
Faster Algorithms for the Characteristic Polynomial

Clément Pernet
cpernet@uwaterloo.ca

Arne Storjohann
astorjoh@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada N2L 3G1

ABSTRACT
A new randomized algorithm is presented for computing the
characteristic polynomial of an n × n matrix over a field.
Over a sufficiently large field the asymptotic expected com-
plexity of the algorithm is O(nθ) field operations, improving
by a factor of log n on the worst case complexity of Keller–
Gehrig’s algorithm [11].

Categories and Subject Descriptors: F.2 [Theory of
computation]: Analysis of algorithms and problem Com-
plexity; I.1 [Computing Methodology]: Symbolic and alge-
braic manipulation: Algorithms

General Terms: Algorithms

Keywords: Characteristic polynomial; Frobenius normal
form; Complexity;

1. INTRODUCTION
Computing the characteristic polynomial of an n× n ma-

trix A over a field F is a classical problem. Keller-Gehrig [11]
gave three reductions of the problem to matrix multiplica-
tion. Let θ be an admissible exponent for the complexity
of matrix multiplication: O(nθ) operations from F are suffi-
cient to multiply together two n×n matrices over F. In this
paper all complexity bounds are in terms of field operations
from F and we make the common assumption that θ > 2.

Keller-Gehrig’s third algorithm has cost O(nθ) but only
works for input matrices with restrictive genericity require-
ments. His first algorithm, a simplified version of the sec-
ond, also only works for input matrices satisfying certain
requirements. Of primary interest here is his second algo-
rithm which works for all input matrices and has a worst
case cost of O(nθ log n). The extra log n factor arises be-

cause the algorithm computes A2, A4, A8, . . . , A⌈log
2

n⌉ using
binary powering

Computing the characteristic polynomial is closely related
to other problems such as computing the minimal polyno-
mial, testing two matrices for similarity, and computing the
Frobenius canonical form. Known reductions to matrix mul-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

tiplication for these problems, both deterministic [13, 14]
and probabilistic [5, 7, 8], all have an extra log n factor in
their worst case complexity bounds, arising because Keller–
Gehrig’s algorithm is used as a subroutine directly [7, 8, 13,
14] or because a logarithmic number of powers of A might
be computed [5].

In this paper we combine ideas from [8, 11, 15] to get
a new Las Vegas randomized algorithm for computing the
characteristic polynomial. If F has at least 2n2 elements the
new algorithm has expected cost O(nθ), matching the lower
bound for this problem. Unlike Keller-Gehrig’s O(nθ log n)
algorithm, we proceed in phases for k = 1, 2, 3, . . . , n and
thus the new algorithm converges arithmetically. The al-
gorithm we describe shares more similarities with Keller-
Gehrig’s O(nθ) deterministic algorithm for generic matrices;
the main difference is that we randomize and show how to
take into account the block structure that will arise depend-
ing on the degrees of the invariant factors of a non-generic
input matrix.

In Section 2 we introduce some notation and recall some
facts about Krylov matrices. Section 3 gives a worked ex-
ample of the new algorithm and offers an overview of Sec-
tions 4—6 which are devoted to presenting the algorithm
and proving correctness. The new algorithm is not only of
theoretical interest but also practical. In Section 6 we de-
scribe an implementation, present some timings, and com-
pare with the previously most efficient implementations that
we are aware of. Section 7 concludes with some open prob-
lems and comments on how the new algorithm can be ex-
tended to compute the Frobenius form (Las Vegas) in the
same time.

2. NOTATION AND PRELIMINARIES
We will frequently write matrices using a conformal block

decomposition. A block is a submatrix comprised of a con-
tiguous sequence of rows and columns. A block may be
a single matrix entry or may have row or column dimen-
sion zero. The generic block label ∗ denotes that a block is
possibly nonzero. Blocks that are necessarily zero are left
unlabelled.

In this paper a companion matrix looks like

C∗ =

2

6

6

6

4

0 · · · 0 ∗

1
. . .

...
...

. . . 0 ∗
1 ∗

3

7

7

7

5

∈ K
k×k, (1)

and the sizes of companion blocks in the Frobenius canonical

form are monotonically nonincreasing. Companion blocks
may have dimension zero. We use the label B∗ to denote a
block which has all entries zero except for possibly entries in
the last column. The dimension of a block labelled B∗ will
be conformal with adjacent blocks.

For a square matrix A ∈ K
n×n and vector v ∈ K

n×1, let
KA(v, d) denote the Krylov matrix

ˆ

v Av · · · Ad−1v
˜

∈ K
n×d.

For V ∈ K
n×j we denote by OrbA(V) the subspace of K

n

spanned by all the column vectors in
ˆ

V | AV | A2V | . . .
˜

.

Fact 1. Let A ∈ K
n×n be arbitrary and U ∈ K

n×n be
nonsingular. Then

1. U =
ˆ

KA(v1, d1) · · · KA(vm, dm)
˜

for some vec-

tors v1, . . . , vm ∈ K
n×1 and positive integers d1, . . . , dm

if and only if

U−1AU =

2

6

6

6

4

C1 B∗ · · · B∗

B∗ C2 · · · B∗

...
...

. . .
...

