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Abstract

We investigate the integration of C implementation of fast
arithmetic operations into MAPLE, focusing on triangular
decomposition algorithms. We show substantial improve-
ments over existing MAPLE implementations; our code also
outperforms MAGMA on many examples. Profiling data
show that data conversion can become a bottleneck for
some algorithms, leaving room for further improvements.

1 Introduction

Since the early days of computer algebra systems, their
designers have investigated many aspects of this kind of
software. For the systems born in the 70’s and 80’s, such
as AXIOM and MAPLE, the primary concerns were prob-
ably the expressiveness of the programming language and
the convenience of the user interface; the implementation
of modular methods for operations such as polynomial fac-
torization was also among these concerns.

Computer algebra systems born in the 90’s, such as
MAGMA and NTL, have brought forward a new priority:
the implementation of asymptotically fast arithmetic for
polynomials and matrices. They have demonstrated that,
for relatively small input data size, FFT-based polynomial
operations could outperform operations based on classical
quadratic algorithms or on the Karatsuba trick. With this
breakthrough, they increased in a spectacular manner the
range of problems solvable by computer algebra systems.

Meanwhile AXIOM and MAPLE remain highly attrac-
tive: the former one by its programming environment and
the latter one by its users community.

In previous work [6, 11, 15] we have investigated the in-
tegration of asymptotically fast arithmetic operations into
AXIOM. Since AXIOM is based today on GNU Common
Lisp (GCL), we took the following approach. We realized
highly optimized implementations of these fast routines in
C and made them available to the AXIOM programming
environment through the kernel of GCL, Therefore, library
functions written in the AXIOM high-level language could
be compiled down to binary code and then linked against
our C code. To observe significant speed-up factors, it was
sufficient to extend existing AXIOM polynomial domain
constructors with our fast routines (for univariate multipli-
cation, division, GCD etc.) and call them in existing generic
packages (for instance, for univariate squarefree factoriza-
tion). See [15] for details.

Few other languages allow the integration of user-written
C code in the kernel. For instance, MAGMA allows users to
open pipes or sockets to communicate with external pro-
grams, but such programs cannot call MAGMA functions;
within MAGMA, users can define packages, where functions
are compiled in MAGMA internal pseudo-code, but not in C.

In the present paper, we investigate the integration of fast
arithmetic operations implemented in C into MAPLE. Most
of MAPLE library functions are high-level interpreted code.
This is the case for those of the RegularChains library,
our main focus here, which could greatly benefit from our
fast routines for triangular decompositions [14, 12]. This
question is made more difficult by the following factors.



First, and up to our knowledge, the connection be-
tween C and MAPLE code is simple but quite rudimentary.
The only structured data which can be exchanged by the
two sides are the simple ones such as strings, arrays, ta-
bles. This leads to conversion overheads. Indeed, gener-
ally, MAPLE polynomials are represented by sparse data-
structures whereas those used by fast arithmetic operations
are dense.

This situation implies a second downside factor: con-
versions between C and MAPLE must be performed on the
MAPLE side or both sides, as interpreted code. Clearly, one
would like to implement them on the C side, as compiled
and optimized code.

The fact that the MAPLE language does not enforce
“modular programming” or “generic programming” is a
third disadvantage compared to AXIOM integration. Pro-
viding a MAPLE connection-package capable of calling
our efficient C routines will not be sufficient to speed-up
all MAPLE libraries using polynomial arithmetic. Clearly,
high-level MAPLE code needs to be rewritten to call this
connection-package and obtain improved performances.

These constraints being raised, bearing in mind that we
aim at achieving high-performance, we can now state the
questions which have motivated the design of a framework
in this compiled-interpreted programming environment, to-
gether with the experimental evaluation of this framework.

(Q1) To which extent triangular decomposition algorithms
(implemented in the RegularChains library in
MAPLE) can take advantage of fast polynomial arith-
metic (implemented in C)?

(Q2) What is a good design for such hybrid applications?

(Q3) Can an implementation based on this strategy outper-
form other highly efficient computer algebra packages
performing similar computations?

(Q4) Does the observed performance of this hybrid C-
MAPLE application comply to its estimated perfor-
mance by complexity analysis?

This paper attempts to provide elements of answers to these
questions. In Section 2, we start by describing the frame-
work that we have designed in this compiled-interpreted
programming environment. In Sections 3 and 4 we present
the three applications that we have implemented in this
framework. We introduce them hereafter (definitions are
given in the latter sections).
Bivariate solver. This application takes as input a poly-
nomial system of two equations F1, F2 in two variables
X1 < X2 and with coefficients in a prime field K (whose
size is a machine word size Fourier prime). It returns a tri-
angular decomposition of the common roots of F1 and F2.

Two-equation solver. This application takes as input two
polynomials F1, F2 in several variables X1 < · · · < Xn

and with coefficients in K. It returns the resultant R1 of
F1, F2 w.r.t. Xn and a regular GCD of F1, F2 modulo (the
primitive part of) R1. This application is an extension of the
previous one to the case of two equations with an arbitrary
number of variables.
Invertibility test. This application takes as input a zero-
dimensional regular chain T and a polynomial p. It sepa-
rates the points of the zero set V (T ) of T that cancel p from
those which do not. More precisely, this application com-
putes two triangular decompositions: one for V (T )∩V (p)
and one for V (T ) \ V (p). This is a fundamental operation
when computing modulo a regular chain. It is used, actu-
ally, by our two other applications.

