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ABSTRACT
We study the solutions of the matrix equation S exp(S) = A.
Our motivation comes from the study of systems of delay dif-
ferential equations y′(t) = Ay(t − 1), which occur in some
models of practical interest, especially in mathematical bi-
ology. This paper concentrates on the distinction between
evaluating a matrix function and solving a matrix equation.
In particular, it shows that the matrix Lambert W function
evaluated at the matrix A does not represent all possible
solutions of S exp(S) = A. These results can easily be ex-
tended to more general matrix equations.

Categories and Subject Descriptors:
I.1.4 [Symbolic Manipulation] Applications

General Terms: Algorithms

Keywords: Matrix function; Lambert W function; nonlin-
ear matrix equation

1. INTRODUCTION
The authors of [7] examined a number of strategies for

using computer algebra to solve scalar linear constant-coeff-
icient delay differential equations with constant delays. In
this paper, we look at some problems arising in nonlinear
matrix equations and matrix functions that are motivated
by the extension of the work of [7] to the matrix case. We
begin with a simple problem: consider trying to find a dif-
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ferentiable function y(t) such that

y′(t) = Ay(t − 1)

where A is an n-by-n matrix of complex numbers, and y(t)
is specified on an initial vector history

y(t) = f(t) = [f1(t), f2(t), . . . , fn(t)]T

on the interval −1 ≤ t ≤ 0.
As in [7], this is a special problem, useful for some models

in mathematical biology and elsewhere. Powerful numerical
techniques exist for solving general delay differential equa-
tions; see for example [14]. The ultimate aim of the present
work, in contrast, is to look for special-purpose techniques
that may be more efficient for these ‘niche’ problems, or give
greater insight. The approach used here is to note that the
ansatz

y(t) = exp(tS)c

for some constant n-vector c (later to be used as one term in
a Fourier-like series solution of the delay differential equa-
tion) leads to some interesting matrix computations, such
as the computation of any and all S such that1

S exp(S) = A. (1.1)

We shall consider this equation for A, S ∈ C
n×n.

Equation (1.1) is a matrix analogue of the scalar equa-
tion ses = a ∈ C, whose solutions are s = Wk(a), where
Wk is the kth branch of the Lambert W function [3]. Ma-
trix functions can exhibit much more complicated behaviour
than their scalar counterparts. For example, the number of
square roots of an n×n matrix (n ≥ 2) can vary from none
to finitely many to infinitely many, depending on the matrix
[8], [9]. Even the matrix exponential presents difficulties,
both in computation and in characterizing ill conditioning
[13]. The Lambert W function is more akin, however, to
the logarithm, and we may therefore expect that some of

1Notation: We shall write es for a scalar exponential, and
exp(S) for a matrix exponential.
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the lessons learned in computing the matrix logarithm will
be of use in solving (1.1) [2]. Here, we will barely scratch the
surface of numerical computation for this problem, concen-
trating mainly on the theoretical aspects, and we will return
to the problem of numerical computation in a future paper.

2. MATRIX FUNCTIONS AND EQUATIONS
We first recall some definitions. For a more comprehensive

discussion, see [9].

Definition 1. If

F (z) =
∑
k≥0

akzk

is a convergent power series in |z| < r, then the matrix
function F : C

n×n → C
n×n is defined to be

F (A) =
∑
k≥0

akAk , (2.1)

which converges for ρ(A) < r, where ρ is the spectral radius.
Recalling that any square matrix A has the Schur decom-

position A = QTQ∗, where Q is unitary and the diago-
nal entries of T are the eigenvalues of A, we may without
loss of generality assume A to be upper triangular, since
F (A) = QF (T )Q∗. For theoretical work, it can be conve-
nient to transform A to Jordan canonical form, though this
is not generally advisable for numerical computation. In up-
per triangular form, the diagonal entries of F (T ) are simply
F (tii), and the upper triangle of F (T ) can be computed by
the block recurrences of Parlett [5].

A more general definition is based on polynomial interpo-
lation.

