been actively
studied. First, Buchberger’s algorithm for computing Gröb-
ner bases, see for instance [6, 7, 8, 13, 3, 25]. Second, the
Characteristic Set Method of Wu [36], see [1, 37, 38]. In
all these works, the parallelized operation is polynomial re-
duction (or simplification). More precisely, given two poly-
nomial sets A and B (with some conditions on A and B,
depending on the algorithm) the reductions of the elements
of A by those of B are executed in parallel.

The Triade algorithm also has a polynomial simplification
level which relies on polynomial GCDs and resultants. The
parallelization of such computations is reported in [31, 18].
The addition of this second level to the Triade algorithm is
work in progress.

In Section 2, we present a task model associated with each
triangular decomposition computed by the Triade algorithm.
We review also how this algorithm makes use of geometri-
cal information discovered during the computations. The

techniques that are applied to create the component-level
parallelism and to control the feature of tasks in favor of
parallelization are introduced in Section 3. Our heuristi-
cally efficient Task Pool with Dimension and Rank Guided
scheduling (TPDRG) is reported in Section 4. In the re-
maining sections, we report our preliminary implementation
and experimentation. We have extended the Aldor pro-
graming language for multi-processed parallel programing
on SMPs and realized a preliminary implementation of this
component-level parallel algorithm based on the BasicMath

library [17]. We have conducted an intensive experimenta-
tion on some well-known problems. A comparison on the
practical efficiency between our TPDRG scheduling and the
generally good Greedy scheduling has also been performed.
These help in evaluating the efficiency of our implementa-
tion and reveal its limitation as well. In the conclusion, we
discuss the potential to extend this work to achieve efficient
multi-level parallelization for triangular decompositions.

2. TASK MODEL
We discuss in this section the main features of the Triade

algorithm that are relevant to parallelism. After some nota-
tions, we recall in Definition 1 the notion of a regular chain,
which appears in most algorithm computing triangular de-
compositions. Then, we review the notions that are specific
to the Triade algorithm such as that of a Task, Definition 2
and that of a delayed split, Definition 3. They are well-
adapted to describe the relations between the intermediate
computations during the solving of a polynomial system. Al-
gorithm 1 is the top-level procedure of the Triade algorithm:
it manages a task pool. The tasks are transformed by means
of a sub-procedure (Algorithms 2 and 3) which is dedicated
to “simple tasks”. The execution of such a simple task can
be highly irregular and dynamic. It can also generate other
tasks. Therefore, Algorithms 1, 2 and 3 may not lead to
successful parallel execution. In fact, we will adapt them in
Section 3 for this purpose.

Notation 1. Let K be a field and X = x1 < · · · < xn be
n ordered variables. For a subset F ⊂ K[X], we denote by
V (F ) the zero set of F in the affine space K

n
where K is

an algebraic closure of K. The polynomial p is said regular
modulo the ideal 〈F 〉 if it is neither zero, nor a zero-divisor
modulo 〈F 〉. For a subset W ⊂ K

n
, we denote by W the

Zariski closure of W w.r.t. K, that is, the intersection of
the V (G) containing W (T ) for all G ⊆ K[X].

Let p ∈ K[X] be a non-constant polynomial. We denote
by mvar(p) the main variable (or largest variable) of p, by
init(p) the initial (or leading coefficient w.r.t. mvar(p)) of p
and by rank(p) the rank of p, that is, vd where v = mvar(p)

and d is the degree of p w.r.t. v. For two ranks vd1

1 and

vd2

2 we write vd1

1 ≺ vd2

2 whenever v1 < v2 or, v1 = v2 and
d1 < d2 hold.

Let T ⊂ K[Y ] be a triangular set, that is, a set of non-
constant polynomials with pairwise different main variables.
Let hT be the product of the initials of T . We denote by
W (T ) the quasi-component of T , that is, V (T ) \ V (hT ),
in other words, the set of the points in V (T ) which do not
cancel any of the initials of T . For F ⊂ K[X], we denote
by Z(F, T ) the intersection V (F )∩W (T ). We denote by
mvar(T ) the set of the mvar(t) and by rank(T ) the set of the
rank(t), for all t in T . A variable from X is said algebraic
w.r.t. T if it belongs to mvar(T ).
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Finally, we denote by Sat(T ) the saturated ideal of T ,
which is defined as follows. If T is empty then Sat(T ) is
defined as the trivial ideal 〈0〉 otherwise it is the ideal of all
p ∈ K[Y ] such that there exists an integer e such that he

T p
belongs to 〈T 〉. The ideal Sat(T ) has two important proper-
ties. First, its zero set satisfies the following: V (Sat(T )) =

W (T ). Secondly, if Sat(T ) is a proper ideal, then it is equidi-
mensional and its dimension is equal to n − |T |, see [20].

