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ABSTRACT
Given a regular chainT , we aim at finding an efficient way for com-
puting a system of generators ofsat(T ), the saturated ideal ofT .
A natural idea is to test whether the equality〈T 〉 = sat(T ) holds,
that is, whetherT generates its saturated ideal. By generalizing the
notion of primitivity from univariate polynomials to regular chains,
we establish a necessary and sufficient condition, togetherwith a
Gröbner basis free algorithm, for testing this equality. Our experi-
mental results illustrate the efficiency of this approach inpractice.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation –Algebraic Algorithms

General Terms:
Algorithms, Theory

Keywords:
Regular chain, Saturated ideal, Primitivity of polynomials.

1. INTRODUCTION
Triangular decompositions are one of the most studied techniques

for solving polynomial systems symbolically. Invented by J.F. Ritt
in the early 30’s for systems of differential polynomials, their stride
started in the late 80’s with the method of W.T. Wu [21] dedicated
to algebraic systems. Different concepts and algorithms extended
the work of Wu. In the early 90’s, the notion of aregular chain, in-
troduced independently by M. Kalkbrener in [13] and, by L. Yang
and J. Zhang [22], led to important algorithmic discoveries.

In Kalkbrener’s vision, regular chains are used to represent the
generic zeros of the irreducible components of an algebraicvariety.
In the original work of Yang and Zhang, they are used to decide
whether a hypersurface intersects a quasi-variety (given by a reg-
ular chain). Regular chains have, in fact, several interesting prop-
erties and are the key notion in many algorithms for decomposing
systems of algebraic or differential equations.

Regular chains have been investigated in many papers, among
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them are [2, 14, 7]. Several surveys [4, 11] are also available on
this topic. The abundant literature on the subject can be explained
by the many equivalent definitions of a regular chain. Actually, the
original formulation of Kalkbrener is quite different fromthat Yang
and Zhang. Two papers [5, 20] provide bridges between the point
of view of Kalkbrener and that of Yang and Zhang.

The key algebraic object associated with a regular chain is its
saturated ideal. Let us review its definition. Letk be a field
and x1 ≺ · · · ≺ xn be ordered variables. For a regular chain
T ⊂ k[x1, . . . , xn], the saturated ideal ofT , denoted bysat(T )
is defined bysat(T ) := 〈T 〉 : h∞, whereh is the product of the
initial polynomials ofT . (The next section contains a detailed re-
view of these notions.) Given a polynomialp ∈ k[x1, . . . , xn], the
membershipsp ∈ sat(T ) andp ∈

p

sat(T ) can be decided by
means of pseudo-divisions and GCD computations, respectively.
One should observe that these computations can be achieved wi-
thout computing a system of generators ofsat(T ). In some sense,
the regular chainT is a “black box representation” ofsat(T ) since
the assertionsp ∈ sat(T ) and p ∈

p

sat(T ) can be evaluated
without using an explicit representation ofsat(T ).

Being able to compute a system of generators ofsat(T ) remains,
however, a fundamental question. For instance, given a second reg-
ular chainU ⊂ k[x1, . . . , xn], the only general method to decide
the inclusionsat(T ) ⊆ sat(U) goes through the computation of a
system of generators ofsat(T ) by means of Gröbner bases. Unfor-
tunately, such computations can be expensive (see [3]) whereas one
would like to obtain an inclusion test which could be used inten-
sively in order to remove redundant components when computing
the triangular decompositions of Kalkbrener’s algorithm or those
arising in differential algebra. Note that for other kinds of trian-
gular decompositions, such as those of [17, 20], this question has
been solved in [6].

Therefore, testing the inclusionsat(T ) ⊆ sat(U) without Gröbner
basis computation is a very important question in practice.More-
over, this can be regarded as analgebraic versionof the Ritt prob-
lem in differential algebra. One case presents no difficulties: if
sat(T ) is a zero-dimensional ideal, the product of the initial poly-
nomials ofT is invertible modulo〈T 〉 (see Proposition 5 in [18])
and thusT generatessat(T ). In this case the inclusion test for sat-
urated ideals reduces to the membership problem mentioned above.

In positive dimension, however, the idealsat(T ) could be strictly
larger than that generated byT . Consider for instancen = 4 and
T = {x1x3 + x2, x2x4 + x1}, we have

〈T 〉 = 〈x1, x2〉 ∩ 〈x1x3 + x2,−x3x4 + 1〉.



Thus, we have

sat(T ) = 〈T 〉 : (x1x2)
∞ = 〈x1x3 + x2,−x3x4 + 1〉.

In this article, we give a necessary and sufficient conditionfor the
equality〈T 〉 = sat(T ) to hold. Looking at the above example, one
can feel that the ideal〈x1, x2〉 can be regarded as a “sort of content”
of the ideal〈T 〉, which is discarded when computingsat(T ). We
observe also that the polynomialsx1x3 + x2 andx2x4 + x1 are
primitive in (k[x1, x2])[x3] and(k[x1, x2])[x4] respectively. Thus,
the “usual notion” of primitivity (for a univariate polynomial over
a UFD) is not sufficient to guarantee the equality〈T 〉 = sat(T ).
This leads us to the following two definitions.

Let R be a commutative ring with unity. We say that a non-
constant polynomialp = aex

e + · · ·+ a0 ∈ R[x] is weakly prim-
itive if for any β ∈ R such thatae dividesβae−1, . . . , βa0 then
ae dividesβ as well. This notion and its relations with similar con-
cepts are discussed in Sections 3, 4, and 5.

We say that the regular chainT = {p1, . . . , pm} is primitive if
for all 1 ≤ k ≤ m, the polynomialpk is weakly primitive inR[xj ],
wherexj is the main variable ofpk andR is the residue class ring
k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

The first main result of this paper is the following:the regular
chainT generates its saturated ideal if and only ifT is primitive.
This result, generalizing the concept of primitivity from univariate
polynomials to regular chains, is established in Section 4.

In Section 6, looking at regular chains from the point of viewof
regular sequences, we obtain our second main result: an algorithm
to decide whether a regular chain generates its saturated ideal or
not. The pseudo-code and its proof are presented in Section 6. This
algorithm relies on a procedure for computing triangular decompo-
sitions. However, being applied to input systems which are regular
sequences and “almost regular chains”, this procedure reduces sim-
ply to an iterated resultant computation. As a result, the proposed
algorithm performs very well in practice and is Gröbner basis free.