In each case, the “top-level” algorithm is written in
MAPLE and relies on our C routines for different tasks such
as the computation of subresultant chain, normal form of a
polynomial w.r.t. a zero-dimensional regular chain, etc.

These three applications perform triangular decomposi-
tions of a polynomial system of different types. They are
therefore well representative of the high-level MAPLE code
that we aim at improving with our C routines, while also
simple enough such that their performance can be sharply
evaluated. Moreover, these applications put to challenge
our framework in different ways, revealing its strengths and
weaknesses. Our experimental results are reported and ana-
lyzed in Section 5.

2. A Compiled-Interpreted Programming En-
vironment

Our library contains two levels of implementation:
MAPLE code (interpreted) and C code (compiled); our pur-
pose is to reach high-performance while spending reason-
able amount of development time.

Relying on asymptotically fast algorithms, the C level
routines are highly optimized. The core operations are fast
operations modulo triangular sets (multiplication / inversion
as in [14]), gcd’s, resultants, lifting techniques [21] and fast
interpolation. This library of functions is called modpn and
is introduced in more detail in [12]. At the MAPLE level, we
write more abstract algorithms; typically, these are higher
level polynomial solvers. The major trade-off between two
levels are language abstraction and high-performance.

We use multiple polynomial data encodings at each
level: some encodings are specifically devoted to some al-
gorithms; others “intermediate” encodings are written to
speed-up data conversions.

There are multiple issues to take care of: what opera-
tions should be written in C, how to map the MAPLE data
to C ones and vice versa, to what extent we should rely



on existing packages or develop our own ones, etc. Of the
questions mentioned in the introduction, we discuss the fol-
lowing ones here: to which extent triangular decomposition
algorithms can take advantage of fast polynomial arithmetic
implemented in C, and what is a good design for a hybrid
C-MAPLE application.

2.1 The C Level

Primarily, our C code targets on the best performance.
All operations are based on asymptotically fast algorithms
rooted at Fast Fourier Transform (FFT) and its variant Trun-
cated Fourier Transform (TFT) [7]. These operations are
optimized with respect to crucial features of hardware ar-
chitecture: memory hierarchy, instruction pipe-lining, and
vector instructions. As reported in [14, 11, 6], our C library
often outperforms the best known implementations such as
Magma and NTL [23, 22].

The C code is dedicated to triangular set operations mod-
ulo a machine size prime number. Such computations typi-
cally generate dense polynomials; thus, we use multidimen-
sional arrays as the canonical encoding, and we call them
CUBEs (since all partial degrees are bounded in advance).
This encoding is the most appropriate for FFT based multi-
plication, inversion, resultant modulo a triangular set, inter-
polation, . . . Besides, we can pre-allocate the working buffer
and use in-place operations whenever applicable. Tracing
coefficients and degrees also becomes trivial. Locality of
reference is easily preserved by transposing or permitting
the data inside these CUBEs [1].

Besides the CUBE encoding, we used another polyno-
mial encoding at C level. With a view to apply triangular
lifting algorithms [21, 4], we designed a Directed Acyclic
Graph representation (DAG). By setting “smart” flags in
the nodes of these DAGs, we can track the information of
visibility, liveness, and reducibility information in constant
time. We do not report on such operations here; see [13].

We implemented a third data structure, the 2VECTOR en-
coding, which is dedicated to facilitate the conversion be-
tween CUBE and MAPLE’s RecDen(recursive dense) en-
coding, and is described below.

2.2 The MAPLE Level

Our algorithms for triangular decompositions are of a
higher level, so it seems sensible to implement them in a
well equipped interpreted environment like MAPLE. First,
the implementation effort is much less intensive than in C
or C++; besides, MAPLE has comprehensive mathemati-
cal libraries, so it is possible to use different implemen-
tations of the same algorithm to verify our results. In
our case, we checked our results using the Triade and
RegularChains packages [8, 9].

At the MAPLE level, we use two types of polynomi-
als: MAPLE DAGs and RecDen (recursive dense) poly-
nomials. DAGs are the canonical data representation for
MAPLE polynomials; Triade and RegularChains use
them uniformly. Thus, to access functionalities from these
packages, we need to use MAPLE DAGS. In addition, we
used RecDen when implementing dense polynomial algo-
rithms in MAPLE: operations modulo a triangular set are
essentially dense methods, so that RecDen is one of the
best candidate at the MAPLE level.

When designing our algorithms, we tried to rely on our C
library’s fast arithmetic for the efficiency critical operations.
Recall our first question: is this an effective approach? Our
answer is a conditional yes: if the integration process is
careful, our C level fast arithmetic provides a large speed-up
for the MAPLE code; this is reported in Section 5.

2.3 MAPLE and C Cooperation

For general MAPLE users (as we are), the use of the
ExternalCalling package is the standard way to link
in externally defined C functions. The action of linking is
not very complicated: the user just needs to carefully map
MAPLE level data onto C. For example, a MAPLE rtable
type can be directly mapped to a C array. However, if the
MAPLE data encoding is different from the C one, an im-
portant issue arises, data conversion.

This a difficult problem in our design. Only a small
group of simple MAPLE data structures, such as integers,
arrays or tables, can be automatically converted. When the
data structure are DAGs, we have to manually pack the data
into a buffer, and unpack it at the target level. Especially
when the conversions mostly happen at the MAPLE level,
the overhead may be significant.