Definition 1. The triangular set T is a regular chain
if either T is empty or: T is not empty, T \ {Tmax} is
a regular chain, and the initial of Tmax is regular w.r.t.
Sat(T \ {Tmax}), where Tmax is the polynomial in T with
maximum rank. A finite family T of regular chains of K[X]
is a triangular decomposition of V (F ) if we have

V (F ) = ∪T∈T W (T ).

Definition 2. We call a task any couple [F, T ] where
F is a finite subset of K[X] and T ⊂ K[X] is a regular
chain. The task [F, T ] is solved if F is empty, otherwise it
is unsolved. By solving a task, we mean computing regular
chains T1, . . . , Te such that we have:

V (F ) ∩ W (T ) ⊆ ∪e
i=1W (Ti) ⊆ V (F ) ∩ W (T ). (1)

Most algorithms computing triangular decompositions con-
sist of procedures that take a task [F0, T0] as input and re-
turns zero, one or several tasks [F1, T1], . . . , [Fe, Te]. Then,
solving an input polynomial system F0 is achieved by call-
ing one of these procedures with [F0, ∅] as input and ob-
taining “solved tasks” [∅, T1], . . . , [∅, Te] as output, such that
T1, . . . , Te solves [F0, ∅] in the sense of Definition 2.

Therefore, given an algorithm A for computing triangular
decompositions, it is natural to associate with each input
polynomial system F0 a task tree GA(F0) whose vertices are
tasks such that there is an arrow from any task [Fi, Ti] to
any task [Fj , Tj ] if task [Fj , Tj ] is among the output tasks
of a procedure called on [Fi, Ti]; moreover, each internal
node [Fi, Ti] has a weight equal to the the (estimated) run-
ning time for computing the children of [Fi, Ti]. The longest
path (summing the weights along the path) from the root to
a leaf, called critical path of GA(F0) and often denoted by
T∞, represents the minimum running time for a parallel ex-
ecution of A(F0) on infinitely many processors. (Here we do
not consider communication costs and scheduling overheads,
for simplicity.) The sum of the all weights in GA(F0), called
the work of GA(F0) and often denoted by T1, represents the
minimum running time for a sequential execution of A(F0).

It is well known that most of algorithms decomposing
polynomial systems into components (irreducible, equidi-
mensional, . . . ) have to face the problem of redundant com-
ponents, which may occur in the output or at intermediate
stages of the solving process. This is a central question when
computing triangular decompositions, see [4] for a discussion
of this topic. Removing redundant components is also an
important issue in other symbolic decomposition algorithms
such as the one of [22] and also for numerical ones [33]. Being
able to remove redundant components at an early stage of
the computations helps reducing the work of GA(F0) and,
possibly its critical path. One of the motivations in the
design of the Triade algorithm [29] is to handle efficiently
redundant components.

For any input task [F, T ] the main procedure of the Tri-

ade algorithm, called Triangularize(F, T ), solves [F, T ] in the

sense of Definition 2. This procedure reduces to the situa-
tion where F consists of a single polynomial p. One could
expect that such an operation, say Decompose(p, T ), should
return regular chains T1, . . . , T` solving the task [{p}, T ]. In
fact, we shall explain now why this would not meet our re-
quirement of handling redundant components efficiently.

Observe that W (T1) ⊆ W (T2) implies |T2| ≤ |T1|. It fol-
lows that, during the solving process, all the (final or inter-
mediate) regular chains should be generated by increasing
order of their cardinality, that is, by decreasing order of the
dimension of their saturated ideals, in order to remove the
redundant ones as soon as possible. Returning to the spec-
ifications of the operation Decompose(p, T ), observe that
V (p)∩W (T ) could contain components of different dimen-
sion. (This will happen when V (p) contains some of the ir-

reducible components of W (T ), but not all of them.) There-
fore, it is not desirable for the operation Decompose(p, T ) to
solve the task [{p}, T ] in one step. Instead, Decompose(p, T )
should compute the quasi-components of V (p)∩W (T ) of
maximum dimension and postpone the computation of the
other quasi-components. This is made possible by a form of
lazy evaluation, formalized by Definition 3, after Notation 2.