In Section 7 we report on experimentation, where we confirm the
efficiency of the algorithm. Meanwhile, we observe that primitive
regular chains are often present in the output of triangulardecom-
positions. The paper is concluded with a few remarks.

2. PRELIMINARIES

2.1 Triangular set and regular chain
We denote byk[x] the ring of multivariate polynomials with

coefficients in a fieldk and with ordered variablesx = x1 ≺
· · · ≺ xn. For a non-constant polynomialp ∈ k[x], the grea-
test variable appearing inp is calledmain variable, denoted by
mvar(p). We regardp as a univariate polynomial in its main vari-
able. The degree, the leading coefficient, the leading monomial
and the reductum ofp as a univariate polynomial inmvar(p) are
calledmain degree, initial , rank andtail of p; they are denoted by
mdeg(p), init(p), rank(p) andtail(p) respectively. Thus we have
p = init(p)rank(p) + tail(p).

Let R be a commutative ring with unity andF be a subset ofR.
Denote by〈F 〉 the ideal it generates, by

p

〈F 〉 the radical of〈F 〉,
and byR/〈F 〉 theresidue class ringof R with respect to〈F 〉. For
an elementp in R, we say thatp is zero modulo〈F 〉 if p belongs to
〈F 〉, that is,p is zero as an element inR/〈F 〉. An elementp ∈ R is
a zerodivisormodulo〈F 〉, if there existsq ∈ R such thatp /∈ 〈F 〉
andq /∈ 〈F 〉 butpq ∈ 〈F 〉. We say thatp is regular modulo〈F 〉 if
it is neither zero, nor a zerodivisor modulo〈F 〉. Furthermore,p is
invertible in R if there exists aq ∈ R such thatpq = 1.

Example 2.1 Consider the polynomials ink[x1, x2, x3]

p1 = x2
2 − x2

1, p2 = (x2 − x1)x3 and p3 = x2x
3
3 − x1.

The above notions are illustrated in the following table.

mvar init mdeg rank tail
p1 x2 1 2 x2

2 −x2
1

p2 x3 x2 − x1 1 x3 0
p3 x3 x2 3 x3

3 −x1

The initialx2− x1 of p2 is a zerodivisor modulo〈p1〉, since(x2 +
x1)(x2−x1) is in 〈p1〉, while neitherx2 +x1 nor x2−x1 belongs
to 〈p1〉. However, the initialx2 of p3 is regular modulo〈p1〉.

In what follows, we recall the notions of regular chain and satu-
rated ideal, which are the main objects in our study.

A setT of non-constant polynomials ink[x] is called atriangu-
lar set, if for all p, q ∈ T with p 6= q we havemvar(p) 6= mvar(q).
For a nonempty triangular setT , we define thesaturated ideal
sat(T ) of T to be the ideal〈T 〉 : h∞, that is,

sat(T ) := 〈T 〉 : h∞ = {q ∈ k[x] | ∃e ∈ Z≥0 s.t.heq ∈ 〈T 〉},

whereh is the product of the initials of the polynomials inT . The
empty set is also regarded as a triangular set, whose saturated ideal
is the trivial ideal〈0〉.

One way of solving (or decomposing) a polynomial setF ⊆
k[x] is to compute triangular setsT1, . . . , Te ⊆ k[x] such that
p

〈F 〉 equals the intersection of
p

sat(T1), . . . ,
p

sat(Te). It is
thus desirable to require thatsat(T1), . . . , sat(Te) be proper ide-
als. This observation has led to the notion of a regular chainwhich
was introduced independently in [13] and [22].

Definition 2.2 (Regular chain) Let T be a triangular set ink[x].
If T is empty, then it is a regular chain. Otherwise, letp be the
polynomial ofT with the greatest main variable and letC be the
set of other polynomials inT . We say thatT is a regular chain, if
C is a regular chain andinit(p) is regular modulosat(C).

In commutative algebra (See [10]) there is a closely relatedcon-
cept calledregular sequencewhich is a sequencer1, . . . , rs of
nonzero elements in the ringk[x] satisfying

(i) 〈r1, . . . , rs〉 is a proper ideal ofk[x];

(ii) ri is regular modulo〈r1, . . . , ri−1〉, for each2 ≤ i ≤ s.

When we sort polynomials in a regular chain by increasing main
variable, the following example says that the resulting sequence
may not be a regular sequence ofk[x].

Example 2.3 LetT = {t1, t2} be a triangular set ink[x1, x2, x3]
with t1 = x1x2 andt2 = x1x3. Then{t1} is a regular chain with
sat({t1}) = 〈x1x2〉 : x∞

1 = 〈x2〉. Sinceinit(t2) = x1 is regular
modulosat({t1}), the triangular setT is a regular chain with

sat(T ) = 〈x1x2, x1x3〉 : x∞
1 = 〈x2, x3〉.

However,t1, t2 is not a regular sequence sincet2 = x1x3 is not
regular modulo〈x1x2〉. Here, the saturation operationdiscardsthe
content introduced by the initials.



2.2 Properties of regular chains
We recall several important results on regular chains and satu-

rated ideals, which will be used throughout this paper. Pseudo-
division and iterated resultant are fundamental tools in this context.

Let p and q be polynomials ofk[x], with q 6∈ k. Denote by
prem(p, q) andpquo(p, q) thepseudo-remainderand thepseudo-
quotientof p by q, regardingp andq as univariate polynomials in
x = mvar(q). Using these notations, we have

init(q)ep = pquo(p, q)q + prem(p, q), (1)

wheree = max{deg(p, x) − deg(q, x) + 1, 0}; moreover either
r := prem(p, q) is null ordeg(r, x) < deg(q, x). Pseudo-division
generalizes as follows given a polynomialp and a regular chainT :

prem(p, T ) =



p if T = ∅,
prem(prem(p, t), T ′) if T = T ′ ∪ {t},

wheret is the polynomial inT with greatest main variable. We have
thepseudo-division formula[21]: there exist non-negative integers
e1, . . . , es and polynomialsq1, . . . , qs ∈ k[x] such that

he1

1 · · ·hes

s p =
s

X

i=1

qiti + prem(p, T ), (2)

whereT = {t1, . . . , ts} andhi = init(ti), for 1 ≤ i ≤ s.
We denote byres(p, q) the resultantof p andq regarding them

as univariate polynomials inmvar(q). Note thatres(p, q) may be
different fromres(q, p), if they have different main variables. For a
polynomialp and a regular chainT , we define theiterated resultant
of p w.r.t. T , denoted byires(p, T ), as follows:

ires(p, T ) =



p if T = ∅,
ires(res(p, t), T ′) if T = T ′ ∪ {t},

wheret is the polynomial inT with greatest main variable.