There are two major ways to reduce this overhead: care-
fully designing the algorithm to reduce the total number of
conversions, and implementing efficient converters to mini-
mize the time of each unit conversion.

The frequency of encoding conversions is application de-
pendent; it turns out that it can happen quite often in our al-
gorithms for triangular decomposition. Hence, we try to
reuse C objects as much as possible. Many conversions
are “voluntary”: we are willing to conduct them, expecting
that better algorithms or better implementations can then be
used in C. However, some conversions are “involuntary”.
Indeed, even if we would like all computational intensive
operations be carried out at the C level, our algorithms are
complex, so that it becomes unrealistic to implement every-
thing in C. Thus, there are cases where we have to convert
polynomials from C to MAPLE and use its library opera-
tions.

The second direction – minimizing the cost of each unit
conversion – is crucial as well. As mentioned above, we



designed a so-called 2VECTOR polynomial representation:
one vector recursively encodes the degrees of all polyno-
mial coefficients, and another vector all the coefficients,
in the same traversal order. This data representation in
our library does not participate to any real computation: it
is specifically designed for facilitating the data conversion
from CUBE to RecDen encoding. The 2VECTOR encoding
has the same recursive structure as RecDen, so the map-
ping is easy between these two. Besides, the 2VECTOR en-
coding use flattened polynomial tree structures, which are
convenient to pass from C to MAPLE.

It remains to estimate if the benefits from the conversion
outweighs the overhead of the conversion itself. As reported
in Section 5, for certain cases the data conversion time be-
come dominant, thus the corresponding algorithm needs to
be adjusted to reduce number of conversions.

3 Bivariate Solver

The first application that we use to evaluate our software
framework is the solving of bivariate polynomial systems
by means of triangular decompositions. We consider two
bivariate polynomials F1 and F2, with ordered variables
X1 < X2 and with coefficients in a field K. We assume
that K is perfect; in our experimentation K is a prime field
whose characteristic is a machine word size prime.

We rely on an algorithm introduced in [19, 12] and based
on the following well-known fact [2]. The common roots of
F1 and F2 over an algebraic closure K of K are “likely”
to be described by the common roots of a system with a
triangular shape:

{

T1(X1) = 0
T2(X1, X2) = 0

such that the leading coefficient of T2 w.r.t. X2 is invertible
modulo T1; moreover the degree of T2 w.r.t. X2 is “likely”
to be 1. For instance, the system

{

X2
1 + X2 + 1 = 0

X1 + X2
2 + 1 = 0

is solved by the triangular system
{

X4
1 + 2X2

1 + X1 + 2 = 0
X2 + X2

1 + 1 = 0

The goal of this section is to show that this algorithm can
easily be implemented in our software framework while
providing high-performance. In Section 3.1 we review
briefly the necessary mathematical concepts. Sections 3.2
and 3.3 contain the algorithm and the corresponding code,
respectively.

3.1 Theoretical Background

The main theoretical tools of our bivariate solver algo-
rithm are subresultant theory and polynomial GCDs mod-
ulo regular chains. Classical textbooks for the former
are [24, 16] whereas the latter was introduced in [18].

Subresultant theory. In Euclidean domains such as
K[X1], polynomial GCDs can be computed by the Eu-
clidean Algorithm and by the subresultant algorithm (we
refer here to the algorithm presented in [5]) .

Consider next more general rings, such as K[X1, X2].
Assume F1, F2 are non-constant polynomials with
deg(F1, X2) ≥ q := deg(F2, X2). The polyno-
mials computed by the subresultant algorithm form
a sequence, called the subresultant chain of F1 and
F2 and denoted by src(F1, F2). This sequence con-
sists of q + 1 polynomials, starting at lc(F2, X2)

δ
F2,

with δ = deg(F1, X2) − deg(F2, X2), and ending at
R1 := res(F1, F2), the resultant of F1 by F2 w.r.t. X2.
We write this sequence Sq , . . . , S0 where the polynomial
Sj := Sj(F1, F2) is called the subresultant (of F1, F2) of
index j. Let j be an index such that 0 ≤ j ≤ q. If Sj is not
zero, it turns out that its degree is at most j and Sj is said
regular when deg(Sj , X2) = j holds.

The subresultant chain of F1 and F2 satisfies a funda-
mental property, called the block structure, which implies
the following fact: if the subresultant Sj of index j with
j < deg(F2, X2)−1, is not zero and not regular, then there
exists a non-zero subresultant Si with index i < j such that
Si is regular, has the same degree as Sj and for all i < ` < j
the subresultant S` is null.

The subresultant chain of F1 and F2 satisfies another
fundamental property, called the specialization property,
which plays a central in our algorithm. Let Φ be a homo-
morphism from K[X1, X2] to K[X2], with Φ(X1) ∈ K.
Assume Φ(a) 6= 0 where a = lc(f1, X2). Then we have:

Φ(Sj(F1, F2)) = Φ(a)q−kSj(Φ(F1), Φ(F2)) (1)

where q = deg(F2, X2) and k = deg(Φ(F2), X2).

Regular GCDs modulo regular chains. Let T1 ∈
K[X1] \ K and T2 ∈ K[X1, X2] \ K[X1] be two polynomi-
als. Note that Ti has a positive degree w.r.t. Xi, for i = 1, 2.
The pair {T1, T2} is a regular chain if lc(T2, X2), the lead-
ing coefficient of T2 w.r.t. X2, is invertible modulo T1. By
definition, the set {T1} is also a regular chain.