Notation 2. Let T1, T2 be two regular chains. We write
rank(T1) ≺ rank(T2) whenever rank(T2) is a proper subset

of rank(T1), or when vd1

1 ≺ vd2

2 , where vd1

1 (resp. vd2

2 ) is the
smallest element of rank(T1) \ rank(T2) (resp. rank(T2) \
rank(T2)). When neither rank(T1) ≺ rank(T2) nor rank(T2)
≺ rank(T1) hold, we write rank(T1)' rank(T2). Let F1, F2 be
finite subsets of K[X]. We write [F1, T1]≺ [F2, T2] either if
rank(T1) ≺ rank(T2) holds, or if rank(T1) ' rank(T2) holds
and there exists f1 ∈ F1 such that rank(f1)≺ rank(f2) for
all f2 ∈ F2. Clearly, any sequence of tasks [F0, T0], . . ., such
that [Fi, Ti] ≺ [Fi+1, Ti+1] holds for all i, is finite.

Definition 3. The tasks [F1, T1], . . . , [Fe, Te] form a de-
layed split of the task [F, T ] and we write

[F, T ] 7−→D [F1, T1], . . . , [Fe, Te]

if for all 1 ≤ i ≤ e we have [Fi, Ti]≺ [F, T ] and the following
holds

V (F ) ∩ W (T ) ⊆ ∪e
i=1Z(Fi, Ti) ⊆ V (F ) ∩ W (T ).

Below, we highlight the main features of the procedure
Decompose(p, T ) that are relevant to the rest of the paper.
First, for a polynomial p and a regular chain T , such that p
is not zero modulo Sat(T ), the procedure Decompose(p, T )
returns a delayed split of the task [{p}, T ]. Algorithm 1 im-
plements the procedure Triangularize by means of the proce-
dure Decompose. Based on the specifications of Decompose,
the validity of this algorithm is easy to check and is estab-
lished in [29]. Note that our pseudo-code uses the syntax
of the Computer Algebra System axiom [19]. In particular,
we use indentation to denote blocks. Moreover, each of our
algorithms generates a sequence of items which are returned
one by one in the output flow by means of yield statements.
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Algorithm 1.

Input: a task [F, T ]

Output: regular chains T1, . . . , Te solving [F, T ] in the
sense of Definition 2

Triangularize(F, T ) == generate

1 R := [[F, T ]]
2 # R is a list of tasks
3 while R 6= [ ] repeat

4 choose and remove a task [F1, U1] from R
5 F1 = ∅ =⇒ yield U1

6 choose a polynomial p ∈ F1

7 G1 := F1 \ {p}
8 p ≡ 0 mod Sat(U1) =⇒ R := cons ([G1, U1], R)
9 for [H, T ] ∈ Decompose(p, U1) repeat

10 R := cons ([G1 ∪ H, T ], R)

The key notion used by the procedure Decompose is that
of a polynomial GCD modulo a regular chain, see Defini-
tion 4. This notion strengthens that introduced by Kalk-
brener in [20] and extends that of a polynomial GCD modulo
a triangular set introduced in [30].

Definition 4. Let p, t, g be non-zero polynomials and T
be a regular chain. Assume that p and t are non-constant
and have the same main variable v. Assume that v 6∈ mvar(T ),
that init(p) is regular w.r.t. Sat(T ) and that T ∪{t} is a reg-
ular chain. Then, the polynomial g is a GCD of p and t
w.r.t. T if the following properties hold:

(G1) g belongs to the ideal generated by p, t and Sat(T ),

(G2) the leading coefficient hg of g w.r.t. v is regular modulo
Sat(T ),

(G3) if mvar(g) = v then p and t belong to Sat(T ∪{g}).

More generally, a sequence of pairs G = (g1, T1), . . . , (ge, Te),
where g1, . . . , ge are polynomials and T1, . . . , Te are regular
chains, is a GCD sequence of p and t w.r.t. T if the fol-
lowing properties hold:

(G4) for all 1 ≤ i ≤ e, if |Ti| = |T | then gi is a GCD of p
and t modulo Ti,

(G5) we have W (T ) ⊆ ∪e
i=1W (Ti) ⊆ W (T ).

Four procedures of Triade are essential to the rest of the
paper. Their specifications are reviewed in Notation 3.

Notation 3. Let p, t, T be as in Definition 4. The pro-
cedure GCD(p, t, T ) computes a GCD sequence of p and t
w.r.t. T . These GCD computations allow testing whether
a polynomial f is regular modular Sat(T ). Given a polyno-
mial f , the procedure RegularizeInitial(f, T ) returns regular
chains T1, . . . , Te such that for all 1 ≤ i ≤ e, the polyno-
mial f is congruent to constant modulo Sat(Ti), or congru-
ent to a non-constant polynomial fi modulo Sat(Ti), whose
initial init(fi) is regular modulo Sat(Ti). Given a triangu-
lar set S ⊂ K[X] the procedure Extend(S) returns regular
chains T1, . . . , Te satisfying W (S) ⊆ W (T1) ∪ · · · ∪ W (Te)

⊆ W (S). Finally, we denote by Reduce(f, T ) the polyno-
mial defined as follows: if f ∈ K, then Reduce(f, T ) is
f ; if f ∈ Sat(T ), then Reduce(f, T ) is 0 otherwise it is
Reduce(h, T )mvar(f) + Reduce(g), where h = init(f) and
g = f − init(f)rank(f).

