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Abstract. Littlewood in his 1968 monograph “Some Problems in Real
and Complex Analysis” [12, problem 22] poses the following research
problem, which appears to still be open:

Problem. “If the nj are integral and all different, what is the lower

bound on the number of real zeros of
PN

j=1
cos(njθ)? Possibly N −1, or

not much less.”

No progress appears to have been made on this in the last half cen-
tury. We show that this is false.

Theorem. There exists a cosine polynomial
PN

j=1
cos(njθ) with the nj

integral and all different so that the number of its real zeros in the period

is O

“

N
9/10(log N)1/5

”

.

1. Littlewood’s 22nd Problem

Problem. “If the nj are integral and all different, what is the lower bound

on the number of real zeros of
∑N

j=1 cos(njθ)? Possibly N − 1, or not much

less.”

Here “real zeros” means “zeros in a period”. Denote the number of zeros
of a trigonometric polynomial T in the period [−π, π) by N (T ).

Note that if T is a real trigonometric cosine polynomial of degree n, then
it is of the form T (t) = exp(−int)P (exp(it)), t ∈ R, where P is a reciprocal
algebraic polynomial of degree 2n, and if T has only real zeros, then P has all
its zeros on the unit circle. So in terms or reciprocal algebraic polynomials
one is looking for a reciprocal algebraic polynomial with coefficients in {0, 1},
with 2N terms, and with N − 1 or fewer zeros on the unit circle. Even
achieving N − 1 is fairly hard. An exhaustive search up to degree 2N = 32
yields only 10 example achieving N − 1 and only one example with fewer.
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This first example disproving the “possibly N − 1” part of the conjecture is

14∑

j=0, j /∈{9,10,11,14}

(zj + z28−j)

which has 8 roots of modulus 1 and corresponds to a cosine sum of 11 terms
with 8 roots in the period.

It is hard to see how one might generate infinitely many such examples
or indeed why Littlewood made his conjecture.

The following is a reciprocal polynomial with 32 terms and exactly 14
zeros of modulus 1:

19∑

j=0, j /∈{10,11,17,19}

(zj + z38−j) .

So it corresponds to a cosine sum of 16 terms with 14 zeros in [−π, π).
In other words the sharp version of Littlewood’s conjecture is false again,
though barely. The following is a reciprocal polynomial with 280 terms and
52 zeros of modulus 1:

152∑

j=0, j /∈{124,125,126,127,128,134,141,143,145,147,148,151,152}

(zj + z304−j) .

So it corresponds to a cosine sum of 140 terms with 52 zeros in [−π, π).
Once again the sharp version of Littlewood’s conjecture is false, though this
time by a margin. It was found by a version of the greedy algorithm (and
some guessing). There is no reason to believe it is a minimal example.

The interesting feature of this example is how close it is to the Dirichlet
kernel (1 + z + z2 + . . . + z304). This is not accidental and suggests the
approach that leads to our main result.

Littlewood explored many problems concerning polynomials with various
restrictions on the coefficients. See [9], [10], and [11], and in particular
Littlewood’s delightful monograph [12]. Related problems and results may
be found in [2] and [4], for example. One of these is Littlewood’s well-known
conjecture of around 1948 asking for the minimum L1 norm of polynomials
of the form

p(z) :=
n∑

j=0

ajz
kj ,

where the coefficients aj are complex numbers of modulus at least 1 and the
exponents kj are distinct nonnegative integers. It states that such polyno-
mials have L1 norms on the unit circle that grow at least like c log n. This
was proved by S. Konyagin [7] and independently by McGehee, Pigno, and
Smith [13] in 1981. A short proof is available in [5]. It is believed that the
minimum, for polynomials of degree n with complex coefficients of modulus
at least 1 is attained by 1 + z + z2 + · · · + zn, but this is open.
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2. Auxiliary Functions

The key is to construct n term cosine sums that are large most of the
time. This is the content of this section.

Lemma 1. There is an absolute constant c1 such that for all n and α > 1
there are coefficients a0, a1, . . . , an with each aj ∈ {0, 1} such that

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ c1αn−1/2,

where

Pn(t) =
n∑

j=0

aj cos(jt).