For simplicity, we will require T1 to be squarefree,
which has the following benefit: the residue class ring
L = K[X1]/〈T1〉 is a direct product of fields. For instance,
with T1 = X1(X1 + 1), we have:

K[X1]/〈T1〉 ' K[X1]/〈X1〉 ⊕ K[X1]/〈X1 + 1〉
' K ⊕ K.



Let F1, F2, G ∈ K[X1X2]. We say G is a regular GCD of
F1, F2 modulo T1 if the following conditions hold:

(i) lc(G, X2) is invertible modulo T1,

(ii) there exist A1, A2 ∈ K[X1, X2] such that G ≡ A1f1+
A2f2 mod T1,

(iii) if deg(G, X2) > 0 then G divides F1 and F2 in L[X2].

The polynomial F1, F2 may not have a regular GCD in the
previous sense. However the following holds.

Proposition 1 There exists polynomials A1, . . . , Ae in
K[X1] and polynomials B1, . . . , Be in K[X1, X2] such that
the following properties hold:

• the product A1 · · ·Ae equals T1,

• for all 1 ≤ i ≤ e, the polynomials Bi is a regular GCD
of F1, F2 modulo Ai.

The sequence (A1, B1), . . . , (Ae, Be) is called a GCD se-
quence of F1 and F2 modulo T1.

Consider for instance T1 = X1(X1 + 1), F1 = X1X2 +
(X1+1)(X2+1) and F2 = X1(X2+1)+(X1+1)(X2+1).
Then (X1, X2 + 1), (X1 + 1, 1) is a GCD sequence of F1

and F2 modulo T1.

3.2 Algorithm

Recall that we aim at computing the set V (F1, F2) of
the common roots of F1 and F2 over K. For simplicity, we
assume that both F1 and F2 have a positive degree w.r.t.
X2; we define h1 = lc(f1, X2), h2 = lc(f2, X2) and h =
gcd(h1, h2). Recall that R1 denotes the resultant of F1 and
F2 w.r.t. X2. It is well-known that h divides R1. Thus,
we define R1

′ to be the quotient of the squarefree part of
R1 by the squarefree part of h. Our algorithm relies on the
following observation.

Theorem 1 Assume that V (F1, F2) is finite and not empty.
Then R1

′ is not constant. Moreover, for any any GCD se-
quence (A1, B1), . . . , (Ae, Be) of F1 and F2 modulo R1

′,
we have

V (F1, F2) =

i=e
⋃

i=1

V (Ai, Bi) ∪ V (h, F1, F2). (2)

and for all 1 ≤ i ≤ e the polynomial Bi has a positive
degree w.r.t. X2 and thus V (Ai, Bi) is not empty.

This theorem implies that the points of V (F1, F2) which
do not cancel h can be computed by means of one GCD
sequence computation. This is the purpose of Algorithm 1.
The entire set V (F1, F2) is computed by Algorithm 2.

Algorithm 1

Input: F1, F2 as in Theorem 1.

Output: (A1, B1), . . . , (Ae, Be) as in Theorem 1.

ModularGenericSolve2(F1, F2, h) ==
(1) Compute src(F1, F2)
(2) Let R1

′ be as in Theorem 1
(3) i := 1
(4) while R1

′ 6∈ K repeat
(5) Let Sj ∈ src(F1, F2) regular with j ≥ i minimum
(6) if lc(Sj , X2) ≡ 0 mod R1

′

then i := i + 1; goto (5)
(7) G := gcd(R1

′, lc(Sj , X2))
(8) if G ∈ K

then output (R1
′, Sj); exit

(9) output (R1
′ quo G, Sj)

(10) R1
′ := G; i := i + 1

The following comments justify Algorithm 1 and are es-
sential in view of our implementation. In Step (1) we com-
pute the subresultant chain of F1, F2 in the following lazy
fashion:

1. B := 2d1d2 is a bound for the degree of
R1, where d1 = max(deg(Fi, X1)) and d2 =
max(deg(Fi, X2)). We evaluate F1 and F2 at B +
1 different values of X1, say x0, . . . , xB , such that
none of these specializations cancels lc(F1, X2) or
lc(F2, X2).

2. For each i = 0, . . . , B, we compute the subresultant
chain of F1(X1 = xi, X2) and F2(X1 = xi, X2).

3. We interpolate the resultant R1 and do not interpolate
any other subresultants in src(F1, F2).

In Step (5) we consider Sj the regular subresultant of
F1, F2 with minimum index j greater or equal to i. We
view Sj as a “candidate GCD” of F1, F2 modulo R1

′ and
we interpolate its leading coefficient w.r.t. X2 only. In Step
(6) we test whether lc(S, X2) is null modulo R1

′; if this is
the case, then it follows from the block structure property
that Sj is null modulo R1

′ and we go to the next candidate.
In Step (8), if G ∈ K then we have proved that Sj is a
GCD of F1, F2 modulo R1

′; in this case we interpolate Sj

completely and return the pair (R1
′, Sj). In Steps (9)-(10)

lc(Sj , X2) has been proved to be a zero-divisor. Since R1
′

is squarefree, we apply the D5 Principle and the computa-
tion splits into two branches:

1. lc(Sj , X2) is invertible modulo R1
′ quo G, so we out-

put the pair (R1
′ quo G, Sj)

2. lc(S, X2) = 0 mod G; we go to the next candidate.



