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ABSTRACT
Given a regular chain T , we aim at finding an efficient way for com-
puting a system of generators of sat(T ), the saturated ideal of T .
A natural idea is to test whether the equality 〈T 〉 = sat(T ) holds,
that is, whether T generates its saturated ideal. By generalizing the
notion of primitivity from univariate polynomials to regular chains,
we establish a necessary and sufficient condition, together with a
Gröbner basis free algorithm, for testing this equality. Our experi-
mental results illustrate the efficiency of this approach in practice.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation – Algebraic Algorithms

General Terms:
Algorithms, Theory

Keywords:
Regular chain, Saturated ideal, Primitivity of polynomials.

1. INTRODUCTION
Triangular decompositions are one of the most studied techniques

for solving polynomial systems symbolically. Invented by J.F. Ritt
in the early 30’s for systems of differential polynomials, their stride
started in the late 80’s with the method of W.T. Wu [21] dedicated
to algebraic systems. Different concepts and algorithms extended
the work of Wu. In the early 90’s, the notion of a regular chain, in-
troduced independently by M. Kalkbrener in [13] and, by L. Yang
and J. Zhang [22], led to important algorithmic discoveries.

In Kalkbrener’s vision, regular chains are used to represent the
generic zeros of the irreducible components of an algebraic variety.
In the original work of Yang and Zhang, they are used to decide
whether a hypersurface intersects a quasi-variety (given by a reg-
ular chain). Regular chains have, in fact, several interesting prop-
erties and are the key notion in many algorithms for decomposing
systems of algebraic or differential equations.

Regular chains have been investigated in many papers, among
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them are [2, 14, 7]. Several surveys [4, 11] are also available on
this topic. The abundant literature on the subject can be explained
by the many equivalent definitions of a regular chain. Actually, the
original formulation of Kalkbrener is quite different from that Yang
and Zhang. Two papers [5, 20] provide bridges between the point
of view of Kalkbrener and that of Yang and Zhang.

The key algebraic object associated with a regular chain is its
saturated ideal. Let us review its definition. Let k be a field
and x1 ≺ · · · ≺ xn be ordered variables. For a regular chain
T ⊂ k[x1, . . . , xn], the saturated ideal of T , denoted by sat(T )
is defined by sat(T ) := 〈T 〉 : h∞, where h is the product of the
initial polynomials of T . (The next section contains a detailed re-
view of these notions.) Given a polynomial p ∈ k[x1, . . . , xn], the
memberships p ∈ sat(T ) and p ∈ p

sat(T ) can be decided by
means of pseudo-divisions and GCD computations, respectively.
One should observe that these computations can be achieved wi-
thout computing a system of generators of sat(T ). In some sense,
the regular chain T is a “black box representation” of sat(T ) since
the assertions p ∈ sat(T ) and p ∈ p

sat(T ) can be evaluated
without using an explicit representation of sat(T ).

Being able to compute a system of generators of sat(T ) remains,
however, a fundamental question. For instance, given a second reg-
ular chain U ⊂ k[x1, . . . , xn], the only general method to decide
the inclusion sat(T ) ⊆ sat(U) goes through the computation of a
system of generators of sat(T ) by means of Gröbner bases. Unfor-
tunately, such computations can be expensive (see [3]) whereas one
would like to obtain an inclusion test which could be used inten-
sively in order to remove redundant components when computing
the triangular decompositions of Kalkbrener’s algorithm or those
arising in differential algebra. Note that for other kinds of trian-
gular decompositions, such as those of [17, 20], this question has
been solved in [6].

Therefore, testing the inclusion sat(T ) ⊆ sat(U) without Gröbner
basis computation is a very important question in practice. More-
over, this can be regarded as an algebraic version of the Ritt prob-
lem in differential algebra. One case presents no difficulties: if
sat(T ) is a zero-dimensional ideal, the product of the initial poly-
nomials of T is invertible modulo 〈T 〉 (see Proposition 5 in [18])
and thus T generates sat(T ). In this case the inclusion test for sat-
urated ideals reduces to the membership problem mentioned above.

In positive dimension, however, the ideal sat(T ) could be strictly
larger than that generated by T . Consider for instance n = 4 and
T = {x1x3 + x2, x2x4 + x1}, we have

〈T 〉 = 〈x1, x2〉 ∩ 〈x1x3 + x2,−x3x4 + 1〉.
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Thus, we have

sat(T ) = 〈T 〉 : (x1x2)
∞ = 〈x1x3 + x2,−x3x4 + 1〉.

In this article, we give a necessary and sufficient condition for the
equality 〈T 〉 = sat(T ) to hold. Looking at the above example, one
can feel that the ideal 〈x1, x2〉 can be regarded as a “sort of content”
of the ideal 〈T 〉, which is discarded when computing sat(T ). We
observe also that the polynomials x1x3 + x2 and x2x4 + x1 are
primitive in (k[x1, x2])[x3] and (k[x1, x2])[x4] respectively. Thus,
the “usual notion” of primitivity (for a univariate polynomial over
a UFD) is not sufficient to guarantee the equality 〈T 〉 = sat(T ).
This leads us to the following two definitions.

Let R be a commutative ring with unity. We say that a non-
constant polynomial p = aex

e + · · ·+ a0 ∈ R[x] is weakly prim-
itive if for any β ∈ R such that ae divides βae−1, . . . , βa0 then
ae divides β as well. This notion and its relations with similar con-
cepts are discussed in Sections 3, 4, and 5.

We say that the regular chain T = {p1, . . . , pm} is primitive if
for all 1 ≤ k ≤ m, the polynomial pk is weakly primitive in R[xj ],
where xj is the main variable of pk and R is the residue class ring
k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

The first main result of this paper is the following: the regular
chain T generates its saturated ideal if and only if T is primitive.
This result, generalizing the concept of primitivity from univariate
polynomials to regular chains, is established in Section 4.