Proof. We will prove the stronger result that there is an absolute constant
c1 such that for all α > 0 and all n

λ(α) := 2−(n+1)
∑

{a0,a1,...,an}

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ c1αn−1/2.

If X0, X1, . . . , Xn are independent Bernoulli random variables with

P (Xj = 0) = P (Xj = 1) =
1

2
, j = 0, 1, . . . , n,

then the indicated average is an expected value. Let

Rn(t) =
n∑

j=0

Xj cos(jt)

and note that

λ(α) =

∫ π

−π
P (|Rn(t)| ≤ α) dt.

Define

Dn(t) :=
n∑

j=0

cos(jt).

The expected value of Rn(t) is µn(t) := Dn(t)/2; its variance is

σ2
n(t) :=

1

4

n∑

0

cos2(jt) =
1

8
(n + 1 + Dn(2t)).

We now apply a uniform normal approximation to get the desired result.
Define the cumulative normal distribution function by

Φ(x) :=

∫ x

−∞

e−u2/2

√
2π

du.
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Define

%2 :=
1

n + 1

n∑

j=0

Var(Xj cos(jt)) =

=
1

4(n + 1)

n∑

0

cos2(jt) =
1

8

(
1 +

Dn(2t)

n + 1

)
,

%3 :=
1

n + 1

n∑

j=0

E

(∣∣∣∣
(

Xj −
1

2

)
cos(jt)

∣∣∣∣
3
)

We suppress the dependence of each of these on n and u. The Berry-Esseen
bound in Bhattacharya and Ranga Rao [1, Theorem 12.4, page 104] is that

∣∣∣∣P (Rn(t) ≤ c) − Φ

(
c − µn(t)

σn(t)

)∣∣∣∣ ≤
11%3

4
√

n %
3/2
2

.

It is elementary that %3 ≤ 1/8. Moreover there is an absolute constant
c2 > 0 such that %2 > c2 for all t ∈ R and all n = 1, 2, . . .. Finally the
function Φ has derivative bounded by (2π)−1/2 so

|Φ(x) − Φ(y)| ≤ (2π)−1/2|x − y| , x, y ∈ R.

It follows that there is an absolute constant c1 such that

P (−α ≤ Rn(u) ≤ α) ≤ c1αn−1/2.

¤

3. The Main Theorem

Theorem 1. There exists a cosine polynomial
∑N

j=1 cos(njθ) with the nj

integral and all different so that the number of its real zeros in the period is

O
(
N9/10(log N)1/5

)
.

We note that we have not worked hard to replace the exponent 9/10 with
a smaller one that we may call a “close to optimal” exponent in the result.
One can hope to replace the exponent 9/10 in Theorem 1 by a slightly
smaller one.

The proof of our main theorem above follows immediately from the fol-
lowing Lemma 2 stated below and Lemma 1. Namely, take m := N + 1,
n = m2/5(log m)−4/5, α = n1/4 and β = c1αn−1/2 = c1n

−1/4.

Lemma 2. Let n ≤ m,

Dm(t) :=

m∑

j=0

cos(jt) ,

Pn(t) :=
n∑

j=0

aj cos(jt) , aj ∈ {0, 1} .
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Suppose α ≥ 1 and

meas{t ∈ [−π, π) : |Pn(t)| ≤ α} ≤ β .

Let Sm := Dm − Pn. Then the number of zeros of Sm in [−π, π) is at most

c3m

α
+ c4mβ + c5nm1/2 log m ,

where c3, c4, and c5 are absolute constants.

To prove Lemma 2 we need the following consequence of the Erdős-Turán
Theorem [15, p. 278]; see also [6].

Lemma 3. Let

Sm(t) =
m∑

j=0

aj cos(jt) , aj ∈ {0, 1} ,

be not identically zero. Denote the number of zeros of Sm in an interval

I ⊂ [−π, π) by N (I). Then

N (I) ≤ c6m|I| + c6

√
m log m ,

where c6 is an absolute constant and |I| denotes the length of I.

Now we prove Lemma 2.