Theorem 2.4 For a regular chainT and a polynomialp we have:

(1) p belongs tosat(T ) if and only ifprem(p, T ) = 0,

(2) p is regular modulosat(T ) if and only ifires(p, T ) 6= 0,

(3) p is a zerodivisor modulosat(T ) if and only if ires(p, T ) =
0 andprem(p, T ) 6= 0.

For the proofs, we refer to [2] for item (1), and to [20, 5] for item
(2). Item (3) is a direct consequence of (1) and (2).

Remark 2.5 Theorems 2.4 and 2.6 highlight the structure of the
associated primes ofsat(T ) which makes regularity test easier
than with an arbitrary polynomial ideal. In general, deciding if a
polynomialp is regular modulo an idealI is equivalent to checking
if p does not belong to any associated primes ofI .

An ideal in k[x] is unmixed, if all its associated primes have the
same dimension. In particular, an unmixed ideal has no embedded
associated primes.

Theorem 2.6 Let T = C ∪ {t} be a regular chain ink[x] with t
having greatest main variable inT . The following properties hold:

(1) sat(T ) is an unmixed ideal with dimensionn− |T |,
(2) sat(T ∩ k[x1, . . . , xi]) = sat(T ) ∩ k[x1, . . . , xi],

(3) sat(T ) = 〈sat(C) ∪ {t}〉 : init(t)∞.

For the proofs, we refer to [4, 7] for item (1), to [2] for item (2), and
to [14] for item (3). From (1), we deduce that the saturated ideal of
a regular chainT consisting ofn polynomials has dimension0.

3. PRIMITIVITY OF POLYNOMIALS
In this section, we introduce the notion of weak primitivityof

a polynomial in a general univariate polynomial ring, and then
present several of its properties.

The following Lemma 3.1 may be seen as a generalization of
Gauss lemma over an arbitrary commutative ring with unity. It will
be used in the proof of our main theorem. We found that this lemma
is not new and can be deduced from the Dedekind-Mertens Lemma
(See [1, 9, 8] and the references therein). For the sake of reference,
we include our direct proof here. In the sequel, the ringR is a
commutative Noetherian ring with unity. We say thatp dividesq,
denoted byp | q, if there existsr such thatq = pr holds.

Lemma 3.1 Let p =
Pm

i=0 aiy
i and q =

Pn

i=0 biy
i be polyno-

mials inR[y] with deg(p) = m ≥ 0 anddeg(q) = n ≥ 0. Then
for eachh ∈ R,

(i) h | pq impliesh | b0a
n+1
i for 0 ≤ i ≤ m,

(ii) h | pq impliesh | bnan+1
i for 0 ≤ i ≤ m.

PROOF. First, we prove(i). Considering first the special case
m = 0, we observe thath | pq impliesh | a0b0 and the conclusion
follows. Now we assume thatm > 0 holds.

For i = 0, the claim is also clear, for the same reason as the case
m = 0. For1 ≤ i ≤ m, we introduce the polynomialsAi andBi

below in order to simplify our expressions:

Ai =

i−1
X

j=0

ajy
j , andBi = −

m
X

j=i

ajy
j . (3)

Clearly, we havep = Ai − Bi. The key observation is to consider
the polynomialp̃ = An+1

i − Bn+1
i , as suggested by the forms of

our claims. To avoid talking about the degree of a zero polynomial,
we assume that bothAn+1

i andBn+1
i are nonzero polynomials.

According to the construction ofAi andBi in (3), we have the
following degree estimates:

deg(An+1
i ) ≤ deg(Ai)(n + 1) ≤ (i− 1)(n + 1), (4)

trdeg(Bn+1
i ) ≥ trdeg(Bi)(n + 1) ≥ i(n + 1), (5)

wheretrdeg(·) denotes the trailing degree, that is, the degree of
the term with lowest degree in a polynomial. Therefore thereis no
term cancellation betweenAn+1

i andBn+1
i . With the assumption

thatAi andBi nonzero, the polynomial̃p is nonzero too. Now we
write p̃ in the form

p̃ = (Ai −Bi)(A
n
i + · · ·+ Bn

i ) = p(An
i + · · ·+ Bn

i ).

It follows thatp | p̃ holds. Thereforeh | p̃q holds since we have
h | pq. Observe now that ifqAn+1

i is nonzero, then

deg(qAn+1
i ) ≤ (i− 1)(n + 1) + n < i(n + 1). (6)

Similarly, if qBn+1
i is nonzero, then its trailing degree is bounded

trdeg(qBn+1
i ) ≥ i(n + 1). (7)

Combining (6) with (7), we know that inqp̃ = qAn+1
i − qBn+1

i ,
the polynomialqAn+1 only contributes to terms with degree smaller
thani(n + 1). Thus we have

coeff(qp̃, yi(n+1)) = coeff(−qBn+1
i , yi(n+1)) = b0a

n+1
i (8)

which impliesh | b0a
n+1
i , as desired.

Now we handle the special cases whereAn+1
i = 0 andBn+1

i =
0. It is easy to see thatAn+1

i = 0 does not affect the proof above.



WhenBn+1
i = 0, simply we havean+1

i = 0, and then the claim is
also clear.

Finally, we prove(ii). Let P = ymp(1/y) andQ = ynq(1/y).
Sinceh | pq, h will also dividePQ = ym+n(pq)(1/y). Assume
that

a0 = · · · = ar−1 = 0, ar 6= 0,

b0 = · · · = bs−1 = 0, bs 6= 0.

Thenr ≤ m ands ≤ n hold. According to(i), for anyr ≤ i ≤ m,
h | bnas+1

i . It follows thath | bnan+1
i for any0 ≤ i ≤ m.

Definition 3.2 Let p = a0 + · · · + aex
e ∈ R[x] with e ≥ 1.

The polynomialp is strongly primitive if the ideal generated by
{a0, . . . , ae} is the whole ringR. The polynomialp is weakly
primitive if for anyβ ∈ R such thatae | βai holds for all0 ≤ i ≤
e− 1, we haveae | β as well.

Proposition 3.3 Strong primitivity implies weak primitivity.