Definition 2. Let A have distinct eigenvalues λ1, . . . , λs,
with λi having index ni, where the index of an eigenvalue
is the dimension of the largest Jordan block in which it ap-
pears. Let r be the (unique) Hermite interpolating polyno-
mial that satisfies

r(�)(λi) = F (�)(λi), � = 0, 1, . . . , ni − 1, i = 1, . . . , s,

where F (�) and r(�) denote derivatives of order �. Then

F (A) = r(A). (2.2)

It is this definition that is used in Maple’s MatrixFunction
command [11]. Specifically, it can be used with F = Wk to
define a matrix W function.

Remark 1. If a matrix A ∈ C
n×n happens to be a Jordan

block, say A = Jn(μ) where

Jn(μ) =

⎡
⎢⎢⎢⎢⎢⎣

μ 1
μ 1

. . .
. . .

μ 1
μ

⎤
⎥⎥⎥⎥⎥⎦ ,

then because

F (z) =
∑
�≥0

F (�)(μ)

�!
(z − μ)�

and (Jn(μ) − μI)� = 0 for � ≥ n we see that F (Jn(μ)) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (μ) F ′(μ) 1
2
F ′′(μ) · · · 1

(n−1)!
F (n−1)(μ)

F (μ) F ′(μ)
. . .

...

. . .
. . .

F (μ) F ′(μ)

F (μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is particularly simple. Note that if F ′(μ) �= 0 this matrix
has the same Jordan structure as Jn(μ) does:

F (Jn(μ)) = ZJn(F (μ))Z−1

for some matrix Z. We will make use of this observation
later.

We define the primary matrix function Wk(A) to be the
result of this interpolation definition with the singly branched
scalar function Wk. This function is well-defined, for eigen-
values neither 0 nor −e−1. If an eigenvalue is zero and
the branch k �= 0, the function is not finite. If an eigen-
value is −e−1 and the branch k ∈ {−1, 0}, then because
W ′

k(−e−1) = ∞ for these branches (and only these branches),
the matrix function is not finite if n ≥ 2.

The main aims of this work are to show that not all solu-
tions to (1.1) are obtainable as Wk(A) for some k and then
to characterize and classify all solutions of (1.1).

It is known in the context of other nonlinear matrix equa-
tions, such as S2 = A and exp(S) = A, that not all solu-
tions are obtainable as the appropriate inverse function of
A (S =

√
A or S = log(A)) [6]. In these two examples

and in ours, the relevant inverse function is multibranched
and we can mix branches for a particular eigenvalue on the
diagonal of the triangular matrix in the Schur or Jordan
form—something not allowed by Definition 2.

The organization of this paper is as follows. We begin
in the next section with some comments on the scalar case.
Then we derive some general results by elementary argu-
ments based on properties of commuting matrices. The 2×2
case is analyzed in Section 5 in order to get more insight.
Finally, in Section 6 we present a complete characterization
and classification of solutions of (1.1) for general n when
−e−1 is not an eigenvalue of A. Some concluding remarks
are given in Section 7.

3. THE SCALAR CASE
We first consider (1.1) for the case n = 1. We have

ses = a, or s = Wk(a) where Wk(z) is the kth branch of
the Lambert W function [3]. If a = −e−1, then there is a
double root W0(a) = W−1(a) = −1, together with a count-
able infinity of simple complex roots Wk(a) for k �= 0,−1;
if a �= −e−1 then there is a countable infinity of simple
roots only. The structure and asymptotic behaviour of these
roots (equivalently, eigenvalues, or values of the Lambert W
function) are by now very well known: see e.g. [1]. In the
paper [7] we see these values used to solve a scalar delay
differential equation. We thus regard this problem as be-
ing solved in the n = 1 case: the solution to s exp s = a is
exactly s = Wk(a).

Remark 2. If a = 0, then Wk(a) = −∞ for all branches
except for the branch k = 0, where W0(0) = 0; in this
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case the delay differential equation reduces to the ordinary
differential equation y′(t) = 0 and is of little further interest.
Some interest remains in this case when n > 1, however, as
we shall see.