Algorithm 3 states the algorithm for Decompose(p, T ). It
relies on a sub-procedure given by Algorithm 2.

Algorithm 2.

Input: p, T, t as in Definition 4.

Output: a delayed split of [{p}, T ∪{t}].

AlgebraicDecompose(p, T, t) == generate

1 Let hT be the product of the initials in T
2 for [gi, Ti] ∈ GCD(t, p, T ) repeat

3 |Ti| > |T | =⇒
4 for Ti,j ∈ Extend(Ti ∪{hT t}) repeat

5 yield [p, Ti,j ]
6 gi ∈ K =⇒ iterate

7 mvar(gi) < v =⇒ yield [{gi, p}, Ti ∪ {t}]
8 deg(gi, v) = deg(t, v) =⇒ yield [∅, Ti ∪ {t}]
9 yield [∅, Ti ∪ {gi}]
10 yield [{init(gi), p}, Ti ∪ {t}]

Algorithm 3.

Input: a polynomial p and a regular chain T such that
p 6∈ Sat(T ).

Output: a delayed split of [{p}, T ].

Decompose(p, T ) == generate

1 for C ∈ RegularizeInitial(p, T ) repeat

2 f := Reduce(p,C)
3 f = 0 =⇒ yield [∅, C]
4 f ∈ K =⇒ iterate

5 v := mvar(f)
6 v 6∈ mvar(C) =⇒
7 yield [{init(f), p}, C]
8 for D ∈ Extend(C ∪ {f})
9 repeat yield [∅, D]
10 for [F, E] ∈ AlgebraicDecompose(f, C<v ∪ C>v, Cv)
11 repeat yield [F, E]

The proof of Algorithms 2 and 3 relies fundamentally on
Proposition 1. In broad words, this result states that the
common zeros of p and t contained in W (T ) are “essentially”
given by W (T ∪{g}), where g is a GCD of p and t w.r.t. T
in the sense of Definition 4. See [29] for detail.

Proposition 1. Let p, t, g, T be as in Definition 4. If g
is a GCD of p and t w.r.t. T and mvar(g) = v holds, then
we have

[[{p}, T ∪{t}] 7−→D [∅, T ∪{g}], [{hg , p}, T ∪{t}].

The following fundamental proposition is easily checked
from the pseudo-code of Algorithm 2 and Algorithm 3.

Proposition 2. Let [F, E] be any task returned by Algo-
rithm 3. Then we have:

(H1) either |E| = |T | and F = ∅,

(H2) or |E| = |T | and F contains a polynomial which is
regular w.r.t. Sat(T ),

(H3) or |E| > |T |.
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Corollary 1. Let [F, E] be a task returned by Algorithm 3.

If W (E) is a component of V (p)∩W (T ) with maximum di-
mension, then the task [F, E] is solved, that is, F = ∅.

Solving by decreasing order of dimension. It follows from
Corollary 1 that the tasks in Algorithm 1 can be chosen
such that the regular chains output by this algorithm are
generated by increasing size. To do so, we assign to each
task [F, T ] ∈ R in Algorithm 1 an upper bound m([F, T ])
for the height of the regular chains solving [F, T ] in the
sense of Definition 2. This upper bound is simply com-
puted as follows. If a polynomial f ∈ F has been shown to
be regular w.r.t. T (See Proposition 2) then m([F, T ]) :=
|T |+1 otherwise m([F, T ]) := |T |. Then, we say that a task
[F1, T1] has a higher priority than a task [F2, T2] if either
m([F1, T1]) ≤ m([F2, T2]) holds, or m([F1, T1]) = m([F2, T2])
and [F1, T1]≺ [F2, T2] hold. Sorting the tasks in the list R
w.r.t. this ordering allows us to solve by decreasing order of
dimension and therefore to handle redundant components
efficiently. The performances of our inclusion test are re-
ported in [9].

3. PARALLELIZATION
One could think of deriving a parallel scheme from Al-

gorithm 1 by running the procedure Triangularize(F, T ) on
one processor and running each call to Decompose on any
other available processor, following a greedy scheduling. As
mentioned in the Introduction, such parallelization is very
likely to be unsuccessful, bringing no practical speed-up
w.r.t. comparable sequential implementations of the same
algorithms. In characteristic zero, this mainly follows from
the fact, for most polynomial systems, the solution set can
be described by a single component, though not necessar-
ily irreducible. In prime characteristic, however, even if a
single component suffices, it is more likely that polynomials
factorize and thus that components split.