PROOF. We use the same notation as in Definition 3.2. Letp
be strongly primitive. Then there existce, . . . , c0 ∈ R such that
ceae + · · · + c0a0 = 1. Let β ∈ R such that for0 ≤ j ≤
e − 1, we haveae | βaj . Then there existd0, . . . , de−1 ∈ R
such thataedj = βaj . Sinceβceae + · · ·+ βc0a0 = β, we have
ae(βce + de−1ce−1 · · · + d0c0) = β. Thus, we haveae | β, and
thereforep is weakly primitive.

Remark 3.4

(1) If anyai is invertible, thenp is strongly primitive and then is
weakly primitive. As a particular case,p is weakly primitive
if one of its coefficients is a nonzero constant of a field.

(2) Weak primitivity does not imply strong primitivity. For ex-
ample, letR = Z[t] and p = tx + 2 ∈ Z[t][x]. Thenp
is not strongly primitive, since〈t, 2〉 6= 〈1〉R. In R[x], the
polynomialp is weakly primitive. Ift | 2β, thent | β must
hold.

(3) The definition of strongly primitive does not depend on the
orderof the coefficients inp. However, the definition of weakly
primitive relies on it. Indeed, letR = Z4[t], p = 2̄x + t and
q = tx + 2̄ . Then we have

(i) p is weakly primitive inR[x]. For any β ∈ R[x], if
2̄ | tβ then2̄ | β.

(ii) q is not weakly primitive inR[x]. Letβ = t+2̄ ∈ R[x].
Then we havet | 2̄(t + 2̄) = 2̄t, andt ∤ (t + 2).

(4) Weak primitivity may not be extended. That is to say, ifp
is weakly primitive, assuming thatdeg(p) = e > 0, then
p̄ = p + qxe+1 may not be weakly primitive. For example,
let R = Z4[t], p = 2̄x+ t and p̄ = p+ tx2 = tx2 + 2̄x+ t.
Thenp is weakly primitive, and̄p is not weakly primitive.
Indeed takingβ = t+2̄, we havet | tβ andt | 2̄β, butt ∤ β.

According to Proposition 3.5 the notion of weak primitivityturns
out to be a generalization of the ordinary notion of primitivity (the
gcd of the coefficients of a univariate polynomial is1).

Proposition 3.5 LetR be aUFD andp =
Pe

i=0 aix
i ∈ R[x] with

ae 6= 0 ande ≥ 1. Then, the following statements are equivalent

(i) p is weakly primitive inR[x].

(ii) content(p) := gcd(a0, . . . , ae) = 1.
PROOF. We prove(i) ⇒ (ii). Assume thatgcd(a0, . . . , ae) 6=

1. Then there is a prime factorf of gcd(a0, . . . , ae). Let β =
ae/f . Thenae | βai, for 0 ≤ i ≤ e − 1. Sinceae ∤ β, p is not
weakly primitive, a contradiction.

We prove(ii)⇒ (i). Assume that there existsβ ∈ R such that

(∀ 0 ≤ j ≤ e− 1) ae | βaj and ae ∤ β.

Thenae | content(βp) = βcontent(p). Sinceae ∤ β, some prime
factorf of ae dividescontent(p), a contradiction.

The following property on weak primitivity will be used in the next
section. It states the following fact: if one raises each coefficient of
a weakly primitive polynomialp to some power, then the resulting
polynomial is still weakly primitive. To avoid the cancellation of
the leading coefficient ofp, we assume that this coefficient is a
regular element of the ground ring.

Proposition 3.6 Letp =
Pe

i=0 aix
i ∈ R[x] with ae being regular

in R, and {ni | 0 ≤ i ≤ e} be a set of non-negative integers.
Defineq =

Pe

i=0 ani

i xi. Then ifp is weakly primitive,q is also
weakly primitive.

The proof directly follows from the following two lemmas.

Lemma 3.7 Letp = a0+· · ·+aex
e ∈ R[x] with ae being regular

in R andn be a non-negative integer. Ifp is weakly primitive, then
pn = a0 + · · ·+ ae−1x

e−1 + an
e xe is also weakly primitive.

PROOF. By induction onn ≥ 0. The casen = 0 follows from
Remark 3.4. So we assume that the claim is true forn − 1, that
is, pn−1 is weakly primitive, withn ≥ 1. Let β ∈ R such that
an

e | aiβ, for 0 ≤ i ≤ e − 1. There existh0, . . . , he−1 ∈ R such
that we have

an
e hi = aiβ, 0 ≤ i ≤ e− 1. (9)

Sincepn−1 is weakly primitive and since we havean−1
e | aiβ, we

deducean−1
e | β, that is, there existsh′ ∈ R such that

an−1
e h′ = β. (10)

With (9) and (10) we havean
e hi = aia

n−1
e h′, and thenaehi =

aih
′, sinceae is regular. Henceae | aih

′. By the weak primitivity
of p, ae | h′ holds, that is, there existsh′′ ∈ R such that

aeh
′′ = h′. (11)

By (10) and (11) we havean
e h′′ = β. Soan

e | β andpn is weakly
primitive.

Lemma 3.8 Letp = a0+· · ·+aex
e ∈ R[x] withae 6= 0 andn be

a non-negative integer. Letj be an index such that0 ≤ j ≤ e− 1.
Defineq = a0 + · · ·+ an

j xj + · · ·+ aex
e = p + (an

j − aj)x
j . If

p is weakly primitive, thenq is also weakly primitive.
PROOF. The claim is clear ifn = 0, so we assumen ≥ 1. Let

β ∈ R such that, for0 ≤ i ≤ e− 1 andi 6= j

ae | aiβ, andae | an
j β. (12)

We prove thatae | β holds. We have, for0 ≤ i ≤ e− 1 andi 6= j

ae | ai(a
n−1
j β), andae | aj(a

n−1
j β).

Defineβ′ = an−1
j β. Henceae | β′ holds, sincep is weakly primi-

tive. With (12), for0 ≤ i ≤ e− 1 andi 6= j we have

ae | aiβ, andae | an−1
j β. (13)

We deduce thatae | an−2
j β holds. Continuing in this manner, we

reachae | β. Thusq is also weakly primitive.



4. PRIMITIVE REGULAR CHAIN
In this section, we generalize the notion of primitivity to any

regular chainT . Then we prove thatsat(T ) = 〈T 〉 holds if and
only if T is primitive.