4. SOME GENERAL RESULTS
We are concerned from now on to discover the relations

between the matrix function Wk(A) defined above, and the
solutions of equation (1.1). As with the functional defini-
tion (2.1), we can limit our discussion to upper triangular
matrices A.

Lemma 1. Without loss of generality, we may take A to
be upper triangular in equation (1.1).

Proof. If S exp(S) = A, and A = ZUZ−1 where U is
upper triangular, then Z−1SZZ−1 exp(S)Z = U and if we
put X = Z−1SZ we see that X exp(X) = U , and thus any
solution S of the original equation is similar to a solution of
the same equation where the input U is upper triangular.
Conversely, any solution X of the upper triangular equation
gives a solution S = ZXZ−1 of the original equation.

Henceforth we assume that A is upper triangular. One
question that we can then ask is: if S exp(S) = A and A is
upper triangular must S also be upper triangular? We first
establish another lemma.

Lemma 2. If S exp(S) = A, then S commutes with A.

Proof. S exp(S) = A and hence

AS = S exp(S)S = S2 exp(S) = SA .

In fact, any function of S commutes with S, as is well-known.

The following lemma is from [12].

Lemma 3. Every matrix that commutes with A ∈ C
n×n

is a polynomial in A if and only if no eigenvalue appears in
more than one Jordan block in the Jordan canonical form of
A (that is, A is nonderogatory).

Theorem 1. If A = S exp(S) is upper triangular and
nonderogatory then S is upper triangular.

Proof. Since S commutes with A by Lemma 2 and A is
nonderogatory, the result follows immediately from Lemma 3,
since a polynomial in an upper triangular matrix is upper
triangular.

Corollary 1. If A is a single Jordan block J(λ) then
any solution of S exp(S) = A is upper triangular with con-
stant diagonal Wk(λ), for some k.

Proof. A is nonderogatory, so S is upper triangular by
Theorem 1. Moreover, S is a polynomial in A, as the proof
of Theorem 1 shows, so sii = p(λ) is constant for all i and
necessarily equal to Wk(λ) for some k.

If A is triangular and derogatory then solutions to (1.1)
need not be triangular, as the next result shows with A an
extreme example of a derogatory matrix.

Theorem 2. If A = λI ∈ C
n×n there is a continuum of

solutions to S exp(S) = A of the form

S = P diag(Wk1(λ), Wk2(λ), . . . , Wkn(λ))P−1,

where P is an arbitrary nonsingular matrix.

Proof. By direct calculation, we have

S exp(S) = P diag
(
Wk(λ)eWk(λ))P−1 = PλIP−1 = λI.

The only solutions in Theorem 2 that are obtainable from
our definition of Wk(A) are Wk(A) = Wk(λ)I , k ∈ Z. Theo-
rem 2 shows that further solutions can be obtained by taking
a different branch on at least two copies of λ, but these so-
lutions are not polynomials in A. As an example, consider
the equation

S exp(S) =

[ −1/5 0
0 −1/5

]
= A.

One solution of this equation is

X =

[
W0(−1/5) 0

0 W−1(−1/5)

]
,

which, like A, is diagonal. Now take the unimodular matrix

P =

[
1 α
0 1

]
.

The product PXP−1 is

S =

[
W0(−1/5) α(W−1(−1/5) − W0(−1/5))

0 W−1(−1/5)

]
,

which is a non-diagonal solution for all α �= 0. More gener-
ally, almost any full, nonsingular P generates a non-triangular
solution.

As an indication of the behaviour for more general deroga-
tory upper triangular matrices, consider the matrix

A =

⎡
⎢⎢⎢⎣

λ 1 0 0 0
0 λ 0 0 0
0 0 λ 1 0
0 0 0 λ 1
0 0 0 0 λ

⎤
⎥⎥⎥⎦ ,

which is in Jordan form with a single distinct eigenvalue
appearing in one 2 × 2 block and one 3 × 3 block. The
same argument as in the proof of Theorem 1 says that S
commutes with A, but since A is derogatory we can no longer
invoke Lemma 3. Instead we can appeal to a standard result
giving the general form of a matrix that commutes with a
given matrix [12]. This result tells us that all matrices that
commute with A have the form⎡