Algorithm 2

Input: F1, F2 as in Theorem 1.

Output: regular chains (A1, B1), . . . , (Ae, Be) such that
V (F1, F2) =

⋃i=e

i=1 V (Ai, Bi).

ModularSolve2(F1, F2) ==
(1) if F1 ∈ K[X1] then ModularSolve2(F1 + F2, F2)
(2) if F2 ∈ K[X1] then ModularSolve2(F1, F2 + F1)
(3) h := gcd(lc(F1, X2), lc(F2, X2))
(4) G := ModularGenericSolve2(F1, F2, h)
(5) if h = 1 return G
(6) (F1, F2) := (reductum(F1, X2), reductum(F2, X2))
(7) D := ModularSolve2(F1, F2)
(8) for (A(X1), B(X1, X2)) ∈ D repeat
(9) g := gcd(A, h)
(10) if deg(g, X1) > 0 then G := G ∪ {(g, B)}
(11) return G

The following comments justify Algorithm 2. Recall that
V (F1, F2) is assumed to be non-empty and finite. Steps
(1)-(2) handle the case where one input polynomial is uni-
variate in X1; the only motivation of the trick used here is to
keep pseudo-code simple. Step (4) computes the points of
V (F1, F2) which do not cancel h. From Step (6) one com-
putes the points of V (F1, F2) which do cancel h, so we re-
place F1, F2 by their reductums w.r.t. X2. In Steps (8)-(10)
we filter out the solutions computed at Step (7), discarding
those which do not cancel h.

3.3 Implementation

We explain in the section how Algorithms 1 and 2 are
implemented in MAPLE interpreted code and based on the
functions of the modpn library.

We start with Algorithm 1. The dominant cost is at Step
(1) and it is desirable to perform this step entirely at the C
level in one “function call”. On the other hand the data com-
puted at Step (1) must be accessible on the MAPLE side, in
particular at Step (5). Recall that the only structured data
that the C and MAPLE levels can share are arrays. Fortu-
nately, there is a natural efficient method for implementing
Step (1) under these constraints:

• We represent F1 (resp. F2) by a (B +1)×d2 array (or
“cube”) C1 (resp. C2) where C1[i, j] (resp. C2[i, j]) is
the coefficient of F1 (resp. F2) of X i

2 evaluated at xj ;
if F1 (resp. F2) is given over the monomial basis of
K[X1, X2], then the “cube” C1 (resp. C2) is obtained
by fast evaluation techniques.

• For each i = 0, . . . , B, the subresultant chain of
F1(X1 = xi, X2) and F2(X1 = xi, X2) is computed
and stored in an (B + 1) × d2 × d2 array, that we call

“Scube”; this array is allocated on the MAPLE side and
is available at the C level without any data conversions.

• The resultant R1 (of F1 and F2 w.r.t. X2) is obtained
from the “Scube” by fast interpolation techniques.

In Step (5) the “Scube” is passed to a C function which
computes the index j and interpolates the leading coeffi-
cient lc(Sj , X2) of Sj , the candidate GCD. Testing whether
lc(Sj , X2) is zero or invertible modulo R1

′ is done at the
MAPLE level using the RecDen module. Finally, in Step
(8), when lc(Sj , X2) has been proved to be invertible mod-
ulo R1

′, the “Scube” is passed to a C function in order to
interpolate Sj .

The implementation of Algorithm 2 is much more
straightforward, since the operation ModularSolve2
consists mainly of recursive calls and calls to
ModularGenericSolve2. The only place where com-
putations take place “locally” is at Step (9) where the
RecDen module is called for performing GCD computa-
tions.

4 Two-equation Solver and Invertibility Test

In this section, we present the two other applications
used to evaluate the framework presented in Section 2.
The top-level algorithms are presented in Sections 4.2 and
4.3. In Section 4.1, we specify the main subroutines on
which these algorithms rely; we also include there the spec-
ifications of Algorithm 4, for convenience. As we shall
see in Section 5, under certain circumstances, the data-
conversions implied by the calling of these subroutines can
become a bottleneck. It is, thus, important to have a good
picture not only of these top-level algorithms but also of
their subroutines.

In this paper, however, we aim at presenting our imple-
mentation framework and its experimental evaluation with-
out assuming that the reader has a preliminary knowledge
on triangular decomposition algorithms. To this end, the
presentation of our bivariate solver in Section 3 was rela-
tively self-contained while omitting proofs. This was made
easy by the bivariate nature of this application, which al-
lowed us to hide some abstract concepts.

Our other two applications, the two-equation solver and
the invertibility test involve polynomials with an arbitrary
number of variables, leading to additional algebraic difficul-
ties. Nevertheless, we hope that the detailed and elementary
discussion of Section 3 could have prepared the reader.

In Section 3.1 we have introduced the notion of a regular
chain and that of a regular GCD (modulo a regular chain)
for bivariate polynomials. In the sequel, we rely on “natu-
ral” generalizations of these notions: we recall them briefly
and refer to [12, 3] for introductory presentation.