Definition 4.1 Let T = {p1, . . . , pm} ⊂ k[x] = k[x1, . . . , xn]
be a regular chain withmvar(p1) ≺ · · · ≺ mvar(pm). We say
that T is primitive if for all 1 ≤ k ≤ m, pk is weakly primitive in
R[xj ] wherexj = mvar(pk) and

R = k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

Proposition 4.2 (Base case of Theorem 4.4)
Let p = aex

e + · · · + a0 ∈ k[y][x] andc = gcd
k[y](a0, . . . , ae),

where e ≥ 1 and y is a finite set of variables. Then we have
〈p〉 = 〈p〉 : a∞

e ⇐⇒ c = 1.

PROOF. First we prove that〈p〉 ( sat(p) := 〈p〉 : a∞
e if c 6= 1.

Denotep̄ = p/c. Thenaep̄ = aep/c ∈ 〈p〉, hencep̄ ∈ sat(p).
Assume that̄p is in 〈p〉. Then there existsq ∈ k[y][x] such that
p/c = p̄ = pq. It follows that qc = 1 which is a contradiction
sincec /∈ k. Thereforep̄ is in sat(p) but not in〈p〉.

Conversely, we prove that ifc = 1 then sat(p) ⊆ 〈p〉. For
any q ∈ sat(p), there existn ∈ Z≥0 andβ ∈ k[y][x] such that
an

e q = βp . Taking the content w.r.t.x, we have

an
e content(q, x) = content(β, x) content(p, x)

= content(β, x)

Thusan
e | β. There existsβ′ ∈ k[y][x] such thatβ = an

e β′. So we
havean

e q = βp = an
e β′p, and thenq = β′p, that is,q ∈ 〈p〉.

Remark 4.3 LetT = {p1} be a regular chain consisting of a sin-
gle polynomial. By definition,T is primitive if and only ifp1 is
weakly primitive inR = k[x1, . . . , xj−1], wherexj = mvar(p1).
SinceR is a UFD, it follows from Proposition 3.5, thatT is prim-
itive if and only ifp1 is primitive in ordinary sense, that is, when-
ever thegcd of the coefficients ofp1 (as a univariate polynomial in
R[xj ]) is 1. Therefore, the notion of primitivity for a regular chain
extends that of primitivity for a polynomial.

Theorem 4.4 Let T ⊂ k[x1, . . . , xn] be a regular chain. ThenT
is primitive if and only if〈T 〉 = sat(T ).

PROOF. We prove the theorem by induction on the number of
polynomials inT . The base case is Proposition 4.2, where|T | = 1.
Now assume thatT = {p1, . . . , pm} consists ofm ≥ 2 polyno-
mials withmvar(p1) ≺ · · · ≺ mvar(pm). We denote byTk the
regular chain consisting of the firstk polynomials inT .

First, assume indirectly thatT is not primitive. We need to prove
that〈T 〉 is a proper subset ofsat(T ). Let k be the smallest integer
such thatpk is not weakly primitive inR[y], wherey = xj =
mvar(pk) andR = k[x1, . . . , xj−1]/〈Tk−1〉. By Proposition 4.2,
we knowk ≥ 2.

Let pk = aey
e + · · ·+ a0. By induction,sat(Tk−1) = 〈Tk−1〉

holds and thusae is regular inR. Sincepk is not weakly primitive
overR, there existsβ ∈ k[x1, . . . , xj−1] such that, inR, we have

(∀0 ≤ r ≤ e− 1) ae | βar and ae ∤ β.

Defineqk = βpk/ae. Thenqk ∈ R[y], since

β

ae

pk = βye +
X

0≤r<e

βar

ae

yr.

We claim thatqk ∈ 〈pk〉 : a∞
e andqk /∈ 〈pk〉 in R[y], which leads

to sat(Tk) 6= 〈Tk〉.

Indeed, we haveaeqk = βpk ∈ 〈pk〉 in R[y]. Thus,qk ∈ 〈pk〉 :
a∞

e . Now if qk ∈ 〈pk〉, there existsα ∈ R[y] such thatqk = αpk

in R[y]. By the construction ofqk, deg(qk, y) equalsdeg(pk, y).
Henceα ∈ R andβ − αae = 0 in R. This contradictsae ∤ β.

Secondly, we assume thatT is primitive and show〈T 〉 = sat(T ).
By induction, sat(Tk−1) = 〈Tk−1〉 holds. We shall prove that
sat(Tk) = 〈Tk〉 holds, too. To do so, we considerp ∈ sat(Tk) and
show that we havep ∈ 〈Tk〉. Let mvar(p) = xi andmvar(pk) =
xj . If i > j, thenp ∈ sat(Tk) if and only if all coefficients of
p w.r.t xi are insat(Tk), sinceTk is a regular chain. So we can
concentrate on the casep ∈ k[x1, . . . , xj ].

Let hpk
be the leading coefficient ofpk w.r.t. y = xj , that is,

w.r.t. the main variable ofpk. By virtue of Theorem 2.6 we have

sat(Tk) = 〈sat(Tk−1), pk〉 : h∞
pk

= 〈〈Tk−1〉, pk〉 : h∞
pk

.

By virtue of Theorem 2.4 we haveprem(p, Tk) = 0, sincep ∈
sat(Tk). Consequently,prem(p, pk) is in sat(Tk−1) = 〈Tk−1〉.
Now the pseudo-division formula (1) in Section 2 leads to

hα
pk

p = pquo(p, pk)pk + prem(p, pk), (14)

whereα = max{0, deg(p, y)−deg(pk, y)+1}. If deg(p, y) <
deg(pk, y), thenp = prem(p, pk) ∈ 〈Tk−1〉 ⊂ 〈Tk〉 holds and
we are done. From now on, we assumedeg(p, y) ≥ deg(pk, y)
and we writeα = deg(p, y) − deg(pk, y) + 1. With (14) we
observe that we have the following equation inR[y]

hα
pk

p = q pk. (15)

We consider a more general situation: lets ∈ sat(Tk), let δ be a
non-negative integer and letu ∈ k[x1, . . . , xn] such that

hδ
pk

s = u pk (16)

holds inR[y]. In order to prove thatp ∈ 〈Tk〉 holds, we prove that
s ∈ 〈Tk〉 by induction on the number of terms inu. For simplicity,
we denote

pk =
e

X

i=0

aiy
i and u =

f
X

i=0

biy
i,

with ae 6= 0 andbf 6= 0. Note thatae = hpk
.