Using modular techniques. The previous remark suggests
the use of modular techniques for computing triangular de-
compositions. We rely on the algorithm proposed in [11].
For a given input square system F ⊂ Q[x1, . . . , xn] this al-
gorithm computes the simple points of V (F ) in four steps:

(S1) compute a prime number p such that V (F ) can be
reconstructed, with high probability, from Vp := V (F
mod p), the zero-set of F regarded in Z/pZ[x1, . . . , xn],

(S2) compute a triangular decomposition of Vp,

(S3) compute the equiprojectable decomposition of p,

(S4) reconstruct by Hensel lifting the equiprojectable de-
composition of V (F ).

As reported in [11], the second step has the dominant cost.
Therefore, we focus on computing triangular decompositions
of polynomial systems with coefficients in a finite field.

Our test suite. Table 1 contains data about 7 well-known
test systems that we use through the experiments reported
in this article. All of them are polynomial systems over Q:
for each we give its number of n of equations, its total degree
d, the prime number p provided by the above Step (S1) and
the list of the degrees of the triangular decomposition com-
puted at Step (S2) by the Triade algorithm. We stress the

fact that each of these systems, except Cohn2, is equipro-
jectable, that is, its equiprojectable decomposition consists
of a single component. Hence, for a direct computation Q,
the computations may not split. Therefore, our modular
approach has created opportunities for parallel execution.

Sys Name n d p Degrees

1 eco6 6 3 105761 [1,1,2,4,4,4]
2 eco7 7 3 387799 [1,1,1,1,4,2,

4,4,4,4,4,2]
3 CassouNogues2 4 6 155317 [8]
4 CassouNogues 4 8 513899 [8,8]
5 Nooburg4 4 3 7703 [18,6,6,3,3,4,

4,4,4,2,2,2,
2,2,2,2,2,1,

1,1,1,1]
6 UteshevBikker 4 3 7841 [1,1,1,1,2,30]
7 Cohn2 4 6 188261 [3,5,2,1,2,1,1,

16,12,10,8,8,
4,6,4,4,4,4,2,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1]

Table 1: Features of the polynomial systems

Regularizing initials for controlling task irregularity. A
call to the procedure Decompose as given by Algorithm 3
may result in unpredictable amount of work. Indeed, since
the initial of p may not be regular w.r.t. Sat(T ), the poly-
nomial f computed at Line 2 may have a different main
variable than p. Hence we cannot predict the main vari-
ables and degrees of the input polynomials in the calls to
AlgebraicDecompose and Extend. It could be the case that
these calls lead to inexpensive operations, say polynomial
GCDs of univariate polynomials of low degrees, whereas the
regular chain contains very large polynomials in many vari-
ables. Therefore, Decompose(p, T ) may lead to inexpensive
computations but expensive data communication. In order
to control this phenomenon, we strengthen the notion of a
task in Definition 5: the initial of every polynomial f ∈ F in
a task [F, T ] must be regular w.r.t. Sat(T ). The motivation
of this Definition is twofold. First, we want to anticipate
which operations will be performed by Algorithm 3. Sec-
ond, we want to force light-load calls to Decompose(p, T )
to be performed inside heavy-load calls. Reaching the for-
mer goal is discussed after Definition 5 while the latter one
is achieved by the Split-by-height strategy presented at the
end of this section.

Definition 5. The task [F, T ] is standard if for all f ∈
F , modulo Sat(T ), the polynomial is not constant and its
initial is regular w.r.t. Sat(T ).

Estimating the cost of tasks. Assume from now on that
every task in Algorithm 1 is standard. When the polyno-
mial p is chosen at Line 6, we know which operations will
be performed by the call Decompose(p, U1). Indeed, if the
initial of p is regular w.r.t. T := U1, Line 1 in Algorithm 3
is useless and we know that f = p holds. Let v be mvar(p).
Therefore, two cases arise: either v is algebraic w.r.t. T and
GCD(Cv, p,C<v) is called and its cost can be estimated (see
for instance [12] for complexity estimates); or v is not alge-
braic w.r.t. T and Extend(T ∪ {p}) is called, leading again
to GCD computations with predictable costs.

The Split-by-height strategy. Let [F, E] be a task. We
introduce a new procedure, called SplitByHeight(F, E), re-
turning a delayed split of [F, E] with the following require-
ment: If [G, U ] is a task returned by SplitByHeight(F, T )
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and |U | = |T | holds then G = ∅ holds. An algorithm for
SplitByHeight(F, T ) is easily derived from Algorithm 1 and
Proposition 2, leading to Algorithm 4 below.

Algorithm 4.