4.1 Subroutines

From now on, our polynomials are multivariate in the
ordered variables X1 < · · · < Xn and with coefficients in
a prime field K. Let T = T1(X1), . . . , Tn(X1, . . . , Xn) be
a set of n non-constant polynomials such that, for all i =
1 · · ·n, the largest variable in Ti is Xi. (Such a set is called
a triangular set.) The set T is a regular chain if, for all i =
2 · · ·n, the leading coefficient of Ti w.r.t. Xi is invertible
modulo the ideal generated by T1, . . . , Ti−1; moreover, it is
a normalized regular chain if for all i = 1 · · ·n, the leading
coefficient of Ti w.r.t. Xi is a constant polynomial, that is,
belongs to K. Observe that a normalized regular chain is a
lexicographical Gröbner basis.

In the specification of our subroutines below, we denote
by T a normalized regular chain and p, q polynomials in
K[X1, . . . , Xn]. More details about these operation can be
found in the RegularChains library [10] where they ap-
pear with the same names and specifications.

MainVariable(p): assumes that p is non-constant and re-
turns its largest (or main) variable.

Initial(p): assumes that p is non-constant and returns its
leading coefficient w.r.t. MainVariable(p).

NormalForm(p, T ): returns the normal form of p w.r.t. T
(in the sense of Gröbner bases). This operation is per-
formed at the C level of our framework; it uses the fast
algorithm of [14].

Normalize(p, T ): returns p if p ∈ K; otherwise assumes
that h := Initial(p) is invertible modulo the ideal gen-
erated by T and returns NormalForm(h−1p, T ) where
h−1 is the inverse of h modulo T . This operation is
also performed at the C level of our framework and
based on [14].

RegularGcd(p, q, T ): assumes p, q non-constant, with
same main variable v and such that either Initial(p)
or Initial(q) is invertible modulo T ; then returns
pairs (g1, T

1), . . . , (ge, T
e) where g1, . . . , ge are non-

constant polynomials and T 1, . . . , T e are normalized
regular chains, such that V (T ) = V (T 1) ∪ · · · ∪
V (T e) holds and such that for all i = 1 · · · e gi is a
regular GCD of p, q modulo T i, that is, satisfies the
following three properties:

(i) the leading coefficient of gi w.r.t. v is invertible
modulo T i,

(ii) there exist A1, A2 ∈ K[X1, . . . , Xn] such that
gi ≡ A1p + A2q mod T i,

(ii) if deg(gi, v) > 0 then gi divides p and q modulo
T i.

This operation is implemented on the MAPLE side with
calls to our C routines; the algorithm is very similar to
Algorithm 3.

IsInvertible(p, T ): returns pairs (p1, T
1), . . . , (pe, T

e)
where p1, . . . , pe are polynomials and T 1, . . . , T e

are normalized regular chains, such that
V (T ) = V (T 1) ∪ · · · ∪ V (T e) holds and
such that for all i = 1 · · · e the polynomial pi is either
null or invertible modulo T i and p ≡ pi mod T i.
The algorithm and implementation of this operation
are described in Section 4.3.

4.2 Two-equation Solver

Let F1, F2 ∈ K[X1, . . . , Xn] be non-constant polyno-
mials with MainVariable(F1) = MainVariable(F2) = Xn.
We assume that R1 = res(F1, F2, Xn) is non-constant. Al-
gorithm 3 below is simply the adaptation of Algorithm 1 to
the case where F1, F2 are n-variate polynomials instead of
bivariate polynomials. The relevance of Algorithm 3 to our
study is based on the following observation.

As we shall see in Section 5, the implementation of Al-
gorithm 1 in our framework is quite successful. It is, there-
fore, natural to check how these results are affected when
some of the parameters of Algorithm 1 are modified. A
natural parameter is the number of variables. Increasing it
makes some routine calls more expensive and could raise
some overheads.

In broad terms, Algorithm 3 computes the “generic so-
lutions” of F1, F2. Formally speaking, it computes regular
chains T , . . . , T e such that we have

V (F1, F2) = W (T 1)∪· · ·∪W (T e)∪V (F1, F2, h1h2) (3)

where h1h2 is the product Initial(F1)Initial(F2) and where
W (T i) denotes the Zariski closure of the quasi-component
of T i. It is out of the scope of this paper to expand on the
theoretical background of Algorithm 3; this can be found
in [17, 12]. Instead, as mentioned above, our goal is to mea-
sure how Algorithm 1 scales when the number of variable
increases.

Algorithm 3

Input: F1, F2 ∈ K[X1, . . . , Xn] with deg(F1, Xn) >
0, deg(F2, Xn) > 0 and res(F1, F2, Xn) 6∈ K.

Output: T 1 = (A1, B1), . . . , T
e = (Ae, Be) as in ( 3).

ModularGenericSolveN(F1, F2) ==
(1) Compute src(F1, F2); R1 := res(F1, F2, Xn)

h := gcd(Initial(F1), Initial(F2))
(2) R1

′ := squarefreePart(R1) quo squarefreePart(h)
v := MainVariable(R1);



R1
′ := primitivePart(R1, v)

(3) i := 1
(4) while deg(R1

′, v) > 0 repeat
(5) Let Sj ∈ src(F1, F2) regular with j ≥ i minimum
(6) if lc(Sj , Xn) ≡ 0 mod R1

′

then i := i + 1; goto (5)
(7) G := gcd(R1

′, lc(Sj , X2))
(8) if deg(G, v) = 0

then output (R1
′, Sj); exit

(9) output (R1
′ quo G, Sj)

(10) R1
′ := G; i := i + 1

The implementation plan of Algorithm 3 is exactly the
same as that of Algorithm 1. In particular, the computations
of squarefree parts, primitive parts and the GCDs at Steps
(1) and (7) are performed on the MAPLE side, whereas the
subresultant chain src(F1, F2) is computed on the C side. In
the complexity analysis of Algorithm 3 (see [12]) the dom-
inant cost is given by src(F1, F2) and a natural question is
whether this is verified experimentally. If this is the case,
this will be a positive point for our implementation frame-
work.