If u = 0 in R[y], thenae
δs = 0 in R[y]. Sinceae is regular

in R, we deduces = 0 in R[y], that is,s ∈ 〈Tk−1〉 and thus
s ∈ 〈Tk〉. Assumeu 6= 0 in R[y]. Let f ′ be the largest integer

such thatbf ′ /∈ 〈Tk−1〉 and writeu′ =
Pf ′

i=0 biy
i. We have

aδ
es = u′pk in R[y]. (17)

By Lemma 3.1, for any0 ≤ i ≤ e, we haveaδ
e | bf ′af ′+1

i in R.
Sincepk is weakly primitive inR[y], by Proposition 3.6 we have
aδ

e | bf ′ in R. Thus there existsγ ∈ k[x1, . . . , xj−1], γ 6= 0 in R,
such that

aδ
eγ = bf ′ in R. (18)

We define

s′ = s− γyf ′

pk. (19)

Sinces ∈ sat(Tk) we haves′ ∈ sat(Tk). Moreover we have

u′ = aδ
eγyf ′

+ tail(u′).

Therefore, the following holds inR[y]:

aδ
es

′ = tail(u′)pk. (20)

By induction hypothesis we haves′ ∈ 〈Tk〉. With (19) we conclude
s ∈ 〈Tk〉, as desired.



5. WEAK PRIMITIVITY TEST
In this section, we point out the componentwise nature of weak

primitivity. That is, if R can be written as a direct product of rings,
then checking weak primitivity overR reduces to checking weak
primitivity over each of its “components”.

Lemma 5.1 Let R1, . . . , Rn be commutative rings with1. Let
R = Πn

i=1Ri be their direct product and letπk be the canoni-
cal projection fromR to Rk. Leta, b ∈ R. Thena | b in R if and
only if πk(a) | πk(b) for each1 ≤ k ≤ n.

The proof of this lemma is straightforward, and thus is omitted.

Proposition 5.2 LetR = Πn
i=1Ri be a direct product of rings and

let πk be the canonical projection fromR to Rk and τk be the
canonical injection fromRk to R. Letp =

Pe

i=0 aix
i ∈ R[x] be

a polynomial withae being regular inR. Thenp is weakly primitive
in R[x] if and only ifπk(p) =

Pe

i=1 πk(ai)x
i is weakly primitive

in Rk[x] for each1 ≤ k ≤ n.

PROOF. For any1 ≤ k ≤ n, denotepk = πk(p). Sinceae

is regular inR, πk(ae) 6= 0 for eachk, and then eachpk is a
polynomial of degreee.

First we prove that if allpk are weakly primitive thenp is also
weakly primitive. Letβ ∈ R satisfyingae | aiβ for 0 ≤ i ≤ e−1.
By definition, we need to prove thatae | β in R.

Applying πk to ae | aiβ, we haveπk(ae) | πk(ai)πk(β), for
0 ≤ i ≤ e − 1. By the weak primitivity ofpk, we haveπk(ae) |
πk(β). So there existsuk ∈ Rk such thatπk(ae)uk = πk(β). De-
fine u = (u1, . . . , un) ∈ Πn

i=1Ri. Thenπk(u) = uk, and hence
πk(ae)πk(u) = πk(β), for each1 ≤ k ≤ n. By Lemma 5.1,
ae | β in R. We proved thatp is weakly primitive inR[x].

On the other hand, we prove that, ifpk is not weakly primitive
overRk for some1 ≤ k ≤ n thenp is not weakly primitive over
R. For simplicity, we assumek = 1. So, there existsβ1 ∈ R1 such
thatπ1(ae) | π1(ai)β1 for 0 ≤ i ≤ e− 1, butπ1(ae) ∤ β1. Define
β = τ1(β1) = (β1, 0, . . . , 0) ∈ R. Then we claim thatae ∤ β
andae | aiβ for 0 ≤ i ≤ e − 1. This implies thatp is not weakly
primitive overR, as desired.

Indeed, first we haveae ∤ β, sinceπ1(ae) ∤ π1(β) = β1. Sec-
ond, to proveae | aiβ for 0 ≤ i ≤ e− 1, by Lemma 5.1, we need
to prove thatπk(ae) | πk(aiβ) for 1 ≤ k ≤ n and0 ≤ i ≤ e− 1.
If k = 1, it follows from the choice ofβ1. If 2 ≤ k ≤ n, we have

πk(aiβ) = πk(ai)πk(β) = πk(ai) · 0 = 0

for 1≤ i≤e−1. Thusπk(ae) |πk(aiβ) holds for1≤ i≤e−1.

Example 5.3 Let T = {p1, p2} be a regular chain inQ[t ≺ x ≺
y] with p1 = x(x− t), p2 = (x + t)y + t. Sincep1 = x2 − tx is
strongly primitive in(Q[t])[x], p1 is weakly primitive in(Q[t])[x].
LetR = Q[t, x]/〈x(x− t)〉. Then we have

R = R1 ×R2 = Q[x, t]/〈x〉 ×Q[x, t]/〈x− t〉 ≃ Q[t]×Q[t].

OverR1, p2 = ty + t is not weakly primitive, sincet is not invert-
ible overR1 and according to the definition we can chooseβ = 1.
HenceT is not a primitive regular chain.

In order to generalize the construction of the above exampleinto
an algorithm, one would need to use algebraic factorization. In the
next section, we propose a primitivity test for regular chains which
avoids algebraic factorization, relying instead on polynomial GCDs
modulo regular chains. Based on the algorithms and softwaretools
available today we view it as a practical solution, as confirmed in
Section 7.

6. A PRIMITIVITY TEST ALGORITHM
In Section 4, we define the notion of primitive regular chain

which generalizes that of primitive polynomial over a UFD. In this
section, we present another characterization on primitivity in terms
of regularity of a polynomial. As a consequence, we obtain anal-
gorithm to test whether a regular chain is primitive or not.

Lemma 6.1, 6.2, 6.3 and 6.4 are well-known facts. The proofs of
Lemma 6.1 and 6.4 are straightforward. Lemma 6.2 can be found
as Lemma 9.2.3 in [12] whereas Lemma 6.3 is Lemma 7 in [8].

Lemma 6.1 Let I be a proper ideal ofR and leth be an element
of R. Thenh is regular moduloI if and only ifI = I : h∞ holds.