B∗ B∗ · · · Cm

3

7

7

7

5

(2)

with Ci of dimension di, 1 ≤ i ≤ m.

2. For any j, 1 ≤ j ≤ m, the matrix (2) can be written
as

2

6

6

6

6

6

6

6

6

6

6

6

6

4

C1 B∗ · · · B∗ B∗ B∗ · · · B∗

B∗ C2 · · · B∗ B∗ B∗ · · · B∗

...
...

. . .
...

...
...

. . .
...

B∗ B∗ · · · Cj B∗ B∗ · · · B∗

Cj+1 B∗ · · · B∗

B∗ Cj+2 · · · B∗

...
...

. . .
...

B∗ B∗ · · · Cm

3

7

7

7

7

7

7

7

7

7

7

7

7

5

if and only the dimension of OrbA([v1 | · · · | vj]) is
equal to d1 + · · · + dj.

The matrix in (2) is a shifted Hessenberg form with degree
sequence (d1, d2, . . . , dm), corresponding to the dimensions
of the diagonal blocks. A shifted Hessenberg form that is
block upper triangular with all diagonal blocks of the form
C∗ is simply called a Hessenberg form.

Mathematical background information can be found in [9,
Chapter 7] and [6, Chapter 7].

3. OVERVIEW
The key to our algorithm is what we call a k-uniform

shifted Hessenberg form: each diagonal companion block has
dimension k, except for possibly the last which may have
dimension less than k. For brevity we will refer to such
a matrix as a k-shifted form. The algorithm proceeds in
phases for increasing k. Phase k involves the transformation
of a k-shifted form to a (k + 1)-shifted form. We begin
directly with a worked example of one phase of the algorithm
and then fill in the details in the subsequent sections.

Consider the following 3-shifted form of order 14 over
Z/(97), with diagonal blocks corresponding to the degree

sequence (3, 3, 3, 3, 2):

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

57 93 63 32 29
1 15 13 78 92 33

1 26 88 53 70 35
0 22 4 23 78
21 1 64 16 18 43
76 1 12 77 56 73
62 50 92 57 30
13 6 1 27 31 65
22 41 1 76 9 2
64 59 47 67 55
39 19 83 1 46 36
91 19 64 1 82 6
55 73 49 66 86
42 24 48 31 1 12

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Let ei denote the ith column of the identity matrix of the
appropriate dimension. The striped Krylov matrix

ˆ

KA(e1, 3) KA(e4, 3) KA(e7, 3) KA(e10, 3) KA(e13, 2)
˜

will be the identity matrix since the dimensions of the slices
corresponding to the basis vectors (e1, e4, e7, e10, e13) match
the degree sequence (3, 3, 3, 3, 2) of the diagonal blocks. Our
idea, made precise in Section 4, is to compute what we call
the Krylov extension of A: the lexicographically maximal
degree sequence obtained from (3, 3, 3, 3, 2) by increasing the
dimension of some Krylov slices by at most one and decreas-
ing the dimension of others. In this example the Krylov
extension is (4, 4, 3, 2, 1), corresponding to the full column
rank matrix K:

[KA(e1, 4) KA(e4, 4) KA(e7, 3) KA(e10, 2) KA(e13, 1)] .

If the Krylov extension is not monotonically nonincreasing
or does not correspond to a square (and hence nonsingular)
matrix the algorithm will abort. In this example the Krylov
extension corresponds to the nonsingular striped Krylov ma-
trix

K =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 57 93
1 15 13

1 26 88
0 1 22
21 1 64
76 1 12
62 50 1
13 6 1
22 41 1
64 59 1
39 19 1
91 19
55 73 1
42 24

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

As in this example, it is always the case that K will consist
entirely of identity vectors and columns of A. This follows
from the fact that A is in k-shifted form and we are either
decreasing the dimension of a Krylov slice or extending it to
dimension at most k + 1. Applying the similarity transform

K to A we obtain the shifted Hessenberg form

K−1AK =

»

Ā B
C D

–

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

19 21 72 56 69
1 89 65 3 69 58

1 55 1 69 82 85
1 32 10 50 84 79

5 77 42 33 74
14 1 9 73 78 73
54 1 41 19 36 68
24 1 68 60 47 76
29 45 6 8 32
39 7 1 84 81 69
29 45 1 8 8 93

96 63
1 2 34

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Because the Krylov extension (4, 4, 3, 2, 1) is monotonically
nonincreasing we may partition it into two parts: (4, 4, 3)⊗
[2, 1], with (4, 4, 3) corresponding the the principal block Ā
of K−1AK which is necessarily in 4-shifted form, and [2, 1]
corresponding to the trailing 3 × 3 block D which is com-
pleted. For this example the Krylov extension is what we
call normal: the southwest block C of the matrix K−1AK
is filled with zeroes and the trailing block D is in Hessen-
berg form. The characteristic polynomial of A can now be
computed by recursively computing the characteristic poly-
nomial of the 4-shifted form Ā and multiplying the result by
the characteristic polynomial of D. If any Krylov extension
computed during the course of the algorithm is not normal
the algorithm will abort.

