Efficient Computation with
Sparse and Dense Polynomials

by

Daniel Steven Roche

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2011

(c) Daniel Steven Roche 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Computations with polynomials are at the heart of any computer algebra system and also
have many applications in engineering, coding theory, and cryptography. Generally speaking,
the low-level polynomial computations of interest can be classified as arithmetic operations,
algebraic computations, and inverse symbolic problems. New algorithms are presented in
all these areas which improve on the state of the art in both theoretical and practical perfor-
mance.

Traditionally, polynomials may be represented in a computer in one of two ways: as a
“dense” array of all possible coefficients up to the polynomial’s degree, or as a “sparse” list of
coefficient-exponent tuples. In the latter case, zero terms are not explicitly written, giving a
potentially more compact representation.

In the area of arithmetic operations, new algorithms are presented for the multiplication
of dense polynomials. These have the same asymptotic time cost of the fastest existing ap-
proaches, but reduce the intermediate storage required from linear in the size of the input to
a constant amount. Two different algorithms for so-called “adaptive” multiplication are also
presented which effectively provide a gradient between existing sparse and dense algorithms,
giving a large improvement in many cases while never performing significantly worse than
the best existing approaches.

Algebraic computations on sparse polynomials are considered as well. The first known
polynomial-time algorithm to detect when a sparse polynomial is a perfect power is pre-
sented, along with two different approaches to computing the perfect power factorization.

Inverse symbolic problems are those for which the challenge is to compute a symbolic
mathematical representation of a program or “black box”. First, new algorithms are presented
which improve the complexity of interpolation for sparse polynomials with coefficients in
finite fields or approximate complex numbers. Second, the first polynomial-time algorithm
for the more general problem of sparsest-shift interpolation is presented.

The practical performance of all these algorithms is demonstrated with implementations
in a high-performance library and compared to existing software and previous techniques.

iii

Acknowledgements

There are many people to praise (or blame) for the quality of this work. First and foremost
is my wife, Leah, who agreed to come with me to Canada and has tolerated countless long
nights, meaningless scribble, and boring conversations for almost five years. Despite this
document’s completion, these habits of mine are likely to persist, and my hope is that her
patience for them will as well.

I have always been very lucky to have the support of my family, and in particular my par-
ents, Duane and Sheryl, deserve credit for always encouraging my academic pursuits. They
managed to instill in me the importance of education without squelching creativity or the joy
of learning, and I thank them for it.

A great debt is owed to my many excellent primary, secondary, and post-secondary school
teachers and professors for encouraging me to ask interesting questions. I especially thank
Dave Saunders at the University of Delaware for introducing me to the wonderful world of
computer algebra in the summer of 2004.

In Waterloo, my academic pursuits have been moderated by healthy doses of musical
expression. I thank the members of orchestra@uwaterloo, the Wellington Winds, Ebytown
Brass, Brass Essentials, and the Guelph Symphony Orchestra for so many evenings and week-
ends of great playing.

Conversation with my fellow students in the Symbolic Computation Group lab ranges
from polynomials to politics and is always enlightening. A particular thanks goes to my three
office mates over the years, Scott Cowan, Curtis Bright, and Somit Gupta, as well as Reinhold
Burger, Mustafa Elsheik, Myung Sub Kim, Scott MacLean, Jason Peasgood, Nam Pham, and
Hrushikesh Tilak.

I have been fortunate to discuss the topics of this thesis with numerous top researchers in
the world, whose valuable insights have been instrumental in various ways: Jacques Carette,
James Davenport, Jean-Guillaume Dumas, Richard Fateman, Joachim von zur Gathen, Jiirgen
Gerhard, Pascal Giorgi, Jeremy Johnson, Pascal Koiran, George Labahn, Wen-Shin Lee, Marc
Moreno Maza, John May, Michael Monagan, Roman Pearce, Clément Pernet, Erik Postma,
Eric Schost, Igor Shparlinski, and Stephen Watt.

David Harvey of New York University was kind enough to email me with some ideas a few
years ago which we developed together, yielding the main results presented here in Chapter 3.
I thank and admire David for his great patience in working with me.

The members of my thesis examining committee all provided great feedback on this doc-
ument, as well as some lively discussion. Thanks to Erich Kaltofen, Kevin Hare, lan Munro,
and Jeff Shallit.

The greatest thanks for this thesis goes to my two supervisors, Mark Giesbrecht and Arne
Storjohann. Our countless conversations over the last five years have covered not only the
content and direction of my research, but also teaching, publishing, and how to be a univer-
sity faculty member. Their generosity in time, ideas, and funding have truly allowed me to
flourish as a graduate student.