Lemma 6.2 Leta andb be two regular elements ofR. Assume that
a andb are not invertible. Ifa is regular modulo〈b〉 thenb is also
regular modulo〈a〉.

Lemma 6.3 (Mc Coy Lemma) A non-zero polynomialf ∈ R[x]
is a zerodivisor if and only if there exists a non-zero element a ∈ R
such thataf = 0 holds.

Lemma 6.4 Let f ∈ R[x] be a non-constant polynomial. If its
leading coefficient is a regular element inR, thenf is not a unit.

Proposition 6.5 Let R be a Noetherian commutative ring with1.
Consider a polynomialf =

Pn

i=0 aix
i ∈ R[x]. Assume thatn is

at least1 andan is regular inR. Then〈f〉 = 〈f〉 : a∞
n holds if

and only ifan is invertible inR, or tail(f) is regular modulo〈an〉.
PROOF. If an is invertible inR, then clearly〈f〉 : a∞

n = 〈f〉
holds. So we assume thatan is not invertible inR. Note that
bothan andf are regular inR[x]; this follows from Lemma 6.3.
Sincean is not invertible inR, an is not invertible inR[x] either.
Sincean is regular inR, it follows from Lemma 6.4 thatf is not
invertible inR[x]. Then, applying Lemma 6.1 and 6.2, we deduce

〈f〉 = 〈f〉 : an
∞ ⇐⇒ an is regular modulo〈f〉
⇐⇒ f is regular modulo〈an〉
⇐⇒ tail(f) is regular modulo〈an〉.

This completes the proof.

The following corollary may be seen as another characterization
of the primitivity of a regular chain. This also provides an algorithm
for checking whether a regular chain is primitive or not.

Corollary 6.6 (Primitivity test of a regular chain)
Let T ⊂ k[x1, . . . , xs−1] be a primitive regular chain. Letp =
Pe

i=0 aix
i
s ∈ k[x1, . . . , xs] with ae being regular modulosat(T ).

Denotetail(p) =
Pe−1

i=0 aix
i
s. ThenT ∪{p} is a primitive regular

chain if and only ifae is invertible modulosat(T ), or tail(p) is a
regular polynomial modulo〈T ∪ {ae}〉.

PROOF. This is a direct consequence of Proposition 6.5, Theo-
rem 4.4 and the definition of a regular chain.

Thus the problem of checking whether a regular chainT ∪ {p}
is primitive or not, reduces to checking whether the polynomial
tail(p) is regular or not modulo〈T, ae〉. We next show that(T, ae)
in Corollary 6.6 generates an unmixed ideal; this result is crucial in
view of Algorithm 1 below. Indeed, it allows us to deal with the
following subtle point: a polynomialp regular modulo the radical√

I of an idealI may not be regular moduloI . For example, con-
siderp = y andI = 〈xy, x2〉. Theny is a zerodivisor modulo
I but y is regular modulo

√
I = 〈x〉. If I is unmixed, thenp is

regular moduloI if and only if p is regular modulo
√

I .



Lemma 6.7 Let R = k[x1, . . . , xn] andT be a primitive regular
chain ofR. If t ∈ R is regular but not invertible modulosat(T ),
then(T, t) is a regular sequence ofR and the ideal〈T, t〉 is un-
mixed with dimensionn− |T | − 1.

PROOF. DenoteTi = T ∩ k[x1, . . . , xi]. SinceT is primi-
tive, sat(Ti) = 〈Ti〉 holds for eachi. ThusT is already a regular
sequence ofR. Now sincet is regular but not invertible modulo
sat(T ) = 〈T 〉, by definition(T, t) is a regular sequence.

Let I = 〈T, t〉 andd = |T |. According to the Principal Ideal
Theorem (See Theorem 10.2 of [10]) the dimensiondim(I) of I is
at leastn − (d + 1). On the other hand, since(T, t) is a regular
sequence of lengthd+1, the dimension ofI is at mostn− (d+1).
Hence,dim(I) = n− (d+1) and thenI is unmixed, by Macaulay
Unmixedness Theorem (See Theorem 5.7 of [19]).

Algorithm 1 IsPrimitive

Input: T , a regular chain ofk[x1, . . . , xn].

Output: true if T is primitive, false otherwise.

1: if |T | = 1 then
2: t← the defining polynomial ofT
3: if content(t, mvar(t)) ∈ k then return trueelsereturn false
4: else
5: writeT asT ′ ∪ {t}, wheret has the greatest main variable
6: if not IsPrimitive(T ′) then
7: return false
8: else
9: h← init(t), r ← tail(t)

10: for U ∈ Triangularize(T ′ ∪ {h}) do
11: if ires(r, U) = 0 then return false
12: end for
13: return true
14: end if
15: end if

Remark 6.8 (on the procedure IsPrimitive)

(1) The functionTriangularize decomposes a polynomial sys-
temF into a finite set of regular chainsUi such that

p

〈F 〉 =
∩i

p

sat(Ui) holds; this is called a triangular decomposition
of F in the sense of Kalkbrener [3]. According to the above
specification, the set of the associated primes of

p

〈F 〉 are
“implicitly” represented byUi’s .

Triangularize is one of the core functions in theREGU-
LARCHAINS library [15]; it implements the triangular de-
composition algorithm of [17]. While computing in Kalk-
brener’s sense, it has the same specification as the function
solven in Kalkbrener [13], although the algorithms of [17]
and [13] are quite different.

Apart from Kalkbrener’s sense,Triangularize can also work
in Lazard’s sense [3], where all solutions of the input systems
will be explicitly represented by means of regular chains. In
general, this function runs faster in Kalkbrener’s sense, since
only genericsolutions will be represented explicitly.

(2) The use ofTriangularize seems hard to avoid. The pur-
pose is to represent all associated primes of the ideal〈T ∪
{h}〉 by means of regular chains. Geometrically, it is the in-
tersection of the zero set ofT with the hypersurface defined
byh.

(3) Algorithm 1 can be optimized using Item(1) of Remark 3.4:
if a coefficientai of t = aex

e+· · ·+a0 is a nonzero constant,
then lines 10-12 can be skipped sincet is strongly primitive.

PROOF OFALGORITHM ISPRIMITIVE . Termination of the al-
gorithm follows from the fact that in each recursive call thenumber
of polynomials in the input regular chain decreases by1.