In Section 6, looking at regular chains from the point of view of
regular sequences, we obtain our second main result: an algorithm
to decide whether a regular chain generates its saturated ideal or
not. The pseudo-code and its proof are presented in Section 6. This
algorithm relies on a procedure for computing triangular decompo-
sitions. However, being applied to input systems which are regular
sequences and “almost regular chains”, this procedure reduces sim-
ply to an iterated resultant computation. As a result, the proposed
algorithm performs very well in practice and is Gröbner basis free.

In Section 7 we report on experimentation, where we confirm the
efficiency of the algorithm. Meanwhile, we observe that primitive
regular chains are often present in the output of triangular decom-
positions. The paper is concluded with a few remarks.

2. PRELIMINARIES

2.1 Triangular set and regular chain
We denote by k[x] the ring of multivariate polynomials with

coefficients in a field k and with ordered variables x = x1 ≺
· · · ≺ xn. For a non-constant polynomial p ∈ k[x], the grea-
test variable appearing in p is called main variable, denoted by
mvar(p). We regard p as a univariate polynomial in its main vari-
able. The degree, the leading coefficient, the leading monomial
and the reductum of p as a univariate polynomial in mvar(p) are
called main degree, initial, rank and tail of p; they are denoted by
mdeg(p), init(p), rank(p) and tail(p) respectively. Thus we have
p = init(p)rank(p) + tail(p).

Let R be a commutative ring with unity and F be a subset of R.
Denote by 〈F 〉 the ideal it generates, by

p〈F 〉 the radical of 〈F 〉,
and by R/〈F 〉 the residue class ring of R with respect to 〈F 〉. For
an element p in R, we say that p is zero modulo 〈F 〉 if p belongs to
〈F 〉, that is, p is zero as an element in R/〈F 〉. An element p ∈ R is
a zerodivisor modulo 〈F 〉, if there exists q ∈ R such that p /∈ 〈F 〉
and q /∈ 〈F 〉 but pq ∈ 〈F 〉. We say that p is regular modulo 〈F 〉 if
it is neither zero, nor a zerodivisor modulo 〈F 〉. Furthermore, p is
invertible in R if there exists a q ∈ R such that pq = 1.

Example 2.1 Consider the polynomials in k[x1, x2, x3]

p1 = x2
2 − x2

1, p2 = (x2 − x1)x3 and p3 = x2x
3
3 − x1.

The above notions are illustrated in the following table.

mvar init mdeg rank tail
p1 x2 1 2 x2

2 −x2
1

p2 x3 x2 − x1 1 x3 0
p3 x3 x2 3 x3

3 −x1

The initial x2− x1 of p2 is a zerodivisor modulo 〈p1〉, since (x2 +
x1)(x2−x1) is in 〈p1〉, while neither x2 +x1 nor x2−x1 belongs
to 〈p1〉. However, the initial x2 of p3 is regular modulo 〈p1〉.

In what follows, we recall the notions of regular chain and satu-
rated ideal, which are the main objects in our study.

A set T of non-constant polynomials in k[x] is called a triangu-
lar set, if for all p, q ∈ T with p 
= q we have mvar(p) 
= mvar(q).
For a nonempty triangular set T , we define the saturated ideal
sat(T ) of T to be the ideal 〈T 〉 : h∞, that is,

sat(T ) := 〈T 〉 : h∞ = {q ∈ k[x] | ∃e ∈ Z≥0 s.t. heq ∈ 〈T 〉},
where h is the product of the initials of the polynomials in T . The
empty set is also regarded as a triangular set, whose saturated ideal
is the trivial ideal 〈0〉.

One way of solving (or decomposing) a polynomial set F ⊆
k[x] is to compute triangular sets T1, . . . , Te ⊆ k[x] such thatp〈F 〉 equals the intersection of

p
sat(T1), . . . ,

p
sat(Te). It is

thus desirable to require that sat(T1), . . . , sat(Te) be proper ide-
als. This observation has led to the notion of a regular chain which
was introduced independently in [13] and [22].

Definition 2.2 (Regular chain) Let T be a triangular set in k[x].
If T is empty, then it is a regular chain. Otherwise, let p be the
polynomial of T with the greatest main variable and let C be the
set of other polynomials in T . We say that T is a regular chain, if
C is a regular chain and init(p) is regular modulo sat(C).

In commutative algebra (See [10]) there is a closely related con-
cept called regular sequence which is a sequence r1, . . . , rs of
nonzero elements in the ring k[x] satisfying

(i) 〈r1, . . . , rs〉 is a proper ideal of k[x];

(ii) ri is regular modulo 〈r1, . . . , ri−1〉, for each 2 ≤ i ≤ s.

When we sort polynomials in a regular chain by increasing main
variable, the following example says that the resulting sequence
may not be a regular sequence of k[x].

Example 2.3 Let T = {t1, t2} be a triangular set in k[x1, x2, x3]
with t1 = x1x2 and t2 = x1x3. Then {t1} is a regular chain with
sat({t1}) = 〈x1x2〉 : x∞

1 = 〈x2〉. Since init(t2) = x1 is regular
modulo sat({t1}), the triangular set T is a regular chain with

sat(T ) = 〈x1x2, x1x3〉 : x∞
1 = 〈x2, x3〉.

However, t1, t2 is not a regular sequence since t2 = x1x3 is not
regular modulo 〈x1x2〉. Here, the saturation operation discards the
content introduced by the initials.
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2.2 Properties of regular chains
We recall several important results on regular chains and satu-

rated ideals, which will be used throughout this paper. Pseudo-
division and iterated resultant are fundamental tools in this context.