In Section 4 we define precisely what we mean by the
Krylov extension of a k-shifted form, including the definition
of normal, and give an algorithm to compute the Krylov
extension that has cost O(k(n/k)θ). In Section 6 we show
how to precondition the input matrix so that all the Krylov
extensions computed during the course of the algorithm will
be normal with high probability.

In Section 5 we present an algorithm that takes as input a
square matrix A ∈ K

n×n over a field, and either returns the
characteristic polynomial or reports “fail.” The algorithm
transforms the principal block of the work matrix from k-
shifted to (k + 1)-shifted form for k = 2, 3, . . . , n in suc-
cession. The running time of the algorithm is bounded by
O(

Pn−1
k=1 k(n/k)θ), which can be shown to be O(nθ) under

the assumption that θ > 2.
We end this section by giving an example of how the

degree sequences in the shifted Hessenberg form converge.
Consider a 14× 14 input matrix which has invariant factors
of degree [5, 4, 2, 2, 1]. Analogous to the randomized Frobe-
nius form algorithms in [7, 8], our algorithm first randomizes
the input matrix by computing V −1AV for a randomly cho-
sen V . The initial randomized matrix is in 1-shifted form.
If the preconditioning was successful, the Krylov extension
will be normal at each step and degree sequence will evolve
as follows:

k = 1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
k = 2 (2, 2, 2, 2, 2, 2, 2)
k = 3 (3, 3, 3, 3, 2)
k = 4 (4, 4, 3) ⊗ [2, 1]
k = 5 [5, 4, 2, 2, 1]

Note that the transformation from k = 3 to k = 4 corre-
sponds to the example given above.

4. NORMAL KRYLOV EXTENSION
Note that the number of (non–trivial) diagonal blocks in

a k-shifted form A ∈ K
n×n is given by m := ⌈n/k⌉, and that

the dimension of the trailing block is n− (m− 1)k. If we let
vi = e(i−1)k+1 for 1 ≤ i ≤ m, then the block Krylov matrix

ˆ

KA(v1, k) · · · KA(vm−1, k) KA(vm, n − (m − 1)k)
˜

(3)

will be equal to In.

Definition 1. The Krylov extension of a k-shifted form
A ∈ K

n×n with m := ⌈n/k⌉ diagonal blocks is the lexi-
cographically maximal sequence (d1, . . . , dm) of nonnegative
integers that satisfies the following restrictions:

• di ≤ k + 1 for all 1 ≤ i ≤ m;

• K =
ˆ

KA(v1, d1) · · · KA(vm, dm)
˜

has full col-
umn rank;

where vi = e(i−1)k+1 for 1 ≤ i ≤ m. The Krylov extension
is said to be normal if the following additional conditions
are satisfied:

1. d1 + · · · + dm = n;

2. (d1, . . . , dm) is monotonically nonincreasing;

3. dm ≤ n − (m − 1)k;

4. The shifted Hessenberg form K−1AK has the shape

K−1AK =

»

Ā B
D

–

,

where D is a Hessenberg form (possibly of dimension
zero) and Ā is (k + 1)-shifted form of dimension n̄ =
d1 + · · ·+ dm̄, where m̄ is the minimal index such that
dm̄ < k + 1.

We now describe an algorithm that computes the Krylov
extension. Actually, the algorithm is only guaranteed to
work if the Krylov extension is normal. If any of conditions
1, 2 or 3 of Definition 1 are not satisfied the algorithm will
detect this and report failure. The idea of the algorithm is
straightforward. Consider the n × (n + m − 1) matrix E
obtained from the matrix in (3) by extending the dimension
of each Krylov slice from k to k + 1, except for the last.
Then E has all the columns of In plus an additional m − 1
columns from A. Recall that the column rank profile of E
is the lexicographically smallest subsequence (i1, . . . , in) of
(1, . . . , n+m−1) such that columns i1, . . . , in have full rank.

The following result follows from Fact 1.2 by considering
the shape of K−1AK in case the Krylov extension is normal.

Lemma 1. If the Krylov extension (d1, . . . , dm) of a k-
shifted form A ∈ K

n×n is normal, then the submatrix of E
comprised of the rank profile columns is equal to the matrix
K of Definition 1.

We next describe how to compute the column rank profile
of the matrix E taking advantage of its structure.

Computing the column rank profile
For the purposes of giving a particularly simple example,
suppose we are computing the Krylov extension of a 3-
shifted form with degree sequence (3, 3, 3), giving rise to

the matrix

E =

2

6

6

6

6

6

6

6

6

4

1 10 20
1 11 21

1 12 22
13 1 23
14 1 24
15 1 25
0 26 1
0 27 1
0 28 1

3

7

7

7

7

7

7

7

7

5

∈ Z/(97)9×11.

The column rank profile of E can be computed using gaus-
sian elimination, processing each column in turn, starting
from the first column to the last. Processing of a column in-
volves either determining that the column has already been
zeroed out, and hence is not included in the rank profile,
or performing gaussian elimination to zero entries to the
right of the last non-zero entry in the column (the pivot).
Processing of the first three columns consists in zeroing the
coefficients to the right of the ones. After processing the
fourth column the work matrix has the following shape:

E =

2

6

6

6

6

6

6

6

6

4

1
1

1
13 1 25 66
14 1 12 33
15 0
0 26 1
0 27 1
0 28 1

3

7

7

7

7

7

7

7

7

5

The key observation now is that after processing columns
5 and 6, column 7 will be zeroed out and is therefore not
in the rank profile. After the elimination is completed the
matrix has the form

E =

2

6

6

6

6

6

6

6

6

4

1
1

1
13 1
14 1
15 0
0 26 1
0 27 1
0 28 0

3

7

7

7

7

7

7

7

7

5

.