4.3 Invertibility Test

Invertibility test modulo a regular chain is a fundamen-
tal operation in algorithms computing triangular decompo-
sitions. The precise specification of this operation has been
given in Section 4.1. In broad terms, for a regular chain
T = T1(X1), . . . Tn(X1, . . . , Xn) and a polynomial p the
call IsInvertible(p, T ) “separates” the points of V (T ) that
cancel p from those which do not. The output is a list of
pairs (p1, , T

1), . . . , (pe, T
e) where p1, . . . , pe are polyno-

mials and T 1, . . . , T e are normalized regular chains: the
points of V (T ) which cancel p are given by the T i’s such
that pi is null.

Algorithm 4 is in the spirit of those in [18, 17] imple-
menting this invertibility test. However, it offers more op-
portunities for using modular methods and fast polynomial
arithmetic. The trick is based on the following result (The-
orem 1 in [3]): the polynomial p is invertible modulo T if
and only if the iterated resultant of p w.r.t. T is non-zero.

Iterated resultants can be computed efficiently by evalu-
ation and interpolation, following the same implementation
techniques as those of Algorithm 1. Our implementation of
Algorithm 4 employs this strategy. In particular the resul-
tant r (computed at Step (4)) and the regular GCDs (g, D)
(computed at Step (7)) are obtained from the same “Scube”.

The calls NormalForm(p, T ) (Step (1)) Normalize(g, D)
(Step (8)) and NormalForm(quo(Tv , g), D) (Step (10)) are
performed on the C side: they require the conversions of
regular chains encoded by MAPLE polynomials to regular
chains encoded by C “cube” polynomials.

If the call RegularGcd(p, Tv, C) (Step (7)) outputs many
cases, that is, if computations split in many branches, these
conversions could become a bottleneck as we shall see in
Section 5.

Algorithm 4

Input: T a normalized regular chain and p a polynomial,
both in K[X1, . . . , Xn].

Output: See specification in Section 4.1.

IsInvertible(p, T ) ==
(1) p := NormalForm(p, T )
(2) if p ∈ K then return [p, T ]
(3) v := MainVariable(p)
(4) r := res(p, Tv, v)
(5) for (q, C) ∈ IsInvertible(r, Tv) repeat
(6) if q 6= 0 then output [p, C∪Tv∪T>v]
(7) else for (g, D) ∈ RegularGcd(p, Tv, C) repeat
(8) g := Normalize(g, D)
(9) output [0, D∪g∪T>v]
(10) q := NormalForm(quo(Tv, g), D)
(11) if deg(q, v) 6= 0 then

output IsInvertible(p, D∪q∪T>v)

5. Experiments

We discuss here the last questions from Section 2: Can
our implementation based on the above strategy outperform
other highly efficient systems? Does the performance com-
ply with the theoretical complexity?

Our answer for the first one is “yes, if the application is
well suited to our framework”. As shown below, we have
improved the performance of triangular decompositions in
MAPLE; on the example of the invertibility test, our code
is competitive with MAGMA and often outperforms it. The
answer to the second one is “yes” as well, even though there
are interferences due to the data conversion and other over-
heads.

We give two kinds of data. First, we compare the opera-
tions we have implemented with their existing counterparts
in MAPLE or MAGMA: we give details for the invertibil-
ity test. Second, we profile our algorithms to determine for
which kind of computations our framework is best suited.
Besides invertibility, we will then discuss our two other op-
erations – the bivariate and two-equation solvers. In all ex-
amples, the base field is Z/pZ, where p is a large machine-
word size FFT prime. In the following profiling samples,
we just calculate the MAPLE conversion time. The convert-
ers operating at the C level are fairly efficient; their compu-
tation time is negligible.
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Figure 1. Bivariate case: timings, p = 0.98.

5.1 Invertibility Test

We start with the operation IsInvertible. Designing good
test suites for this algorithms is not easy: one of the main
reasons for the high technicality of these algorithms is that
various kinds of degeneracies need to be handled. Using
random systems, one typically does not meet such degen-
eracies: a random polynomial is invertible modulo a ran-
dom regular chain. Hence, if we want our test suite to ad-
dress more than the “generic” case of our algorithms, the
examples must be constructed ad-hoc.

Here, we report on such examples for bivariate and
trivariate systems. We construct our regular chain T by
Chinese Remaindering, starting from smaller regular chains
T (i) of degree 1 or 2. Then, we interpolate a function f from
its values f (i) = f mod T (i), these values being chosen at
random. The probability p that f (i) 6= 0 is a parameter of
our construction. We generated families of examples with
p = 0.5, for which we expect that the invertibility test of
f will generate a large number of splittings. Other families
have p = 0.98, for which few splittings should occur.
The bivariate case. Figure 1 gives results for bivariate sys-
tems with p = 0.98 and d = d1 = d2 in abscissa. We com-
pare our implementation with MAGMA’s counterpart, that
relies on the functions TriangularDecomposition
and Saturation (in general, when using MAGMA, we al-
ways choose the fastest available solution). We also tested
the case p = 0.5 in Figure 2. Figure 3 profiles the per-
centage of the conversion time w.r.t. the total computation
time, for the same set of samples. With p = 0.98, IsInvert-
ible spends less time on conversions (around 60%) and has
fewer calls to the MAPLE operations than with p = 0.5 (the
conversion ratio with p = 0.5 reaches up to 83%).
The trivariate case. Table 5.1 uses trivariate polynomials
as the input for IsInvertible, with p = 0.98; Table 5.1 has
p = 0.5. Figure 4 profiles the conversion time spent on
these samples. The conversion time increases dramatically
along the input size. For the largest example, the conversion
time reaches 85% of the total computation time. More than
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Figure 2. Bivariate case: timings, p = 0.5.
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Figure 3. Bivariate case: profiling.