Input: a task [F, T ]

Output: a delayed split of [F, T ] such that for all output
task [G, U ] either |U | > |T | holds, or both |U | = |T |
and G = ∅ hold.

SplitByHeight(F, T ) == generate

1 R := [[F, T ]] # R is a list of tasks
2 while R 6= [ ] repeat

3 choose and remove a task [F1, U1] from R
4 |U1| > |T | =⇒ yield [F1, U1]
5 F1 = ∅ =⇒ yield [F1, U1]
6 choose a polynomial p ∈ F1

7 G1 := F1 \ {p}
8 p ≡ 0 mod Sat(U1) =⇒ R := cons ([G1, U1], R)
9 for [H, T ] ∈ Decompose(p, U1) repeat

10 R := cons ([G1 ∪ H,T ], R)

Then we derive a new implementation of Triangularize(F, T )
based on SplitByHeight and given as Algorithm 5.

Algorithm 5.

Input: a task [F, T ]

Output: regular chains T1, . . . , Te solving [F, T ] in
the sense of Definition 2

Triangularize(F, T ) == generate

1 R := [[F, T ]]
2 # R is a list of tasks
3 while R 6= [ ] repeat

4 choose and remove [F1, U1] ∈ R with max priority
5 F1 = ∅ =⇒ yield U1

6 for [H, T ] ∈ SplitByHeight(F1, U1) repeat

7 R := cons ([H,T ], R)
8 sort R by decreasing priority

Two benefits are obtained from Algorithm 5 in view of
parallelization. Assume that at each iteration of the while

loop all tasks with maximum priority are executed concur-
rently. Then, at most n (the number of variables) iterations
are needed. Indeed, after each call to SplitByHeight, and
thus after each parallel step, the minimum height of a reg-
ular chain in any unsolved tasks of R has increased at least
by one. Therefore, the depth of the task tree is at most
n. Moreover, at each node, with high probability, the work
load has increased in a significant manner.

4. PRELIMINARY IMPLEMENTATION
AND EXPERIMENTATION

In the previous section, we showed how to create paral-
lel opportunities at a coarse-grained level by making use of
modular methods. Then, we introduced different techniques
(standard tasks in Definition 5 in order to estimate costs, the
Split-by-height strategy in order to “factorize” the task tree)
so as to limit the irregularity of tasks and thus to avoid cheap
computations combined expensive data communications.

In this section, we first briefly introduce the framework
based on Aldor [28] that supports this implementation.
Then, we present our dynamic “task farming” parallel scheme
and our Task Pool with Dimension and Rank Guided dy-
namic scheduling (TPDRG) method, for achieving both load
balancing and for removing redundant computing branches
at early stages. In the end, we report our experimentation
on some well-known problems.

4.1 Implementation scheme
Our preliminary implementation is realized in the high-

performance categorical parallel framework reported in [28].
This framework provides a support of multi-processed par-
allelism in Aldor on symmetric multiprocessors and multi-
cores. It has mechanisms to support dynamic task man-
agement, and offers functions for data communication via
shared memory segments for parametric data types such
as SparseMultivariatePolynomial by serialization. Fur-
ther more, a sequential implementation [24] of the Triade

algorithm has been developed together with the BasicMath

library for high performance computing. Many of the cate-
gories, domains and packages in this sequential implementa-
tion (such as polynomial arithmetic, polynomial GCD and
resultant over an arbitrary ring) can be reused or extended
for our purpose. These provide us qualified support for real-
izing a preliminary implementation of the parallel algorithm
in a reasonable period of time.

As discussed in the previous sections, this component-
level parallelization of triangular decompositions is dynamic
and irregular. We propose to manage the dynamic tasks by
a “task farming” scheme, where a M

¯
anager processor dis-

tributes tasks to worker processors. The Manager owns an
identifier 0, and it also assigns a unique identifier (TID) to
each task generated at run time. When a task needs to
be processed and a processor is available, the Manager will
launch a worker (i.e. process) and pass the TID as a com-
mand line argument to the worker. The worker takes the
task’s TID as its virtual process identifier to guide its com-
munication with the Manager, as described in [28]. When
a worker finishes processing an input task, it sends back to
the Manager all output unsolved tasks and writes its solved
tasks to its standard output.