Let p and q be polynomials of k[x], with q 
∈ k. Denote by
prem(p, q) and pquo(p, q) the pseudo-remainder and the pseudo-
quotient of p by q, regarding p and q as univariate polynomials in
x = mvar(q). Using these notations, we have

init(q)ep = pquo(p, q)q + prem(p, q), (1)

where e = max{deg(p, x) − deg(q, x) + 1, 0}; moreover either
r := prem(p, q) is null or deg(r, x) < deg(q, x). Pseudo-division
generalizes as follows given a polynomial p and a regular chain T :

prem(p, T ) =

j
p if T = ∅,

prem(prem(p, t), T ′) if T = T ′ ∪ {t},
where t is the polynomial in T with greatest main variable. We have
the pseudo-division formula [21]: there exist non-negative integers
e1, . . . , es and polynomials q1, . . . , qs ∈ k[x] such that

he1
1 · · ·hes

s p =
sX

i=1

qiti + prem(p, T ), (2)

where T = {t1, . . . , ts} and hi = init(ti), for 1 ≤ i ≤ s.
We denote by res(p, q) the resultant of p and q regarding them

as univariate polynomials in mvar(q). Note that res(p, q) may be
different from res(q, p), if they have different main variables. For a
polynomial p and a regular chain T , we define the iterated resultant
of p w.r.t. T , denoted by ires(p, T ), as follows:

ires(p, T ) =

j
p if T = ∅,

ires(res(p, t), T ′) if T = T ′ ∪ {t},
where t is the polynomial in T with greatest main variable.

Theorem 2.4 For a regular chain T and a polynomial p we have:

(1) p belongs to sat(T ) if and only if prem(p, T ) = 0,

(2) p is regular modulo sat(T ) if and only if ires(p, T ) 
= 0,

(3) p is a zerodivisor modulo sat(T ) if and only if ires(p, T ) =
0 and prem(p, T ) 
= 0.

For the proofs, we refer to [2] for item (1), and to [20, 5] for item
(2). Item (3) is a direct consequence of (1) and (2).

Remark 2.5 Theorems 2.4 and 2.6 highlight the structure of the
associated primes of sat(T ) which makes regularity test easier
than with an arbitrary polynomial ideal. In general, deciding if a
polynomial p is regular modulo an ideal I is equivalent to checking
if p does not belong to any associated primes of I .

An ideal in k[x] is unmixed, if all its associated primes have the
same dimension. In particular, an unmixed ideal has no embedded
associated primes.

Theorem 2.6 Let T = C ∪ {t} be a regular chain in k[x] with t
having greatest main variable in T . The following properties hold:

(1) sat(T ) is an unmixed ideal with dimension n− |T |,
(2) sat(T ∩ k[x1, . . . , xi]) = sat(T ) ∩ k[x1, . . . , xi],

(3) sat(T ) = 〈sat(C) ∪ {t}〉 : init(t)∞.

For the proofs, we refer to [4, 7] for item (1), to [2] for item (2), and
to [14] for item (3). From (1), we deduce that the saturated ideal of
a regular chain T consisting of n polynomials has dimension 0.

3. PRIMITIVITY OF POLYNOMIALS
In this section, we introduce the notion of weak primitivity of

a polynomial in a general univariate polynomial ring, and then
present several of its properties.

The following Lemma 3.1 may be seen as a generalization of
Gauss lemma over an arbitrary commutative ring with unity. It will
be used in the proof of our main theorem. We found that this lemma
is not new and can be deduced from the Dedekind-Mertens Lemma
(See [1, 9, 8] and the references therein). For the sake of reference,
we include our direct proof here. In the sequel, the ring R is a
commutative Noetherian ring with unity. We say that p divides q,
denoted by p | q, if there exists r such that q = pr holds.

Lemma 3.1 Let p =
Pm

i=0 aiy
i and q =

Pn
i=0 biy

i be polyno-
mials in R[y] with deg(p) = m ≥ 0 and deg(q) = n ≥ 0. Then
for each h ∈ R,

(i) h | pq implies h | b0a
n+1
i for 0 ≤ i ≤ m,

(ii) h | pq implies h | bnan+1
i for 0 ≤ i ≤ m.

PROOF. First, we prove (i). Considering first the special case
m = 0, we observe that h | pq implies h | a0b0 and the conclusion
follows. Now we assume that m > 0 holds.

For i = 0, the claim is also clear, for the same reason as the case
m = 0. For 1 ≤ i ≤ m, we introduce the polynomials Ai and Bi

below in order to simplify our expressions:

Ai =

i−1X
j=0

ajy
j , and Bi = −

mX
j=i

ajy
j . (3)

Clearly, we have p = Ai − Bi. The key observation is to consider
the polynomial p̃ = An+1

i − Bn+1
i , as suggested by the forms of

our claims. To avoid talking about the degree of a zero polynomial,
we assume that both An+1

i and Bn+1
i are nonzero polynomials.

According to the construction of Ai and Bi in (3), we have the
following degree estimates:

deg(An+1
i ) ≤ deg(Ai)(n + 1) ≤ (i− 1)(n + 1), (4)

trdeg(Bn+1
i ) ≥ trdeg(Bi)(n + 1) ≥ i(n + 1), (5)

where trdeg(·) denotes the trailing degree, that is, the degree of
the term with lowest degree in a polynomial. Therefore there is no
term cancellation between An+1

i and Bn+1
i . With the assumption

that Ai and Bi nonzero, the polynomial p̃ is nonzero too. Now we
write p̃ in the form

p̃ = (Ai −Bi)(A
n
i + · · ·+ Bn

i ) = p(An
i + · · ·+ Bn

i ).

It follows that p | p̃ holds. Therefore h | p̃q holds since we have
h | pq. Observe now that if qAn+1

i is nonzero, then

deg(qAn+1
i ) ≤ (i− 1)(n + 1) + n < i(n + 1). (6)

Similarly, if qBn+1
i is nonzero, then its trailing degree is bounded

trdeg(qBn+1
i ) ≥ i(n + 1). (7)

Combining (6) with (7), we know that in qp̃ = qAn+1
i − qBn+1

i ,
the polynomial qAn+1 only contributes to terms with degree smaller
than i(n + 1). Thus we have

coeff(qp̃, yi(n+1)) = coeff(−qBn+1
i , yi(n+1)) = b0a

n+1
i (8)

which implies h | b0a
n+1
i , as desired.

Now we handle the special cases where An+1
i = 0 and Bn+1

i =
0. It is easy to see that An+1

i = 0 does not affect the proof above.
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When Bn+1
i = 0, simply we have an+1

i = 0, and then the claim is
also clear.