The rank profile is thus (1, 2, 3, 4, 5, 6, 8, 9, 10).
Recall that m := ⌈n/k⌉ is the number of Krylov slices,

and that the matrix E is obtained from In by extending the
dimension of each Krylov slice from k to k + 1, except for
the last. Thus, there are only m − 1 columns of E which
are not known columns of In. To take advantage of this
structure, we perform the elimination on the n × (m − 1)
submatrix G of E formed by the m− 1 columns with index
k+1, 2(k+1), . . . , (m−2)(k+1), n. In the previous example

GT =
h

10 11 12 13 14 15 0 0 0
20 21 22 23 24 25 26 27 28

i

.

It is sufficient to keep track of the structured columns by
the vector ℓ of their indices: if H is the submatrix of E
formed by these n columns, then ℓ[i] = j ⇔ Hi,j = 1. At
the beginning of the elimination H = In, so ℓ[i] = i for
1 ≤ i ≤ n.

Now consider the processing of the ith column of G if we
include pivoting.

• The coefficients Gℓ[j],i ∀j ≤ k×i are set to zero to sim-
ulate the elimination by the corresponding structured
rows to the left.

• The vector ℓ has to be updated with the permutation
that may be used to find the last non zero entry (the
pivot) in the current column.

The elimination on G can be performed in time O(nmθ−1)
using LQUP decomposition [10]. The only modification
is to incorporate the operations listed above into the last
recursion level of the algorithm (for m = 1). In Algo-
rithm 1 (Extension) we denote the subroutine just described
by StructuredRankProfile. Since m = Θ(n/k) we have
nmθ−1 = O(k(n/k)θ), giving the following result.

Algorithm 1 Extension(A, n, k)

Require: A k-shifted form A ∈ K
n×n.

Ensure: The Krylov extension (d1, . . . , dm) of A, or fail.
/* Fail will be returned if any of conditions 1,

2 and 3 of Definition 1 are not satisfied. Fail

will not be returned if the Krylov extension is

normal. */

Form the n× (n+m) matrix E from (3) by extending the
dimension of each Krylov slice by one.
[j1, . . . , jr] := StructuredRankProfile(E,k).
if there exists a monotonically nonincreasing sequence
(d1, . . . , dm) increasing such that [j1, . . . , jr] is equal to
[1, . . . , d1, (k+1)+1, . . . , (k+1)+d2, . . . , (m−1)(k+
1) + 1, . . . , (m − 1)(k + 1) + 1 + dm] then

return (d1, . . . , dm)
else

return fail.
end if

Theorem 1. Algorithm Extension is correct. The cost
of the algorithm is O(k(n/k)θ).

5. CHARACTERISTIC POLYNOMIAL VIA
ARITHMETIC PROGRESSION

Let A ∈ K
n×n be a k-shifted form with a normal Krylov

extension (d1, . . . , dm). Let K be the striped Krylov matrix
associated to the extension. A key step of the algorithm
is the change of basis K−1AK. To perform this efficiently
the structure of the matrices A, K and K−1AK have to be
taken into account.

Note that all the columns of K−1AK will be known columns
of In except for the at most m columns {d1, d1+d2, . . . , d1+
d2 + · · ·+ dm}. Let Y be the submatrix of K corresponding
to these columns. To recover K−1AK we need to compute
K−1AY .

Let ∗p denote a permutation matrix. Up to a row and col-
umn permutations, which may be deduced from the degree
sequence of diagonal blocks in A, we have

A = ∗p

»

In−m ∗
∗

–

∗p .

Similarly, since K will have fewer than ⌊n/(k + 1)⌋ columns
which are not identity vectors, and ⌊n/(k + 1)⌋ < m, up to
row and column permutations, which may be deduced from
(d1, . . . , dm), we have

K = ∗p

»

In−m ∗
∗

–

∗p .

Note that K−1 can be expressed similarly to K. This shows

K−1AY = ∗p

»

In−m ∗
∗

–−1

∗p

»

In−m ∗
∗

–

∗p Y.

This gives the following result.

Lemma 2. Let K ∈ K
n×n be the striped Krylov matrix

corresponding to the uniform Krylov extension (d1, . . . , dm)
of a k-shifted form A ∈ K

n×n. There exists an algorithm
Transform that takes as input (A,k, (d1, . . . , dm)) and re-
turns K−1AK. The cost of the algorithm is O(k(n/k)θ)
field operations from K.

Assembling these components together gives Algorithm 2
(CharPolyRec) that recursively computes the characteristic
polynomial of the input matrix or returns fail. Each recur-
sive step correspond to the transformation from a k-shifted
form to a k + 1-shifted form.

Algorithm 2 CharPolyRec(A, n, k, x)

Require: A k-shifted form A ∈ K
n×n, an indeterminate x.