Our task pool with dimension and rank guided dynamic
scheduling is depicted in Figure 1. The task pool (which can
be seen as an implementation of the list R in Algorithms 5)
is managed by a Manager processor. The Manager first pre-
processes the input task [F, T ] which generates child tasks.
Then, the Manager selects unsolved tasks with maximum
priority (See the last paragraph in Section 2.) determined
by the dimension information of the tasks, say Task1.1,
Task1.2 and Task1.3, and estimates the cost of each of the
selected tasks (See Section 3), denoted by Cost1.1, Cost1.2
and Cost1.3, and sorts them decreasingly, say Cost1.1 ≥
Cost1.2 ≥ Cost1.3. Now the manager will launch worker
processes if there are processors available and distributes
these tasks following this order. Scheduling tasks by the or-
der of decreasing cost aims at obtaining the best trade off be-
tween the scheduling overhead and balanced workload [10].
When there is only one task in the selection, the Manager
will process it by itself. It will process on its own the tasks
with very low estimated cost. (See paragraph on Estimating
the cost of tasks in Section 3.) The Manager then proceeds
to step 2 to receive the results from the workers for remov-
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...
W1.2W1.1 W1.3 W2.2 W2.3 W2.4W2.1

Manager

Workers

Figure 1: Task pool with dimension and rank guided

dynamic scheduling

ing redundant components by inclusion test, and then starts
another selection, say the Task2’s shown in Figure 1. The
overall solving process follows the decreasing order of dimen-
sion, which indicates that the dimension of Task2’s is lower
than the dimension of Task1’s. The Manager repeats this
scheduling rule until all the tasks are solved. Other than
scheduling, the work load of the Manager is very light and
it cannot be a bottleneck. The benefits of using standard
tasks (to facilitate cost estimates) and solving by decreas-
ing order of dimension have been discussed near the end of
Section 3.

To evaluate the effectiveness of our task pool with dimen-
sion and rank guided dynamic scheduling, we compare be-
low its practical efficiency in our implementation with the
Greedy scheduling method [16]. In our case, it works as:
whenever there is an unsolved task and a free processor, a
process is spawned to work on this task. Theoretically, a
greedy scheduler is always within a factor of 2 of optimal.
However, it cannot ensure the removal of redundant compo-
nents at an early stage of the solving process.

4.2 Experimental result
Our experimentation was accomplished on S

¯
ilky in Cana-

da’s Shared Hierarchical Academic Research Computing Net-
work (SHARCNET). Silky is a SGI Altix 3700 Bx2 SMP
cluster having 128 Itanium2 Processors (1.6GHz). It is a
heavy-loaded multiprogrammed computing resource. The
system schedules multi-user’s job to run. Usually more than
95% memory is in use and almost all the CPUs are used up.
This situation does not allow us to test examples that con-
sumes large amount of memory and explains the level of
difficulty of our test-examples.

For each problem listed in Table 1, its sequential running
time with and without the regularized initial condition, im-
posed by the use of standard tasks (See Definition 5), are
listed in column noregSeq and column regSeq respectively
in Table 2. The sequential runs are given by the Triade

solver [24]. Column slowBy is the ratio between these two
timings. This result shows that the cost for maintaining the
property of standard tasks is negligible (0.01%). Column
#P records the number of processors which can give signif-
icant speedup to the example’s run, that is, beyond it, the
increase in the number of processors can not influence signif-
icantly its execution time any more. The parallel execution
time using this number of processors is recorded in column
SigPar. The speedup ratio (SPD) is calculated by comparing
the parallel execution time with respect to the comparable
sequential running time regSeq.

Table 3 reports on the parallel execution time (wall time)
of each problem on a varied number of processors, from 3
to 21. For each run, one processor is always used by the

Manager. Thus, given P processors, there are actually P −
1 which can be scheduled for workers. The corresponding
speedups are reported in Table 4.

These results demonstrate that, for these small and med-
ium-sized problems, our component-level (coarse grained)
parallel triangular decompositions implemented in a high-
level categorical programming language can gain a speedup
from 2 to 6, using a considerably small number of processors
(from 5 to 9). This is an encouraging result. Unfortunately,
this level of parallelization does not show good scalability.
For all these small examples, beyond some limit, the speedup
cannot increase when adding more processors. The theoret-
ical results by Attardi and Traverso [3] reveal similar na-
ture for coarse grained parallel Gröbner basis computations.
For instance, their theoretical speedup of cyclic7(-last)
is 11.08 by using 136 number of processors. Although our
parallelism is very different from theirs in terms of math-
ematical operations, the performances of component-level
parallelism for triangular decompositions also depends on
the geometrical property of the input system. The speed-up
factor is “essentially” bounded by the number of components
with “large degrees” in the output of our modular decom-
positions. For our Systems 1, 2, 4, 6, this number is clearly
3, 6, 2, 1 respectively, which is close to the corresponding
speed-up factors 2.1, 6.1, 2.3 and 1.9. For Systems 5 and 7,
which have larger ranges of output component degrees, our
claim needs to refined but still gives a good first approxima-
tion. System 3 is more subtle: several inconsistent branches
explain why we obtain a speed-up of 2.3 with only 1 output
component.