For the correctness, we proceed by induction on the number of
polynomials in the regular chainT . When |T | = 1, the specifi-
cation follows from Remark 4.3. So we assume|T | > 1. Defini-
tion 4.1 and Theorem 4.4 imply that ifT is primitive thenT ′ is also
primitive. So we assume thatT ′ is primitive and branch to line 9.

Let U be the output ofTriangularize in line 10 and letI =
〈T ′ ∪ {h}〉. From the specification ofTriangularize , we have

\

U∈U

p

sat(U) =
√

I.

By Corollary 6.6, we need to distinguish two cases:h is invertible
(resp. not invertible) modulo〈T ′〉 = sat(T ′).

If h is invertible modulo〈T ′〉 thenU is empty, and the algorithm
correctly returns true. Assume from now on thath is not invertible
modulo〈T ′〉. In this case by Lemma 6.7, the triangular decompo-
sitionU is not empty. SoT is primitive if and only ifr is regular
moduloI . By Lemma 6.7 again, the idealI is unmixed and there-
foreT is primitive if and only ifr is regular modulo

√
I . This holds

if and only if r is regular modulosat(U) for eachU ∈ U . Finally,
the correctness of Algorithm 1 follows from Theorem 2.4.

Example 6.9 Let R = k[z ≺ y ≺ x] be a polynomial ring and
T = {t1, t2} be a regular chain ofR with t1 = y3−z2, t2 = yx−
z. Clearly,{t1} is a primitive regular chain. LetI = 〈t1, lc(t2)〉 =
〈t1, y〉 = 〈y, z2〉. In Algorithm 1 the call toTriangularize will
produce

√
I = sat(U) whereU = {z, y} is a regular chain. Thus,

the computation

ires(tail(t2), U) = ires(−z, U) = 0

implies thattail(t2) = −z is a zerodivisor moduloI . ThusT is not
primitive. In fact,sat(T ) = 〈xy − z, xz − y2, x2 − y〉 defines the
twisted cubic which can not be generated by only two polynomials.

The above example implies that not every prime ideal can be gen-
erated by a primitive regular chain.

7. EXPERIMENTATION
We implemented the algorithmIsPrimitive on top of the REG-

ULARCHAINS library [15] in MAPLE. The experimentation, de-
scribed hereafter, was conducted on well-known problems used
in [5] 1, and the tests were performed in MAPLE 11 on an Intel
Pentium 4 machine (3.20GHz CPU, 2.0GB memory).

First, we computed their triangular decompositions using the
Triangularize command in the sense of Kalkbrener. Then, we ap-
plied theIsPrimitive algorithm to each regular chain in the output.

In Table 1, we summarize the features of the problems and our
experimental results. The name of the problems are listed inthe
first column. The second column gives the numbern of variables
and the maximal total degreed. For each triangular decomposition
(which is a list of regular chains) we record the total running time
(in seconds) ofIsPrimitive in the third column. The last column
is the result of mappingIsPrimitive to each triangular decomposi-
tion: in each of these patterns Y stands fortrue and N forfalse.

1The defining polynomial systems can be found at
http://www.orcca.on.ca/∼panwei/issac08/



These data show that the procedureIsPrimitive is efficient in
practice. This agrees with the fact that, in Algorithm 1, theinput
polynomial set in each call toTriangularize is rather structured.
We also observe that primitive regular chains appear quite often in
the output of triangular decompositions.

Table 1: Tests for IsPrimitive on 14 examples
System (n, d) Time Pattern
KdV575 (26, 3) 3.525 [Y, Y, Y, Y, Y, Y, Y]
MontesS11 (6, 4) .001 [Y]
MontesS16 (15, 2) .103 [Y, Y, Y, N, Y, Y, Y]
Wu-Wang2 (13, 3) 0.099 [Y, N, Y, Y, Y]
MontesS10 (7, 3) .145 [N]
Lazard2001 (7, 4) 2.314 [Y, Y, Y, N, Y, N]
Lanconelli (11, 3) .062 [N, Y]
Wang93 (5, 3) .142 [N]
Leykin-1 (8, 4) .228 [Y, Y, Y, Y, Y, Y, Y, Y, N, Y, Y, Y, N, N]
MontesS14 (5, 4) 1.171 [Y, N, N]
MontesS15 (12, 2) .312 [N]
Maclane (10, 2) .157 [Y, Y, N, Y, N]
MontesS12 (8, 2) .042 [N]
Liu-Lorenz (5, 2) 1.117 [N, Y]

8. CONCLUDING REMARK
We have generalized the notion of primitivity from univariate

polynomials to regular chains. This has allowed us to establish a
necessary and sufficient condition for a regular chainT to generate
its saturated idealsat(T ). Assume thatT is not empty and write
T = T ′ ∪ {p} wherep is the polynomial ofT with largest main
variable. Theorem 4.4 states that the equality〈T 〉 = sat(T ) holds
whenever〈T ′〉 = sat(T ′) holds and the polynomialp is weakly
primitiveoverk[x]/〈T ′〉. This latter property is a generalization of
the usual notion of primitivity for polynomials over a UFD.

Examining the proof of Theorem 4.4, we make the following
observation. Whenp is not weakly primitive overk[x]/〈T ′〉, the
proof exhibits a polynomialq which belongs tosat(T ) but not to
〈T 〉. Whenp is weakly primitive overk[x]/〈T ′〉, the proof shows
that every polynomialq of sat(T ) belongs to〈T 〉. The argument
is constructive providing that one has at hand an algorithm for divi-
ding a by b modulo〈T ′〉, whereb is a polynomial regular modulo
〈T ′〉 and is a multiple of the polynomiala modulo〈T ′〉. This can
be done via Gröbner basis computations, see [16]. An algorithmic
solution based on the algorithms of the REGULARCHAINS library
is an ongoing research work.

Theorem 4.4 and its proof do not lead directly to an algorithmfor
testing the equality〈T 〉 = sat(T ). Algorithm 1 provides such a de-
cision procedure. This algorithm reduces to testing whether a poly-
nomial is regular modulo an ideal. Fortunately the involvedideal
is unmixed which allows us to rely on the algorithms of the REGU-
LARCHAINS library avoiding Gröbner basis computations. Our ex-
perimentation illustrates the practical efficiency of Algorithm 1.

An application of this procedure is in the removal of redundant
components for triangular decompositions in the sense of Kalk-
brener. However, this procedure provides only a criterion for re-
moving redundant components. Obtaining an algorithm, freeof
Gröbner basis computations, for testing the inclusion of saturated
ideals remains an open problem.
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