Ensure: return det xI − A, or fail.
if n = k then

Return det(xI − A)
else

(d1, . . . , dm) := Extension(A,k)
/* If the call to Extension fails then abort

and return fail */

m̄ := minimal index with dm̄ < k + 1
n̄ := d1 + · · · + dm̄
»

Ā B
C D

–

:= Transform(A,k, (d1, . . . , dm))

if C is not the zero matrix then

abort and return fail

end if

Return CharPolyRec(Ā, n̄, k + 1, x) × det(xI − D)
end if

Theorem 2. Algorithm 2 (CharPolyRec) returns the char-
acteristic polynomial of the input matrix or fail. The cost
of the algorithm is O(nθ).

Proof. The complexity is deduced from the following
arithmetic progression:

n
X

k=1

k(n/k)θ = nθ

n
X

k=1

(1/k)θ−1 = O(nθ)

since θ − 1 > 1.

To ensure that the algorithm will only fail with a bounded
probability, the input matrix A has to be preconditioned by
a random similarity transformation. This gives the following
algorithm.

The probability analysis of Algorithm 3 (CharPoly) will be
detailed in Section 6; the cost of the algorithm is obviously
still O(nθ) field operations.

6. PRECONDITIONING
Let A ∈ K

n×n be an arbitrary matrix. In this subsection
we prove that Algorithm 2 (CharPolyRec) will not fail when
given as input the tuple (B,n, 1, x), where B = V −1AV and

Algorithm 3 CharPoly(A, n, x)

Require: A matrix A ∈ K
n×n, an indeterminate x.

Ensure: return det(xI − A), or fail.
/* Fail will be returned with probability at

most 1/2. We require #K ≥ 2n2. */

Λ := a subset of K with #Λ ≥ 2n2

Choose V ∈ K
n×n with entries uniformly and randomly

from Λ.
B := V −1AV /* If V is singular then abort and

return fail */

Return CharPolyRec(B, n, 1, x)

V is filled with algebraically independent indeterminates.
Upon specialization of the indeterminates with random field
elements, as is done by Algorithm 3 (CharPoly), a bound
of 1/2 on the probability of failure will follow due to the
DeMillo & Lipton/Schwartz/Zippel Lemma [1, 12, 16].

The proof of the following theorem is similar to and in-
spired by [15, Proof of Proposition 6.1]. Note that for conve-
nience we assume that the Frobenius form of A has n blocks,
some of which may trivial (i.e., 0 × 0). In the statement of
the theorem this means that some of the f∗ and d∗ may be
zero.

Theorem 3. Let A ∈ K
n×n have Frobenius form with

blocks of dimension f1 ≥ · · · ≥ fn, and let v1, . . . , vn be
the columns of a matrix V filled with algebraically indepen-
dant indeterminates. Suppose (d1, . . . , dn) is monotonically
nonincreasing sequence of nonnegative integers. Then

K =
ˆ

KA(v1, d1) · · · KA(vn, dn)
˜

has full column rank if and only if
Pi

j=1 dj ≤
Pi

j=1 fj for
all 1 ≤ i ≤ n.

Proof. The “only if” direction follows because for any
block X of i vectors, even a generic block X = [v1 | · · · | vi],

the dimension of OrbA(X) is at most
Pi

j=1 fi.
To prove the other direction we specialize the indetermi-

nates in the vectors vi. In particular, it will be sufficient to
construct a full column rank matrix

K =
ˆ

K1 · · · Kn

˜

over K such that each Ki is in Krylov form and has di-
mension di, 1 ≤ i ≤ n. Consider a change of basis matrix
U ∈ K

n×n such that U−1AU is in Frobenius form. Then

U =
ˆ

KA(u1, f1) · · · KA(un, fn)
˜

is nonsingular. Let

K̄ =
ˆ

K̄1 · · · K̄n

˜

be the submatrix of U such that each K̄i has the form

K̄i =
ˆ

KA(ui, min(fi, di)) Ei

˜

,

where Ei has dimension di − min(fi, di), and the columns
of E1, E2, . . . , En are filled with unused columns of U , using
the columns in order from left to right. Then K̄ has full
column rank and each K̄i has the correct dimension. Our
goal now is to demonstrate the existence of an invertible
matrix T such that K = K̄T has the desired form. We will
construct T = I +

Pn

i=1(Ti − I) where each Ti is unit upper
triangular. For all i with di ≤ fi no transformation of K̄i is
required: set Ti = I . If fi < di then

K̄i =
ˆ

KA(ui, fi) KA(As1uj1 , t1) · · · KA(Ask ujk
, tk)

˜

where, by construction of the Ei, we have j1 < j2 < · · · <
jk, tl = fjl

− sl for 1 ≤ l ≤ k − 1, and tk ≤ fk. Using

the property
Pi

j=1 dj ≤
Pi

j=1 fj we have jk < i. Since

(d1, . . . , dn) is monotonically nondecreasing and KA(vl, dl)
is a submatrix of K̄i for 1 ≤ l ≤ k, it follows that

sl ≥ di for 1 ≤ l ≤ k. (4)

We can write K̄i as the sum of the following k +1 matrices:

K̄i =
ˆ

KA(ui, fi) 0, . . . , 0
˜

(5)

+

k−1
X

l=1

ˆ

0, . . . , 0 KA(Asl ujl
, fjl

− sl) 0, . . . , 0
˜

(6)

+
ˆ

0, . . . , 0 KA(Ask ujk
, tk)

˜

(7)

To bring the matrix in (5) to Krylov form we may add
suitable linear combinations of the first fi columns to the
last di − fi columns to obtain

ˆ

KA(ui, fi) KA(Afiui, di − fi)
˜

.