Finally, we prove (ii). Let P = ymp(1/y) and Q = ynq(1/y).
Since h | pq, h will also divide PQ = ym+n(pq)(1/y). Assume
that

a0 = · · · = ar−1 = 0, ar 
= 0,

b0 = · · · = bs−1 = 0, bs 
= 0.

Then r ≤ m and s ≤ n hold. According to (i), for any r ≤ i ≤ m,
h | bnas+1

i . It follows that h | bnan+1
i for any 0 ≤ i ≤ m.

Definition 3.2 Let p = a0 + · · · + aex
e ∈ R[x] with e ≥ 1.

The polynomial p is strongly primitive if the ideal generated by
{a0, . . . , ae} is the whole ring R. The polynomial p is weakly
primitive if for any β ∈ R such that ae | βai holds for all 0 ≤ i ≤
e− 1, we have ae | β as well.

Proposition 3.3 Strong primitivity implies weak primitivity.

PROOF. We use the same notation as in Definition 3.2. Let p
be strongly primitive. Then there exist ce, . . . , c0 ∈ R such that
ceae + · · · + c0a0 = 1. Let β ∈ R such that for 0 ≤ j ≤
e − 1, we have ae | βaj . Then there exist d0, . . . , de−1 ∈ R
such that aedj = βaj . Since βceae + · · ·+ βc0a0 = β, we have
ae(βce + de−1ce−1 · · · + d0c0) = β. Thus, we have ae | β, and
therefore p is weakly primitive.

Remark 3.4

(1) If any ai is invertible, then p is strongly primitive and then is
weakly primitive. As a particular case, p is weakly primitive
if one of its coefficients is a nonzero constant of a field.

(2) Weak primitivity does not imply strong primitivity. For ex-
ample, let R = Z[t] and p = tx + 2 ∈ Z[t][x]. Then p
is not strongly primitive, since 〈t, 2〉 
= 〈1〉R. In R[x], the
polynomial p is weakly primitive. If t | 2β, then t | β must
hold.

(3) The definition of strongly primitive does not depend on the
order of the coefficients in p. However, the definition of weakly
primitive relies on it. Indeed, let R = Z4[t], p = 2̄x + t and
q = tx + 2̄ . Then we have

(i) p is weakly primitive in R[x]. For any β ∈ R[x], if
2̄ | tβ then 2̄ | β.

(ii) q is not weakly primitive in R[x]. Let β = t+2̄ ∈ R[x].
Then we have t | 2̄(t + 2̄) = 2̄t, and t � (t + 2).

(4) Weak primitivity may not be extended. That is to say, if p
is weakly primitive, assuming that deg(p) = e > 0, then
p̄ = p + qxe+1 may not be weakly primitive. For example,
let R = Z4[t], p = 2̄x+ t and p̄ = p+ tx2 = tx2 + 2̄x+ t.
Then p is weakly primitive, and p̄ is not weakly primitive.
Indeed taking β = t+2̄, we have t | tβ and t | 2̄β, but t � β.

According to Proposition 3.5 the notion of weak primitivity turns
out to be a generalization of the ordinary notion of primitivity (the
gcd of the coefficients of a univariate polynomial is 1).

Proposition 3.5 Let R be a UFD and p =
Pe

i=0 aix
i ∈ R[x] with

ae 
= 0 and e ≥ 1. Then, the following statements are equivalent

(i) p is weakly primitive in R[x].

(ii) content(p) := gcd(a0, . . . , ae) = 1.
PROOF. We prove (i) ⇒ (ii). Assume that gcd(a0, . . . , ae) 
=

1. Then there is a prime factor f of gcd(a0, . . . , ae). Let β =
ae/f . Then ae | βai, for 0 ≤ i ≤ e − 1. Since ae � β, p is not
weakly primitive, a contradiction.

We prove (ii)⇒ (i). Assume that there exists β ∈ R such that

(∀ 0 ≤ j ≤ e− 1) ae | βaj and ae � β.

Then ae | content(βp) = βcontent(p). Since ae � β, some prime
factor f of ae divides content(p), a contradiction.

The following property on weak primitivity will be used in the next
section. It states the following fact: if one raises each coefficient of
a weakly primitive polynomial p to some power, then the resulting
polynomial is still weakly primitive. To avoid the cancellation of
the leading coefficient of p, we assume that this coefficient is a
regular element of the ground ring.

Proposition 3.6 Let p =
Pe

i=0 aix
i ∈ R[x] with ae being regular

in R, and {ni | 0 ≤ i ≤ e} be a set of non-negative integers.
Define q =

Pe
i=0 ani

i xi. Then if p is weakly primitive, q is also
weakly primitive.

The proof directly follows from the following two lemmas.

Lemma 3.7 Let p = a0+· · ·+aex
e ∈ R[x] with ae being regular

in R and n be a non-negative integer. If p is weakly primitive, then
pn = a0 + · · ·+ ae−1x

e−1 + an
e xe is also weakly primitive.

PROOF. By induction on n ≥ 0. The case n = 0 follows from
Remark 3.4. So we assume that the claim is true for n − 1, that
is, pn−1 is weakly primitive, with n ≥ 1. Let β ∈ R such that
an

e | aiβ, for 0 ≤ i ≤ e − 1. There exist h0, . . . , he−1 ∈ R such
that we have

an
e hi = aiβ, 0 ≤ i ≤ e− 1. (9)

Since pn−1 is weakly primitive and since we have an−1
e | aiβ, we

deduce an−1
e | β, that is, there exists h′ ∈ R such that

an−1
e h′ = β. (10)

With (9) and (10) we have an
e hi = aia

n−1
e h′, and then aehi =

aih
′, since ae is regular. Hence ae | aih

′. By the weak primitivity
of p, ae | h′ holds, that is, there exists h′′ ∈ R such that

aeh
′′ = h′. (11)

By (10) and (11) we have an
e h′′ = β. So an

e | β and pn is weakly
primitive.