Finally, I am very grateful to the generous financial support during the course of my stud-
ies from the David R. Cheriton School of Computer Science, the Mathematics of Information
Technology and Complex Systems (MITACS) research network, and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Table of Contents

List of Algorithms
List of Tables
List of Figures

1 Introduction

L1 OVEIVIEW . . oottt e e e e e e e e e e e e e e
1.2 Polynomials and representationsttt
1.3 Computationalmodel
1.4 Warm-up: O(nlogn) multiplication

2 Algorithm implementations in a software library

2.1 Existingsoftware e e
2.2 Goalsofthe MVPlibrary.
2.3 Library design and architecture
2.4 Algorithms for low-level operations
2.5 Benchmarking of low-level operations
2.6 Furtherdevelopmentst

3 In-place Truncated Fourier Transform

3.1 Background e
3.2 Computingpowersof w
3.3 Space-restricted TFT
3.4 Space-restricted ITFT e
3.5 Moredetailed costanalysis. i
3.6 Implementation.t e
3.7 Future Work e

4 Multiplication without extra space

4.1 PreviousTesults it e
4.2 Space-efficient Karatsuba multiplication.
4.3 Space-efficient FFT-based multiplication
4.4 Tmplementation.ttt e
4.5 CoNCIUSIONS. . . . ot e e e

5 Adaptive multiplication

vii

xiii

21
21
23
24
27
32
34

35
35
42
42
46
47
49
51

53
53
57
62
66
68

69

5.1 Background
5.2 Overviewof Approach
5.3 ChunkyPolynomials
5.4 Equal-Spaced Polynomials
5.5 Chunkswith EqualSpacing
5.6 Implementation and benchmarking
5.7 Conclusionsand FutureWork
Sparse perfect powers

6.1 Background
6.2 Testing for perfectpowers. i
6.3 Computing perfect rootsttt
6.4 Implementation.t e
6.5 ConcClUuSIONS.ot e e
Sparse interpolation

7.1 Background
7.2 Sparse interpolation for genericfields o L
7.3 Sparse interpolation over finitefields
7.4 Approximate sparse interpolation algorithms
7.5 Implementationresultst
7.6 ConClUSIONS.ot
Sparsest shift interpolation

8.1 Background
8.2 Computingthe SparsestShift
8.3 Interpolation
8.4 Generating Prilnesottt ettt e et e et e e
8.5 Complexityanalysis
8.6 Conclusionsand FutureWork

viii

93
94
97
106
115
115

117
117
123
125
128
133
135

Bibliography 157

List of Algorithms

3.1
3.2
4.1
4.2
5.1
5.2
5.3
5.4
5.5
6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3
7.4
7.5
8.1
8.2

In-place truncated Fourier transform 44
In-place inverse truncated Fourier transform 46
Space-efficient Karatsuba multiplication 58
Space-efficient FFT-based multiplication. 65
Chunky Multiplication i 73
Chunky Conversion Algorithm 76
Optimal Chunk Size Computationttt 79
Equal Spaced Multiplication 83
Equal Spaced Conversion ittt 86
Perfect rthpoweroverF, 99
Perfect rthpoweroverZ 102
Perfect power detection OVerZ v ittt i 104
Perfect power detectionoverF, 104
Algebraic algorithm for computing perfectroots 109
Sparsity-sensitive Newton iteration to compute perfectroots 111
Genericinterpolation e 124
Verification over finite fields 127
APProXimate NMOITIL v ottt it e e e e e e e e e et e e e e e 129
Approximate Remainder e 130
Adaptive diversification e 132
Computing the sparsestshift. 143
Sparse Polynomial Interpolationover Q[x] 147

Xi

List of Tables

1.1

2.1
2.2
2.3

3.1

4.1
4.2

5.1

7.1

7.2

7.3
7.4

Instruction set forIMM model 12
Properties of machine used for benchmarking. 32
Benchmarking for ten billion axpy operations modulo a word-sized prime 32
Benchmarks for sparse univariate multiplication in MVP and spmp 33
Benchmarking results for discrete Fourier transforms 50
Values stored in D through the steps of Algorithm4.1 59
Benchmarksversus NTL e 67
Benchmarks for adaptive multiplication with varying chunkiness 90

Sparse univariate interpolation over large finite fields, with black box size ¢,

degree d,and f NONZETOtEIMSt ittt e ettt e it e eee e e 120
Sparse multivariate interpolation over large finite fields, with black box size ¢,

n variables, degree d, and f nonzeroterms 121
Finite Fields Algorithm Timings 134
Approximate Algorithm Stability i 135

Xiii

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5

Algebraic circuit for (—2x; +3x3)- (X1 x2) - (5X1—X3) ... oo 5
Butterfly circuit for decimation-in-time FFT 38
Circuit for radix-2 decimation-in-time FFT ofsize 16 39
Circuit for forward TFT of size 11 i 40
Recursion tree forin-place TFT of sizen=6 43
Circuit for Algorithm 3.1 withsizen=11....... 44

	Table of Contents
	List of Algorithms
	List of Tables
	List of Figures
	Bibliography