5% of the time is spent on other MAPLE computations, so
that the real C computation costs less than 5%. We also
provide the timing of the operation REGULARIZE from the
MAPLE RegularChains library. The pure MAPLE code,
with no fast arithmetic, is several hundred times slower than
our implementation.
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Figure 4. Trivariate case: profiling.

The 5 variable case. We performed further tests between
the MAPLE REGULARIZE operation and our IsInvertible
function, using random dense polynomials in 5 variables.
IsInvertible is significantly faster than REGULARIZE; the
speedup reaches a factor of 300. Similar experiments with
sparse polynomials give a speed-up of 100.



Table 1. Trivariate case: timings, p = 0.98.

d1d2 d3 MAGMA MAPLE
REGULARIZE IsInvertible

4 3 0.000 1.199 0.091
12 6 0.020 6.569 0.281
24 9 0.050 24.312 0.509
40 12 0.170 73.905 1.293
60 15 0.550 172.931 1.637
84 18 1.990 450.377 5.581

112 21 5.130 871.280 9.490
144 24 12.830 1956.728 12.624
180 27 30.510 3621.394 23.564
220 30 62.180 6457.538 32.675
264 33 129.900 7980.241 89.184

Table 2. Trivariate case: timings, p = 0.5.

d1d2 d3 MAGMA MAPLE
REGULARIZE IsInvertible

4 3 0.010 0.773 0.199
12 6 0.020 4.568 0.531
24 9 0.040 17.663 1.082
40 12 0.150 47.767 2.410
60 15 0.480 126.629 5.023
84 18 1.690 284.697 10.405

112 21 4.460 632.539 19.783
144 24 10.960 1255.980 42.487
180 27 26.070 2328.012 69.736
220 30 58.700 4170.468 109.667
264 33 106.140 7605.915 191.514

5.2 Other Operations

We conclude with profiling information for our other ap-
plications. The differences between these algorithms have
noticeable consequences regarding profiling time.
Bivariate solver. For this algorithm, there is no risk of data
duplication. The amount of data conversion is bounded by
the size of the input plus the size of the output; hence we
expect that data conversions cannot be a bottleneck. Third,
the calls to MAPLE interpreted code simply perform uni-
variate operations, thus we do not expect them to become a
bottleneck either.

Table 5.2 confirms this expectation, by giving the pro-
filing information for this algorithm. The input system is
dense and contains 400 solutions. The computation using
the RecDen package costs 49% of the total computation
time. The C level subresultant chain computation spends
around 34%, and the conversion time is less than 11%. With
larger input systems, the conversion time reduces. For sys-
tems with 2,500 and 10,000 solutions, the C computation
takes about 40% of the time; RecDen computations takes
roughly 50%; other MAPLE functions take 5% and the con-
version time is less than 5%.

Table 3. Bivariate solver: profiling, p = 0.98.

Operation calls time time (%)
Subresultant chain 1 0.238 33.85

Recden 41 0.344 48.93
Conversions 17 0.076 10.81

The profiling information in Figure 5 also concerns the
Bivariate solver; there, the sample input intends to generate
many splittings (we take p = 0.5, as in the examples in the
previous subsection). The conversion time slowly increases
but does not become the bottleneck (28% to 38%).
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Figure 5. Bivariate solver: profiling, p = 0.5.

Two-equation solver. This algorithm has properties sim-
ilar to the Bivariate Solver, except that the calls to inter-
preted code can be expensive since it involves multivariate



arithmetic. Hence, we expect that the overhead of conver-
sion is quite limited. Indeed, in Table 5.2, N is the num-
ber of variables and d1, d2 are the degrees of T1, T2 re-
spectively 3. The C level computation is the major fac-
tor of the total computation time; it reaches 91% in case
N = 4, d1 = 5, d2 = 5.

Table 4. Two-equation solver: profiling.

N d1 d2 C (%) MAPLE (%) Conversion (%)
3 5 5 56.47 12.96 30.57
4 5 5 91.54 2.64 5.82
8 2 2 83.67 8.02 8.31

6 Conclusion

The answers to our main questions are mostly positive:
we obtained large performance improvements over exist-
ing MAPLE implementations, and often perform better than
MAGMA, a reference regarding high performace.

Still, some triangular decomposition algorithms are not
perfectly suited to our framework. For instance, we imple-
mented the efficiency-critical operations of ISINVERTIBLE
in C, but the main algorithm itself in MAPLE. Still, this
algorithm may generate large amount of “external” calls to
the C functions, so the data conversion between MAPLE and
becomes dominant in timings. For this kind of algorithms,
we suggest either to implement them in C or tune the algo-
rithmic structure to avoid intensive data conversion at the
MAPLE level; we are working on both directions.
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