This is possible since the ith invariant subspace has dimen-

sion fi. Denote by T
(1)
i the unit upper triangular matrix

which effects this transformation on K̄.
Now consider the matrix in (7). The Krylov space needs

to be extended on the left to fill in the zero columns as
follows:

ˆ

KA(Asujk
, sk − s) KA(Askujk

, tk)
˜

.

From (4) we may conclude that s ≥ 0. Since KA(Asujk
, sk−

s) is a submatrix of
ˆ

K̄1 · · · K̄i−1

˜

, we need only copy

former to latter columns. Denote by T
(2)
i the unit upper tri-

angular matrix which effects the copying on these columns.

Similarly, there exists a unit upper triangular matrix T
(3)
i

which extends the Krylov sequence of the matrix in (6) to

the left and right. Let Ti = T
(1)
i + T

(2)
i + T

(3)
i .

In the following corollary the matrix A and V are as in
Theorem 3, that is, A ∈ K

n×n has Frobenius form with
blocks of dimension f1 ≥ f2 ≥ · · · ≥ fn and V is an n × n
matrix filled with indeterminates. The corollary follows as
a result of Fact 1.

Corollary 1. Let B := V −1AV and k satisfy 2 ≤ k ≤
n. The lexicographically maximal sequence (d1, . . . , dn) of
nonnegative integers such that:

• di ≤ k for all 1 ≤ i ≤ m, and

• K =
ˆ

KB(e1, d1) · · · KB(en, dn)
˜

has full column
rank,

will satisfy d1 + · · · + dn = n and can be written as

(d1, . . . , dn) = (k, . . . , k, dm̄, fm̄+1, fm̄+2, . . . , fn)

with k > dm̄ ≥ fm̄+1. Moreover,

K−1BK =

»

Ā B
D

–

is in shifted Hessenberg form, where Ā is in (k + 1)-shifted
form of dimension n̄ = d1+· · ·+dm̄, and D is in Hessenberg
form.

Each entry of V K =
ˆ

KA(v1, d1) · · · KA(vn, dn)
˜

is
a linear combination of indeterminates of V . It follows that
the determinant of V K is a nonzero polynomial in the inde-
terminates of V with total degree at most n.

Let K1 = In and Ki be the matrix K of Corollary 1 for
k = i, 2 ≤ i ≤ n. Given as input (B, n, 1, x), Algorithm 2
(CharPolyRec) will perform a change of basis at each step
and computes the structured Krylov extension K−1

i−1Ki for
i = 2, 3, . . . , n. Let ∆ be the product of the determinant of
V and each matrix V Ki. Then ∆ is a nonzero polynomial
of total degree bounded by n2. The next result now follows
from the DeMillo & Lipton/Schwartz/Zippel Lemma.

Theorem 4. Algorithm 2 (CharPoly) will return fail with
probability at most 1/2.

In this section we discuss an implementation of the new
characteristic polynomial algorithm that is modified to per-
form the preconditioning step more efficiently in practice.
Actually, the algorithm is adaptive and involves a parameter
that is highly architecture-dependant and must be set exper-
imentally. We present experiments comparing the practical
performance of our implementation with the two best soft-
wares for this computation to our knowledge.

The implementation we describe here makes use of the
FFLAS-FFPACK library1. This C++ library provides the
efficient basic routines such as matrix multiplications and
LQUP decomposition that make use of the level 3 BLAS
numerical routines [2, 3].

6.1 Efficient preconditioning
Although it does not affect the asymptotic complexity, the

preconditioning phase V −1AV of Algorithm 3 (CharPoly)
is expensive in practice. This preconditioning phase can
also be achieved by modifying Algorithm 2 (CharPolyRec)
to compute the first Krylov extension using random vectors
from Λ instead of identity vectors.

Our heuristic for this preconditioning step is to compute
a block Krylov matrix M =

ˆ

U |AU | . . . |Ac−1U
˜

where U is
formed by ⌈n/c⌉ random vectors, for some parameter c. If
this matrix is non singular, then the matrix M−1AM will be
in c-shifted form (up to row and column permutations) and
Algorithm 2 (CharPolyRec) can be called with shift param-
eter k = c instead of k = 1. If r = rank(M) < n then the
linearly independent columns of M can be completed into a
non singular matrix M by adding n− r columns at the end,
and we obtain the block upper triangular matrix

M
−1

AM =

»

Hc ∗
R

–

where the r × r matrix Hc is in c-shifted form (up to row
and column permutations). Its characteristic polynomial is
computed by two recursive calls on the diagonal blocks Hc

and R. Algorithm 4 (CharPoly) gives the algorithm with
this modified preconditioning step.