Lemma 3.8 Let p = a0+· · ·+aex
e ∈ R[x] with ae 
= 0 and n be

a non-negative integer. Let j be an index such that 0 ≤ j ≤ e− 1.
Define q = a0 + · · ·+ an

j xj + · · ·+ aex
e = p + (an

j − aj)x
j . If

p is weakly primitive, then q is also weakly primitive.
PROOF. The claim is clear if n = 0, so we assume n ≥ 1. Let

β ∈ R such that, for 0 ≤ i ≤ e− 1 and i 
= j

ae | aiβ, and ae | an
j β. (12)

We prove that ae | β holds. We have, for 0 ≤ i ≤ e− 1 and i 
= j

ae | ai(a
n−1
j β), and ae | aj(a

n−1
j β).

Define β′ = an−1
j β. Hence ae | β′ holds, since p is weakly primi-

tive. With (12), for 0 ≤ i ≤ e− 1 and i 
= j we have

ae | aiβ, and ae | an−1
j β. (13)

We deduce that ae | an−2
j β holds. Continuing in this manner, we

reach ae | β. Thus q is also weakly primitive.
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4. PRIMITIVE REGULAR CHAIN
In this section, we generalize the notion of primitivity to any

regular chain T . Then we prove that sat(T ) = 〈T 〉 holds if and
only if T is primitive.

Definition 4.1 Let T = {p1, . . . , pm} ⊂ k[x] = k[x1, . . . , xn]
be a regular chain with mvar(p1) ≺ · · · ≺ mvar(pm). We say
that T is primitive if for all 1 ≤ k ≤ m, pk is weakly primitive in
R[xj ] where xj = mvar(pk) and

R = k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

Proposition 4.2 (Base case of Theorem 4.4)
Let p = aex

e + · · · + a0 ∈ k[y][x] and c = gcdk[y](a0, . . . , ae),
where e ≥ 1 and y is a finite set of variables. Then we have
〈p〉 = 〈p〉 : a∞

e ⇐⇒ c = 1.

PROOF. First we prove that 〈p〉 � sat(p) := 〈p〉 : a∞
e if c 
= 1.

Denote p̄ = p/c. Then aep̄ = aep/c ∈ 〈p〉, hence p̄ ∈ sat(p).
Assume that p̄ is in 〈p〉. Then there exists q ∈ k[y][x] such that
p/c = p̄ = pq. It follows that qc = 1 which is a contradiction
since c /∈ k. Therefore p̄ is in sat(p) but not in 〈p〉.

Conversely, we prove that if c = 1 then sat(p) ⊆ 〈p〉. For
any q ∈ sat(p), there exist n ∈ Z≥0 and β ∈ k[y][x] such that
an

e q = βp . Taking the content w.r.t. x, we have

an
e content(q, x) = content(β, x) content(p, x)

= content(β, x)

Thus an
e | β. There exists β′ ∈ k[y][x] such that β = an

e β′. So we
have an

e q = βp = an
e β′p, and then q = β′p, that is, q ∈ 〈p〉.

Remark 4.3 Let T = {p1} be a regular chain consisting of a sin-
gle polynomial. By definition, T is primitive if and only if p1 is
weakly primitive in R = k[x1, . . . , xj−1], where xj = mvar(p1).
Since R is a UFD, it follows from Proposition 3.5, that T is prim-
itive if and only if p1 is primitive in ordinary sense, that is, when-
ever the gcd of the coefficients of p1 (as a univariate polynomial in
R[xj ]) is 1. Therefore, the notion of primitivity for a regular chain
extends that of primitivity for a polynomial.

Theorem 4.4 Let T ⊂ k[x1, . . . , xn] be a regular chain. Then T
is primitive if and only if 〈T 〉 = sat(T ).

PROOF. We prove the theorem by induction on the number of
polynomials in T . The base case is Proposition 4.2, where |T | = 1.
Now assume that T = {p1, . . . , pm} consists of m ≥ 2 polyno-
mials with mvar(p1) ≺ · · · ≺ mvar(pm). We denote by Tk the
regular chain consisting of the first k polynomials in T .

First, assume indirectly that T is not primitive. We need to prove
that 〈T 〉 is a proper subset of sat(T ). Let k be the smallest integer
such that pk is not weakly primitive in R[y], where y = xj =
mvar(pk) and R = k[x1, . . . , xj−1]/〈Tk−1〉. By Proposition 4.2,
we know k ≥ 2.

Let pk = aey
e + · · ·+ a0. By induction, sat(Tk−1) = 〈Tk−1〉

holds and thus ae is regular in R. Since pk is not weakly primitive
over R, there exists β ∈ k[x1, . . . , xj−1] such that, in R, we have

(∀0 ≤ r ≤ e− 1) ae | βar and ae � β.

Define qk = βpk/ae. Then qk ∈ R[y], since

β

ae
pk = βye +

X
0≤r<e

βar

ae
yr.

We claim that qk ∈ 〈pk〉 : a∞
e and qk /∈ 〈pk〉 in R[y], which leads

to sat(Tk) 
= 〈Tk〉.

Indeed, we have aeqk = βpk ∈ 〈pk〉 in R[y]. Thus, qk ∈ 〈pk〉 :
a∞

e . Now if qk ∈ 〈pk〉, there exists α ∈ R[y] such that qk = αpk

in R[y]. By the construction of qk, deg(qk, y) equals deg(pk, y).
Hence α ∈ R and β − αae = 0 in R. This contradicts ae � β.

Secondly, we assume that T is primitive and show 〈T 〉 = sat(T ).
By induction, sat(Tk−1) = 〈Tk−1〉 holds. We shall prove that
sat(Tk) = 〈Tk〉 holds, too. To do so, we consider p ∈ sat(Tk) and
show that we have p ∈ 〈Tk〉. Let mvar(p) = xi and mvar(pk) =
xj . If i > j, then p ∈ sat(Tk) if and only if all coefficients of
p w.r.t xi are in sat(Tk), since Tk is a regular chain. So we can
concentrate on the case p ∈ k[x1, . . . , xj ].

Let hpk be the leading coefficient of pk w.r.t. y = xj , that is,
w.r.t. the main variable of pk. By virtue of Theorem 2.6 we have

sat(Tk) = 〈sat(Tk−1), pk〉 : h∞
pk

= 〈〈Tk−1〉, pk〉 : h∞
pk

.