⎢⎢⎢⎣
α1 α2 0 β1 β2

0 α1 0 0 β1

δ1 δ1 γ1 γ2 γ3

0 δ1 0 γ1 γ2

0 0 0 0 γ1

⎤
⎥⎥⎥⎦ ,

where the αi, βi, δi and γi are arbitrary parameters. The
equation S exp(S) = A constrains these parameters in com-
plicated way.
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5. THE TWO-BY-TWO CASE
We now specialize to the case n = 2 in order to glean some

more insight.
We consider first the case where A is derogatory, which for

n = 2 implies A = λI for some λ ∈ C. Theorem 2 shows that
there are infinitely many diagonalizable solutions to (1.1) for
λ �= 0. But these are not the only solutions. For example,
if A = diag(−e−1,−e−1) then an easy computation shows
that the non-diagonalizable matrix

J =

[ −1 1
0 −1

]

satisfies J exp(J) = A. For any nonsingular Z, defining
X = ZJZ−1 we have X exp(X) = ZJZ−1 · Z exp(J)Z−1 =
ZAZ−1 = A = (−e−1)I , so from J we can obtain infinite
families of non-diagonalizable solutions. For example, tak-
ing the unimodular matrix P ,

P =

[
2 3

1 2

]
.

we obtain

S = ZJZ−1 =

[ −3 4
−1 1

]
,

and it is easy to check that S exp(S) = (−e−1)I .

Theorem 3. If A ∈ C
2×2 is upper triangular and has dis-

tinct eigenvalues then there are a countably infinite number,
and only a countably infinite number, of upper triangular
matrices S exp(S) = A.

Proof. Since the eigenvalues of A are distinct the follow-
ing computation suffices. We know from Theorem 1 that
any S satisfying S exp(S) = A is upper triangular. So it
suffices to construct all such S. We have

S =

[
s11 s12

0 s22

]

and, by direct computation,

exp(S) =

[
es11 s12(−es22+es11 )

−s22+s11

0 es22

]
.

Therefore siie
sii = aii, i = 1, 2, which means that s11 =

Wk(a11) and s22 = W�(a22) for some k and �. The de-
nominator of the {1, 2} entry of exp(S) is not zero because
s11 = s22 would imply a11 = a22, which is a contradiction.
The {1, 2} entry of S exp(S) = A can be manipulated to
yield

s12 =
a12 (s11 − s22)

a11 − a22

uniquely, given any choice of values for s11 = Wk(a11) and
s22 = W�(a22). (This equation also follows, indeed more
easily, from the commutativity of A and S.) Therefore there
is a bi-infinite family of matrices S such that S exp(S) = A.
These are all the solutions.

The question now arises whether there may be no solution
to S exp(S) = A. Unlike in the matrix square root equation
S2 = A, or the matrix logarithm equation exp(S) = A, the
answer is positive: there is always a solution for any A.

Theorem 4. In the n = 2 case, there is always a solution
to S exp(S) = A.

Proof. By Theorems 2 and 3, the only remaining case is
where the Jordan canonical form is nontrivial:

A = Z

[
λ 1
0 λ

]
Z−1. (5.1)

Choose μ = Wk(λ) for some k ∈ Z. If λ = 0, then only
k = 0 works. If λ = −e−1, choose k �∈ {0,−1}. Then put

S = Z

[
μ exp(−μ)/ (1 + μ)

0 μ

]
Z−1

and a short computation gives F (S) = A. Note W ′
k(λ) =

exp(−μ)/(1 + μ).

Remark 3. The case λ = −e−1 in (5.1) is very special:
even though there are an infinity of solutions, there do not
appear to be any solutions corresponding to k = 0 or k =
−1, as there are for matrices A that have distinct eigenval-
ues, or nontrivial JCF with eigenvalues different from −e−1.
This means that for real matrices A in this case there are
no real solutions. This difficult case extends (in a nontrivial
way, as we shall see) to larger Jordan blocks with the same
eigenvalue, −e−1.