Further explanations on the completion of M into M using
the LQUP decomposition can be found in [4]. Note that
again, only c columns of the matrix Hc have to be computed,
which makes the computation of B much cheaper.

As c gets larger, the slices of the block Krylov matrix K
become smaller. In the extreme case c = n, the algorithm
1This library is available online at http://www-ljk.imag.
fr/membres/Jean-Guillaume.Dumas/FFLAS or within the
LinBox library http://www.linalg.org

Algorithm 4 CharPoly(A, n, x)

Require: A matrix A ∈ K
n×n, an indeterminate x, a pre-

conditioning parameter c.
Ensure: det(xI − A), or fail.
/* Fail will be returned with probability at

most 1/2 if #K > 2n2 */

Λ := a subset of K with #Λ ≥ 2n2

m := ⌈n/c⌉
Choose V ∈ K

n×m with entries uniformly and randomly
from Λ.
Compute the n × (c⌈n/c⌉) matrix

M =
ˆ

V |AV | . . . |Ac−1V
˜

Compute (L, Q,U, P), the LQUP decomposition of MT .
Let r = rank(MT)

M :=

»

MQ
ˆ

Ir 0
˜

P T

»

0
In−r

– –

B := M
−1

AM =

»

Hc ∗
R

–

Return CharPolyRec(Hc, n, c, x)×CharPolyRec(R,n, 0, x)

computes the usual Krylov matrix of only one vector. In this
case, the algorithm is equivalent to the algorithm LU-Krylov

presented in [4, algorithm 2.2]. Assuming θ = 3 the leading
constant of algorithm LU-Krylov is competitive (2.667n3)
but the algorithm does not fully exploit matrix multipli-
cation (as it also performs n matrix-vector products). At
the opposite, the case c = 2 corresponds to Algorithm 3
(CharPoly): it reduces the problem fully to matrix multipli-
cation. The preconditioning parameter c makes it possible
to balance the computation between these two algorithms.

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 0 50 100 150 200

T
im

e
(s

)

Preconditionning parameter c

Finding the optimal preconditionning paramater, n=5000

1 block of order 5000
5 blocks of order 1000
10 blocks of order 500

Figure 1: Finding the optimal preconditioning pa-

rameter c for matrices of order 5000, Itanium2-64

1.3Ghz, 192Gb

Figure 1 displays the computation time of the algorithm
for different values of c. Three matrices of order 5000 are
used: they differ in the number of blocks in their Frobe-
nius form. For c < 55, the timings are decreasing when
c increases, which shows the advantage of using the block
Krylov preconditioning for a large enough value for c. Then
the timings increase again for larger c. In these cases, the
dominant operation is the computation of the block Krylov

matrix M by many matrix multiplications of uneven dimen-
sions. The matrix multiplication routine used will be more
efficient for computing one n × n by n × n product rather
than c n × n by n × n/c products, due to both the level 3
BLAS behaviour and the use of sub-cubic matrix multiplica-
tion. The optimal value c = 55 gives here the best timings.
This value is not only depending on the matrix dimension,
but also on the architecture and the BLAS that are used,
since it is linked with the ratio between the efficiency of the
matrix vector product and the matrix matrix multiplication.

Note that the algorithm gets faster as the dimension of
the largest block decreases.

6.2 Timing comparisons
We now compare the running time of our implementation

of Algorithm 4 CharPoly with that of other state of the
art implementations of characteristic polynomial algorithms.
The routine LU-Krylov, available in the FFLAS-FFPACK
and LinBox, libraries was shown to be the most efficient
implementation in most cases [4].

For all the experiments we used the finite field Z/(547 909).
On one hand, the prime is large enough to ensure a high
probability of success; none of the computations returned
fail. On the other hand, the prime is small enough so
that the FFLAS-FFPACK routines can make efficient use
of the level 3 BLAS subroutines, using delayed modular re-
ductions with the 53 bits of the double mantissa. Table 1

n LU-Krylov New algorithm

200 0.024s 0.032s
500 0.248s 0.316s
750 1.084s 1.288s

1000 2.42s 2.296s

5000 267.6s 153.9s

10 000 1827s 991s

20 000 14 652s 7097s

30 000 48 887s 24 928s

Table 1: Computation time for 1 Frobenius block

matrices, Itanium2-64 1.3Ghz, 192Gb

n magma-2.11 LU-Krylov New algorithm

100 0.010s 0.005s 0.006s
300 0.830s 0.294s 0.105s

800 15.64s 4.663s 1.387s

3000 802.0s 258.4s 61.09s

5000 3793s 1177s 273.4s

7500 MT 4209s 991.4s

10 000 MT 8847s 2080s

Table 2: Computation time for 1 Frobenius block

matrices, Athlon 2200, 1.8Ghz, 2Gb

MT: Memory thrashing

presents the timings for the computation of the character-
istic polynomial of matrices having only one block on their
Frobenius form. The preconditioning parameter c has been
set to 100 for these experiments. The new algorithm im-
proves the computation time of LU-Krylov for matrices of
order not less than 1000. For matrices of order 30 000, the
improvement factor is about 47.6%, due to the fact that the

new algorithm fully reduces to matrix multiplication and
can better exploit the level 3 BLAS efficiency. Figure 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

T
im

e
(s

)

Matrix order

Comparison for 1 frobenius block matrices over Z/(547909)

New algorithm
LU−Krylov

Figure 2: Timing comparison between the new algo-

rithm and LU-Krylov, logarithmic scales, Itanium2-

64 1.3Ghz, 192Gb

presents these timings in a log scale graph. The slopes of
the two lines, which corresponds to the exponent of their
complexity, are both close to 3. However, the slope of the
new algorithm is slightly lower, indicating the effective use
of sub-cubic matrix multiplication for this computation.