By virtue of Theorem 2.4 we have prem(p, Tk) = 0, since p ∈
sat(Tk). Consequently, prem(p, pk) is in sat(Tk−1) = 〈Tk−1〉.
Now the pseudo-division formula (1) in Section 2 leads to

hα
pk

p = pquo(p, pk)pk + prem(p, pk), (14)

where α = max{0, deg(p, y)−deg(pk, y)+1}. If deg(p, y) <
deg(pk, y), then p = prem(p, pk) ∈ 〈Tk−1〉 ⊂ 〈Tk〉 holds and
we are done. From now on, we assume deg(p, y) ≥ deg(pk, y)
and we write α = deg(p, y) − deg(pk, y) + 1. With (14) we
observe that we have the following equation in R[y]

hα
pk

p = q pk. (15)

We consider a more general situation: let s ∈ sat(Tk), let δ be a
non-negative integer and let u ∈ k[x1, . . . , xn] such that

hδ
pk

s = u pk (16)

holds in R[y]. In order to prove that p ∈ 〈Tk〉 holds, we prove that
s ∈ 〈Tk〉 by induction on the number of terms in u. For simplicity,
we denote

pk =
eX

i=0

aiy
i and u =

fX
i=0

biy
i,

with ae 
= 0 and bf 
= 0. Note that ae = hpk .
If u = 0 in R[y], then ae

δs = 0 in R[y]. Since ae is regular
in R, we deduce s = 0 in R[y], that is, s ∈ 〈Tk−1〉 and thus
s ∈ 〈Tk〉. Assume u 
= 0 in R[y]. Let f ′ be the largest integer

such that bf ′ /∈ 〈Tk−1〉 and write u′ =
Pf ′

i=0 biy
i. We have

aδ
es = u′pk in R[y]. (17)

By Lemma 3.1, for any 0 ≤ i ≤ e, we have aδ
e | bf ′af ′+1

i in R.
Since pk is weakly primitive in R[y], by Proposition 3.6 we have
aδ

e | bf ′ in R. Thus there exists γ ∈ k[x1, . . . , xj−1], γ 
= 0 in R,
such that

aδ
eγ = bf ′ in R. (18)

We define

s′ = s− γyf ′
pk. (19)

Since s ∈ sat(Tk) we have s′ ∈ sat(Tk). Moreover we have

u′ = aδ
eγyf ′

+ tail(u′).

Therefore, the following holds in R[y]:

aδ
es

′ = tail(u′)pk. (20)

By induction hypothesis we have s′ ∈ 〈Tk〉. With (19) we conclude
s ∈ 〈Tk〉, as desired.
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5. WEAK PRIMITIVITY TEST
In this section, we point out the componentwise nature of weak

primitivity. That is, if R can be written as a direct product of rings,
then checking weak primitivity over R reduces to checking weak
primitivity over each of its “components”.

Lemma 5.1 Let R1, . . . , Rn be commutative rings with 1. Let
R = Πn

i=1Ri be their direct product and let πk be the canoni-
cal projection from R to Rk . Let a, b ∈ R. Then a | b in R if and
only if πk(a) | πk(b) for each 1 ≤ k ≤ n.

The proof of this lemma is straightforward, and thus is omitted.

Proposition 5.2 Let R = Πn
i=1Ri be a direct product of rings and

let πk be the canonical projection from R to Rk and τk be the
canonical injection from Rk to R. Let p =

Pe
i=0 aix

i ∈ R[x] be
a polynomial with ae being regular in R. Then p is weakly primitive
in R[x] if and only if πk(p) =

Pe
i=1 πk(ai)x

i is weakly primitive
in Rk[x] for each 1 ≤ k ≤ n.

PROOF. For any 1 ≤ k ≤ n, denote pk = πk(p). Since ae

is regular in R, πk(ae) 
= 0 for each k, and then each pk is a
polynomial of degree e.

First we prove that if all pk are weakly primitive then p is also
weakly primitive. Let β ∈ R satisfying ae | aiβ for 0 ≤ i ≤ e−1.
By definition, we need to prove that ae | β in R.

Applying πk to ae | aiβ, we have πk(ae) | πk(ai)πk(β), for
0 ≤ i ≤ e − 1. By the weak primitivity of pk, we have πk(ae) |
πk(β). So there exists uk ∈ Rk such that πk(ae)uk = πk(β). De-
fine u = (u1, . . . , un) ∈ Πn

i=1Ri. Then πk(u) = uk , and hence
πk(ae)πk(u) = πk(β), for each 1 ≤ k ≤ n. By Lemma 5.1,
ae | β in R. We proved that p is weakly primitive in R[x].

On the other hand, we prove that, if pk is not weakly primitive
over Rk for some 1 ≤ k ≤ n then p is not weakly primitive over
R. For simplicity, we assume k = 1. So, there exists β1 ∈ R1 such
that π1(ae) | π1(ai)β1 for 0 ≤ i ≤ e− 1, but π1(ae) � β1. Define
β = τ1(β1) = (β1, 0, . . . , 0) ∈ R. Then we claim that ae � β
and ae | aiβ for 0 ≤ i ≤ e − 1. This implies that p is not weakly
primitive over R, as desired.

Indeed, first we have ae � β, since π1(ae) � π1(β) = β1. Sec-
ond, to prove ae | aiβ for 0 ≤ i ≤ e− 1, by Lemma 5.1, we need
to prove that πk(ae) | πk(aiβ) for 1 ≤ k ≤ n and 0 ≤ i ≤ e− 1.
If k = 1, it follows from the choice of β1. If 2 ≤ k ≤ n, we have

πk(aiβ) = πk(ai)πk(β) = πk(ai) · 0 = 0

for 1≤ i≤e−1. Thus πk(ae) |πk(aiβ) holds for 1≤ i≤e−1.

Example 5.3 Let T = {p1, p2} be a regular chain in Q[t ≺ x ≺
y] with p1 = x(x− t), p2 = (x + t)y + t. Since p1 = x2 − tx is
strongly primitive in (Q[t])[x], p1 is weakly primitive in (Q[t])[x].
Let R = Q[t, x]/〈x(x− t)〉. Then we have

R = R1 ×R2 = Q[x, t]/〈x〉 ×Q[x, t]/〈x− t〉 � Q[t]×Q[t].