Remark 4. For our original motivating example, y′(t) =
Ay(t − 1), the degenerate case A = Jn(0) (and so S =
W0(Jn(0)) = Jn(0) = A) represents another difficulty for
the ansatz y = exp(St)C. It turns out that the behaviour
of exp(St) = exp(At) = I +At is adequate dynamically, but
there is not enough freedom available in the choice of con-
stants C to match the initial history data—because all the
other components Wk(0) = −∞ and thus the constants for
those branches are not relevant. This means that this ansatz
is unlikely to prove useful numerically in the case when the
eigenvalues of A are both very small.

Remark 5. Consider the numerical computation of Lam-
bert W of

A =

[ −e−1(1 + iε) 1
0 −e−1(1 − iε)

]
,

where ε > 0. Then W−1(A), W0(A) and W1(A) all exist,
but they may be difficult to compute. We have that, for
example, W0(A) =[ −1 + O(

√
ε) e/

√
ε − 2e/3 + O(

√
ε)

0 −1 + O(
√

ε)

]

to O(
√

ε) and similarly for the others. One should compare
the well-known difficulties with the computation of the ma-
trix square root for matrices near to one that has no square
root [11]. Here, since the {1, 2} entry is O(1/

√
ε) as ε → 0,

and we get closer to the branch point where W0(x) and
W−1(x) fail to have derivatives, we anticipate the same kind
of numerical problems as occur in the computation of the
matrix square root.

Remark 6. The secular case of y′(t) = Ay(t − 1), that
is when two eigenvalues of A coalesce at −e−1 giving rise
to a solution of the form y(t) = t exp(−t), may occur in the
solution of systems of DDE as it does for ordinary differential
equations and for the scalar case of DDE [7]. As in the scalar
case, we must add a secular term to the solution; as in the
scalar case, this suffices to get an accurate solution.
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Remark 7. Finally, we note that if S is not constrained
to be upper triangular, then the problem of taking the ma-
trix exponential (when the entries of S are symbols) as part
of any procedure for solving S exp(S) = A becomes rather
complicated. Consider the 5 × 5 example at the end of
Section 4; even with such a modest example, the nonlin-
ear equations that arise in S exp(S) = A are daunting for
hand calculation, and the complexity grows rapidly enough
with dimension that symbolic methods are in all likelihood
not going to be useful for dimensions much larger than 5.
Special-purpose numerical schemes for taking the matrix ex-
ponential may need to be devised in order to carry out any
numerical scheme for solving S exp(S) = A efficiently and
stably.

6. THE GENERAL CASE
The following results give a complete characterization of

the solutions of the matrix equation S exp(S) = A when A
has no eigenvalue equal to −e−1.

Theorem 5. Let A ∈ C
n×n with no eigenvalue equal to

−e−1 have the Jordan canonical form A = ZJZ−1, where

J = diag(Jk(λk)) with p Jordan blocks. Further, let L
(j)
k =

Wj(Jk(λk)). All solutions to S exp(S) = A are given by

S = ZU diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p )U−1Z−1,

where jk ∈ Z is an arbitrary integer and U is an arbitrary
nonsingular matrix that commutes with J.

Proof. Let F (z) = zez and let S be any solution of F (S) =
A. The eigenvalues of F (S) are F (μ), where μ is an eigen-
value of S, and so no eigenvalue of S can be −1 by the
assumption on A. Since F ′(μ) = (1 + μ)eμ �= 0 for any
eigenvalue μ of S, for every Jordan block J(μ) in S there is
a Jordan block of the same size in F (S) associated with F (μ)
(that is, no Jordan block of S splits or merges when F (S) is
formed) [10], [12]; this is the key fact used in this proof, and
it was illustrated at the end of Section 2. Hence S has Jor-
dan canonical form JS = diag(Jk(μk)), where F (μk) = λk

and hence μk = Wjk(λk) for some jk ∈ Z.
Now consider L = diag(Lk), where Lk = Wjk (Jk(λk)).