Proof. We write

{t ∈ [−π, π) : |Pn(t)| ≤ α} =
k⋃

j=1

Ij ,

where the intervals Ij are disjoint and k ≤ 2n. Let

I0 := {t ∈ [−π, π) : |Dm(t)| ≥ α} .

Note that I0 ⊂ [−c/α, c/α]. Then Sm has all its zeros in
⋃k

j=0 Ij . By
Lemma 3 we have

N (Ij) ≤ c6m|Ij | + c6

√
m log m , j = 1, 2, . . . , k ,

and
N (I0) ≤ c6m|I0| + c6

√
m log m ≤ c7m

α
+ c7

√
m log m

with an absolute constant c7. So

N ([−π, π)) ≤
k∑

j=0

N (Ij)

≤c7m

α
+ c7

√
m log m + c6

k∑

j=1

m|Ij | + kc7

√
m log m

≤c7m

α
+ c6mβ + 2nc7

√
m log m

and the proof is finished. ¤
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4. Average Number of Real Zeros

Why did Littlewood make this conjecture? He might have observed that
the average number of zeros of a trigonometric polynomial of the form

0 6= T (t) =
n∑

j=1

aj cos(jt) , aj ∈ {0, 1} ,

has in [0, 2π) is at least cn. This is what we elaborate in this section.
Associated with a polynomial P of degree exactly n with real coefficients we
introduce P ∗(z) := znP (1/z).

Theorem 2. Let

S(t) :=
n∑

j=1

aj cos(jt) and S̃(t) :=
n∑

j=1

an+1−j cos(jt) ,

where each of the coefficients aj is real and a1an 6= 0. Let w1 be the number

of zeros of S in [0, 2π), and let w2 be the number of zeros of S̃ in [0, 2π).
Then w1 + w2 ≥ 2n.

Proof. Let P (z) =
∑n

j=1 ajz
j . Without loss of generality we may assume

that P does not have zeros on the unit circle; the general case follows by a
simple limiting argument with the help of Rouché’s Theorem. Note that if
P has exactly k zeros in the open unit disk then zP ∗(z) has exactly n − k
zeros in the open unit disk. Also,

2S(t) = Re(P (eit)) and 2S̃(t) = Re(eitP ∗(eit)) .

Hence the theorem follows from the Argument Principle. Note that if a
continuous curve goes around the origin k times then it crosses the real axis
at least 2k times. ¤

Theorem 2 has some interesting consequences. As an example we can
state and easily see the following.

Theorem 3. The average number of zeros of trigonometric polynomials in

the class { n∑

j=1

aj cos(jt), aj ∈ {−1, 1}
}

in [0, 2π) is at least n. The average number of zeros of trigonometric poly-

nomials in the class
{

0 6=
n∑

j=1

aj cos(jt), aj ∈ {0, 1}
}

in [0, 2π) is at least n/4.

Proof. Most of the cosine sums in both classes naturally break into pairs
with a large combined total number of real zeros in the period. ¤
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5. Conclusion

Let 0 ≤ n1 < n2 < · · · < nN be integers. A cosine polynomial of the
form Tn(θ) =

∑N
j=1 cos(njθ) must have at least one real zero in a period.

This is obvious if n1 6= 0, since then the integral of the sum on a period
is 0. The above statement is less obvious if n1 = 0, but for sufficiently
large N it follows from Littlewood’s Conjecture simply. Here we mean the
Littlewood’s Conjecture proved by S. Konyagin [7] and independently by
McGehee, Pigno, and Smith [13] in 1981. See also [5] for a book proof. It is
not difficult to prove the statement in general even in the case n1 = 0. One
possible way is to use the identity

nN∑

j=1

Tn((2j − 1)π/nN ) = 0 .

See [8], for example. Another way is to use Theorem 2 of [14]. So there is
certainly no shortage of possible approaches to prove the starting observation
of our conclusion even in the case n1 = 0. It seems likely that the number
of zeros of the above sums in a period must tend to infinity with N. This
does not appear to be easy. The case when the sequence 0 ≤ n0 ≤ n1 ≤ · · ·
is fixed will be handled in a forthcoming paper [3].

References

[1] R.N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Ex-

pansions, Wiley, New York, 1976.
[2] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer,

New York, 2002.
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