Over R1, p2 = ty + t is not weakly primitive, since t is not invert-
ible over R1 and according to the definition we can choose β = 1.
Hence T is not a primitive regular chain.

In order to generalize the construction of the above example into
an algorithm, one would need to use algebraic factorization. In the
next section, we propose a primitivity test for regular chains which
avoids algebraic factorization, relying instead on polynomial GCDs
modulo regular chains. Based on the algorithms and software tools
available today we view it as a practical solution, as confirmed in
Section 7.

6. A PRIMITIVITY TEST ALGORITHM
In Section 4, we define the notion of primitive regular chain

which generalizes that of primitive polynomial over a UFD. In this
section, we present another characterization on primitivity in terms
of regularity of a polynomial. As a consequence, we obtain an al-
gorithm to test whether a regular chain is primitive or not.

Lemma 6.1, 6.2, 6.3 and 6.4 are well-known facts. The proofs of
Lemma 6.1 and 6.4 are straightforward. Lemma 6.2 can be found
as Lemma 9.2.3 in [12] whereas Lemma 6.3 is Lemma 7 in [8].

Lemma 6.1 Let I be a proper ideal of R and let h be an element
of R. Then h is regular modulo I if and only if I = I : h∞ holds.

Lemma 6.2 Let a and b be two regular elements of R. Assume that
a and b are not invertible. If a is regular modulo 〈b〉 then b is also
regular modulo 〈a〉.

Lemma 6.3 (Mc Coy Lemma) A non-zero polynomial f ∈ R[x]
is a zerodivisor if and only if there exists a non-zero element a ∈ R
such that af = 0 holds.

Lemma 6.4 Let f ∈ R[x] be a non-constant polynomial. If its
leading coefficient is a regular element in R, then f is not a unit.

Proposition 6.5 Let R be a Noetherian commutative ring with 1.
Consider a polynomial f =

Pn
i=0 aix

i ∈ R[x]. Assume that n is
at least 1 and an is regular in R. Then 〈f〉 = 〈f〉 : a∞

n holds if
and only if an is invertible in R, or tail(f) is regular modulo 〈an〉.

PROOF. If an is invertible in R, then clearly 〈f〉 : a∞
n = 〈f〉

holds. So we assume that an is not invertible in R. Note that
both an and f are regular in R[x]; this follows from Lemma 6.3.
Since an is not invertible in R, an is not invertible in R[x] either.
Since an is regular in R, it follows from Lemma 6.4 that f is not
invertible in R[x]. Then, applying Lemma 6.1 and 6.2, we deduce

〈f〉 = 〈f〉 : an
∞ ⇐⇒ an is regular modulo 〈f〉
⇐⇒ f is regular modulo 〈an〉
⇐⇒ tail(f) is regular modulo 〈an〉.

This completes the proof.

The following corollary may be seen as another characterization
of the primitivity of a regular chain. This also provides an algorithm
for checking whether a regular chain is primitive or not.

Corollary 6.6 (Primitivity test of a regular chain)
Let T ⊂ k[x1, . . . , xs−1] be a primitive regular chain. Let p =Pe

i=0 aix
i
s ∈ k[x1, . . . , xs] with ae being regular modulo sat(T ).

Denote tail(p) =
Pe−1

i=0 aix
i
s. Then T ∪{p} is a primitive regular

chain if and only if ae is invertible modulo sat(T ), or tail(p) is a
regular polynomial modulo 〈T ∪ {ae}〉.

PROOF. This is a direct consequence of Proposition 6.5, Theo-
rem 4.4 and the definition of a regular chain.

Thus the problem of checking whether a regular chain T ∪ {p}
is primitive or not, reduces to checking whether the polynomial
tail(p) is regular or not modulo 〈T, ae〉. We next show that (T, ae)
in Corollary 6.6 generates an unmixed ideal; this result is crucial in
view of Algorithm 1 below. Indeed, it allows us to deal with the
following subtle point: a polynomial p regular modulo the radical√

I of an ideal I may not be regular modulo I . For example, con-
sider p = y and I = 〈xy, x2〉. Then y is a zerodivisor modulo
I but y is regular modulo

√
I = 〈x〉. If I is unmixed, then p is

regular modulo I if and only if p is regular modulo
√

I .
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Lemma 6.7 Let R = k[x1, . . . , xn] and T be a primitive regular
chain of R. If t ∈ R is regular but not invertible modulo sat(T ),
then (T, t) is a regular sequence of R and the ideal 〈T, t〉 is un-
mixed with dimension n− |T | − 1.

PROOF. Denote Ti = T ∩ k[x1, . . . , xi]. Since T is primi-
tive, sat(Ti) = 〈Ti〉 holds for each i. Thus T is already a regular
sequence of R. Now since t is regular but not invertible modulo
sat(T ) = 〈T 〉, by definition (T, t) is a regular sequence.

Let I = 〈T, t〉 and d = |T |. According to the Principal Ideal
Theorem (See Theorem 10.2 of [10]) the dimension dim(I) of I is
at least n − (d + 1). On the other hand, since (T, t) is a regular
sequence of length d+1, the dimension of I is at most n− (d+1).
Hence, dim(I) = n− (d+1) and then I is unmixed, by Macaulay
Unmixedness Theorem (See Theorem 5.7 of [19]).

Algorithm 1 IsPrimitive

Input: T , a regular chain of k[x1, . . . , xn].

Output: true if T is primitive, false otherwise.

1: if |T | = 1 then
2: t← the defining polynomial of T
3: if content(t, mvar(t)) ∈ k then return true else return false
4: else
5: write T as T ′ ∪ {t}, where t has the greatest main variable
6: if not IsPrimitive(T ′) then
7: return false
8: else
9: h← init(t), r ← tail(t)

10: for U ∈ Triangularize(T ′ ∪ {h}) do
11: if ires(r, U) = 0 then return false
12: end for
13: return true
14: end if
15: end if

Remark 6.8 (on the procedure IsPrimitive)

(1) The function Triangularize decomposes a polynomial sys-
tem F into a finite set of regular chains Ui such that

p〈F 〉 =
∩i

p
sat(Ui) holds; this is called a triangular decomposition

of F in the sense of Kalkbrener [3]. According to the above
specification, the set of the associated primes of

p〈F 〉 are
“implicitly” represented by Ui’s .