We have F (L) = J . In other words, our definition of S =
Wjk (A) via Definition 2 ensures that S satisfies S exp(S) =
A. This is a special case of the more general result that
the composition of a matrix function and its inverse is the
identity: F (F−1(A)) = A, assuming F is single-valued [12].
So by the same argument as above, L has Jordan form JS ,
and so S = TLT−1 for some nonsingular T .

But F (S) = A implies TJT−1 = TF (L)T−1 = ZJZ−1 ,
or (Z−1T )J = J(Z−1T ). The result now follows on setting
U = Z−1T .

Corollary 2. Let J(λ) ∈ C
m×m be a Jordan block with

λ �= −e−1. Then for each j ∈ Z the equation S exp(S) = J
has exactly one solution, Wj(J), having eigenvalue Wj(λ)
(on the jth branch of W ).

The final result classifies the solutions into those that are
primary matrix functions of A and those that are not.

Theorem 6. Let A ∈ C
n×n with no eigenvalue −e−1

have the Jordan canonical form A = ZJZ−1, where J =

diag(Jk(λk)), with p Jordan blocks, and let s ≤ p be the
number of distinct eigenvalues of A.

If s = p then S exp(S) = A has a countable infinity of
solutions that are primary matrix functions of A, given by

Sj = Z diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p )Z−1,

corresponding to all possible choices of j1, . . . , jp ∈ Z, subject
to the constraint that ji = jk whenever λi = λk.

If s < p then S exp(S) = A has non-primary solutions.
They form parametrized families

Sj(U) = ZU diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p )U−1Z−1,

where jk ∈ Z, U is an arbitrary nonsingular matrix that
commutes with J, and for each j there exist i and k, de-
pending on j, such that λi = λk while ji �= jk.

Proof. The proof consists of showing that for the solutions
in Theorem 5 for which ji = jk whenever λi = λk,

U diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p )U−1

= diag(L
(j1)
1 , L

(j2)
2 , . . . , L

(jp)
p ) ,

that is, U commutes with the block diagonal matrix in the
middle. This commutativity follows from the explicit form
for U provided by [12] and the fact that upper triangular
Toeplitz matrices commute.

7. CONCLUDING REMARKS
We have shown that S exp(S) = A may have solutions

not obtainable as primary matrix functions Wk(A) for any
branch k, specifically whenever A is nonzero and deroga-
tory. In particular, there exist diagonal (or triangular) A
for which non-diagonal (or non-triangular) solutions exist.
For our original motivating example, these complications
may or may not play a direct role, because y′(t) = Ay(t−1)
may decouple into smaller systems that may be solved (with
W ) independently. However, in the case when A is known
only approximately, it seems very likely that the presence of
these ‘degenerate’ conditions will make numerical solution of
S exp(S) = A difficult, and possibly obviate any advantage
of this approach.

The standard definition of a function of a matrix allows
Maple to compute LambertW(k, A). The theme of this pa-
per has been that this is insufficient for solving the associ-
ated matrix equation. This suggests that a separate Maple
routine is required to solve matrix equations.

The results of this paper are quite general, and not re-
stricted to the particular equation S exp(S) = A. In future
work, we expect to explicitly extend these results to ma-
trix equations of particular interest, such as S + log(S) = A
where the Wright ω function and the matrix unwinding num-
ber will play a role [4].

We have concentrated on the complex case, because in the
solution of delay differential equations all complex nonlinear
eigenvalues Wk(λ) are needed to represent the initial history.
One may extract results about the real case, taking only
k ∈ {0,−1} for −e−1 ≤ λ < 0 and only k = 0 for λ ≥ 0, but
we do not do this here (note, however, the real nonexistence
result for λ = −e−1 in Remark 3).

Finally, numerical work in solving nonlinear matrix equa-
tions such as S exp(S) = A has several potential difficulties:
near-nonexistence of certain solutions near double branch
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points; continua of solutions in the derogatory case; and
vanishingly small impact of the roots of μ expμ = λ when
the eigenvalues λ of A are small.2

These difficulties should be borne in mind when inves-
tigating the solution of more complicated nonlinear matrix
equations such as S = A exp(−S)+B which may arise in the
solution of (not much) more complicated delay differential
equations.
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