Finally, table 2 gives a comparison with magma-2.112 .
Again, our new implementation improves the computation
time of this software, with a gain factor of about 13.8 for
n = 5000. Moreover, its better memory management makes
it possible to compute with larger matrices. On this ma-
chine, the efficiency ratio between matrix-vector and matrix
multiplication is much lower than on the Itanium2. There-
fore the new algorithm is already faster for n ≥ 300.

7. CONCLUSIONS
We remark that the algorithm we have presented can eas-

ily be modified to compute the entire Frobenius form by
checking some divisibility conditions of the polynomials in-
duced by the blocks in the computed Hessenberg form. The
additional cost is bounded by O(nθ) since θ > 2. Thus, we
obtain a Las Vegas algorithm for computing the Frobenius
form of a matrix over field that has expected cost O(nθ).

To ensure a probability of success at least 1/2, we require
that the ground field have at least 2n2 elements. If the field
is too small we can work over an extension but a better
solution (currently) would be to apply an alternative algo-
rithm such as LU-Krylov cited in the previous section for
computing the characteristic polynomial, or the Frobenius
form algorithm of Eberly [5].

For comparison, Eberly’s Las Vegas Frobenius form algo-
rithm has expected cost O(nθ log n), no restrictions on the
field size, and it computes a similarity transform matrix as
well as the form itself. Our algorithm has expected cost
O(nθ), requires the ground field to have size at least 2n2,
and does not recover a similarity transform matrix at the
same time.

2We are grateful to the Medicis computing centre hosted by
the CNRS STIX lab : medicis.polytechnique.fr/medicis for
the possibility of running magma on their machines

On the one hand, recovery of a similarity transform ma-
trix is undoubtedly useful for various applications [7]. On
the other hand, for problems such as computing the min-
imal polynomial or testing two matrices for similarity the
Frobenius form itself will suffice.

The main open problem we identify is to eliminate the
condition on the field size while maintaining the cost bound
O(nθ): ideally the algorithm could be derandomized en-
tirely. The currently fastest deterministic algorithm has cost
O(nθ(log n)(log log n)) [13, 14].

8. REFERENCES
[1] R. A. DeMillio and R. J. Lipton. A probabilistic

remark on algebraic program testing.
Inf. Proc. Letters, 7(4):193–195, 1978.

[2] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field
linear algebra subroutines. In Proc. ISSAC ’02, pages
63–74. ACM Press, New York, 2002.

[3] J.-G. Dumas, P. Giorgi, and C. Pernet. Finite field
linear algebra package. In Proc. ISSAC ’04, pages
119–126. ACM Press, New York, 2004.

[4] J.-G. Dumas, C. Pernet, and Z. Wan. Efficient
computation of the characteristic polynomial. In Proc.
Proc. ISSAC ’05, pages 140–147. ACM Press, New
York, 2005.

[5] W. Eberly. Asymptotically efficient algorithms for the
Frobenius form. Technical report, Department of
Computer Science, University of Calgary, 2000.

[6] F. R. Gantmacher. The Theory of Matrices, volume 1.
Chelsea Publishing Company, New York, NY, 1990.

[7] M. Giesbrecht. Nearly Optimal Algorithms for
Canonical Matrix Forms. PhD thesis, University of
Toronto, 1993.

[8] M. Giesbrecht. Nearly optimal algorithms for
canonical matrix forms. SIAM Journal of Computing,
24:948–969, 1995.

[9] K. Hoffman and R. Kunze. Linear Algebra.
Prentice-Hall, Englewood Clikffs, N.J., 1971.

[10] O. Ibarra, S. Moran, and R. Hui. A generalization of
the fast LUP matrix decomposition algorithm and
applications. Journal of Algorithms, 3:45–56, 1982.

[11] W. Keller-Gehrig. Fast algorithms for the
characteristic polynomial. Theoretical Computer
Science, 36:309—317, 1985.

[12] J. T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM,
27:701–717, 1980.

[13] A. Storjohann. Algorithms for Matrix Canonical
Forms. PhD thesis, Swiss Federal Institute of
Technology, ETH–Zurich, 2000.

[14] A. Storjohann. Deterministic computation of the
Frobenius form (Extended Abstract). In Proc. 42nd
Annual Symp. Foundations of Comp. Sci., pages
368–377, Los Alamitos, California, 2001. IEEE
Computer Society Press.

[15] G. Villard. A study of Coppersmith’s block
Wiedemann algorithm using matrix polynomials.
Technical Report RR 975-I-M, IMAG Grenoble
France, 1997.

[16] R. Zippel. Probabilistic algorithms for sparse
polynomials. In Proc. EUROSAM 79, pages 216–226,
Marseille, 1979.