In Table 5, for each of the problems, we show the mini-
mum parallel running time (in column TPDRG) of our parallel
implementation using our TPDRG scheduling method and
the number of processors used for gaining it, denoted by
column #P (A). To evaluate the efficiency of our TPDRG
scheduling, we also implemented a parallel version using the
Greedy scheduling for comparison. To reveal the influence of
the number of processors, we investigate two timings for the
Greedy scheduling technique. One is using the same number
of processors as used in our best parallel run that we noticed.
We record one more to use 2 more processors than that in
column #P (A). Except for the very small example eco6,
all other examples show a better timing for the TPDRG
scheduling method. This proves that our TPDRG schedul-
ing is heuristically efficient. It helps effectively removing
redundant components, and hence using less CPU time by
avoiding working on redundant tasks. On the contrary, the
Greedy scheduling cannot ensure removing redundant tasks
at an early stage of the solving process.

5. TOWARD EFFICIENT MULTI-LEVEL
PARALLELIZATION

We have introduced a component-level parallel algorithm
for solving non-linear polynomial systems symbolically by
way of triangular decompositions. By using modular meth-
ods, we have created opportunities for coarse-grained paral-
lel solving of polynomial systems with rational number coef-
ficients. To exploit these opportunities, we have transformed
the Triade algorithm. We have strengthened its notion of a
task and replaced the operation Decompose by SplitByHeight

in order to reduce the depth of the task tree, create more
work at each node, and be able to estimate the cost of each
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Sys noregSeq regSeq slowBy #P SigPara SPD

(s) (s) (s)
1 3.63 4.00 0.01 5 1.94 2.1
2 707.53 727.95 0.01 9 119.44 6.1
3 463.02 476.16 0.01 9 207.29 2.3
4 2132.87 2162.40 0.01 9 905.24 2.4
5 4.10 4.14 0.01 9 1.79 2.3
6 866.27 866.20 - 9 455.21 1.9
7 298.33 305.24 0.01 9 96.70 3.2

Table 2: Wall time (s) for sequential

(with vs without regularized initial) & parallel

#P Sys 1 Sys 2 Sys 3 Sys 4 Sys 5 Sys 6 Sys 7
3 3.14 355.08 278.70 1401.43 2.10 622.88 104.98
5 1.94 225.29 214.24 1004.69 2.10 481.73 98.44
7 1.91 142.74 209.17 939.40 1.91 470.18 97.19
9 1.91 119.44 207.29 905.25 1.79 455.21 96.70
11 1.95 119.48 207.08 894.27 1.63 453.13 96.38
13 - 119.09 206.38 874.53 1.61 451.93 96.42
17 - 120.01 211.70 865.51 1.63 451.57 96.20
21 - 119.17 - 852.49 - 451.36 96.54

Table 3: Parallel timing (s) vs #processor

#P Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys7
3 1.3 2.1 1.7 1.5 2.0 1.4 2.9
5 2.1 3.2 2.2 2.2 2.0 1.8 3.1
7 2.1 5.1 2.3 2.3 2.2 1.8 3.1
9 2.1 6.1 2.3 2.4 2.3 1.9 3.2
11 2.0 6.1 2.3 2.4 2.6 1.9 3.2
13 - 6.1 2.3 2.4 2.5 1.9 3.2

Table 4: Speedup vs #processor

System TPDRG #P Greedy #P Greedy
(best) (A) (A) (B) (B)

1 1.91 7 1.79 9 1.78
2 119.09 13 120.51 15 120.52
3 206.38 13 213.21 15 213.35
4 852.49 20 896.79 22 939.62
5 1.61 13 1.63 15 1.63
6 451.36 20 500.50 22 469.35
7 96.20 17 100.78 19 96.17

Table 5: Best TPDRG timing vs Greedy scheduling (s)

task within each parallel step. This allows us to design a
task pool with dimension and rank guided scheduling scheme
and obtain a heuristically efficient parallelization.

Our preliminary implementation and experimentation de-
monstrate good performance gain with respect to the com-
parable sequential solver. We have shown that our multi-
processed parallel framework in Aldor is practically effi-
cient for coarse-grained parallel symbolic computations.

Our long term goal is to achieve an efficient multi-level
parallelism: coarse grained (component) level for tasks com-
puting geometric objects in the solution sets, and medium/fine
grained level for polynomial arithmetic such as GCD/resultant
computation within each task. We expect that the speedup
in the component level would add a multiplicative factor to
the speedup of medium/fine grained level parallelization as
parallel GCD/resultant computations. Parallel arithmetic
for univariate polynomials over fields is well-developed. We
need to extend these methods to multivariate case over more
general domains with potential of automatic case discussion.
A preliminary work in this direction is reported in [26].
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