Triangularize is one of the core functions in the REGU-
LARCHAINS library [15]; it implements the triangular de-
composition algorithm of [17]. While computing in Kalk-
brener’s sense, it has the same specification as the function
solven in Kalkbrener [13], although the algorithms of [17]
and [13] are quite different.

Apart from Kalkbrener’s sense, Triangularize can also work
in Lazard’s sense [3], where all solutions of the input systems
will be explicitly represented by means of regular chains. In
general, this function runs faster in Kalkbrener’s sense, since
only generic solutions will be represented explicitly.

(2) The use of Triangularize seems hard to avoid. The pur-
pose is to represent all associated primes of the ideal 〈T ∪
{h}〉 by means of regular chains. Geometrically, it is the in-
tersection of the zero set of T with the hypersurface defined
by h.

(3) Algorithm 1 can be optimized using Item (1) of Remark 3.4:
if a coefficient ai of t = aex

e+· · ·+a0 is a nonzero constant,
then lines 10-12 can be skipped since t is strongly primitive.

PROOF OF ALGORITHM ISPRIMITIVE. Termination of the al-
gorithm follows from the fact that in each recursive call the number
of polynomials in the input regular chain decreases by 1.

For the correctness, we proceed by induction on the number of
polynomials in the regular chain T . When |T | = 1, the specifi-
cation follows from Remark 4.3. So we assume |T | > 1. Defini-
tion 4.1 and Theorem 4.4 imply that if T is primitive then T ′ is also
primitive. So we assume that T ′ is primitive and branch to line 9.

Let U be the output of Triangularize in line 10 and let I =
〈T ′ ∪ {h}〉. From the specification of Triangularize, we have\

U∈U

p
sat(U) =

√
I.

By Corollary 6.6, we need to distinguish two cases: h is invertible
(resp. not invertible) modulo 〈T ′〉 = sat(T ′).

If h is invertible modulo 〈T ′〉 then U is empty, and the algorithm
correctly returns true. Assume from now on that h is not invertible
modulo 〈T ′〉. In this case by Lemma 6.7, the triangular decompo-
sition U is not empty. So T is primitive if and only if r is regular
modulo I . By Lemma 6.7 again, the ideal I is unmixed and there-
fore T is primitive if and only if r is regular modulo

√
I . This holds

if and only if r is regular modulo sat(U) for each U ∈ U . Finally,
the correctness of Algorithm 1 follows from Theorem 2.4.

Example 6.9 Let R = k[z ≺ y ≺ x] be a polynomial ring and
T = {t1, t2} be a regular chain of R with t1 = y3−z2, t2 = yx−
z. Clearly, {t1} is a primitive regular chain. Let I = 〈t1, lc(t2)〉 =
〈t1, y〉 = 〈y, z2〉. In Algorithm 1 the call to Triangularize will
produce

√
I = sat(U) where U = {z, y} is a regular chain. Thus,

the computation

ires(tail(t2), U) = ires(−z, U) = 0

implies that tail(t2) = −z is a zerodivisor modulo I . Thus T is not
primitive. In fact, sat(T ) = 〈xy − z, xz − y2, x2 − y〉 defines the
twisted cubic which can not be generated by only two polynomials.

The above example implies that not every prime ideal can be gen-
erated by a primitive regular chain.

7. EXPERIMENTATION
We implemented the algorithm IsPrimitive on top of the REG-

ULARCHAINS library [15] in MAPLE. The experimentation, de-
scribed hereafter, was conducted on well-known problems used
in [5] 1, and the tests were performed in MAPLE 11 on an Intel
Pentium 4 machine (3.20GHz CPU, 2.0GB memory).

First, we computed their triangular decompositions using the
Triangularize command in the sense of Kalkbrener. Then, we ap-
plied the IsPrimitive algorithm to each regular chain in the output.

In Table 1, we summarize the features of the problems and our
experimental results. The name of the problems are listed in the
first column. The second column gives the number n of variables
and the maximal total degree d. For each triangular decomposition
(which is a list of regular chains) we record the total running time
(in seconds) of IsPrimitive in the third column. The last column
is the result of mapping IsPrimitive to each triangular decomposi-
tion: in each of these patterns Y stands for true and N for false.

1The defining polynomial systems can be found at
http://www.orcca.on.ca/∼panwei/issac08/
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These data show that the procedure IsPrimitive is efficient in
practice. This agrees with the fact that, in Algorithm 1, the input
polynomial set in each call to Triangularize is rather structured.
We also observe that primitive regular chains appear quite often in
the output of triangular decompositions.

Table 1: Tests for IsPrimitive on 14 examples
System (n, d) Time Pattern
KdV575 (26, 3) 3.525 [Y, Y, Y, Y, Y, Y, Y]
MontesS11 (6, 4) .001 [Y]
MontesS16 (15, 2) .103 [Y, Y, Y, N, Y, Y, Y]
Wu-Wang2 (13, 3) 0.099 [Y, N, Y, Y, Y]
MontesS10 (7, 3) .145 [N]
Lazard2001 (7, 4) 2.314 [Y, Y, Y, N, Y, N]
Lanconelli (11, 3) .062 [N, Y]
Wang93 (5, 3) .142 [N]
Leykin-1 (8, 4) .228 [Y, Y, Y, Y, Y, Y, Y, Y, N, Y, Y, Y, N, N]
MontesS14 (5, 4) 1.171 [Y, N, N]
MontesS15 (12, 2) .312 [N]
Maclane (10, 2) .157 [Y, Y, N, Y, N]
MontesS12 (8, 2) .042 [N]
Liu-Lorenz (5, 2) 1.117 [N, Y]

8. CONCLUDING REMARK
We have generalized the notion of primitivity from univariate

polynomials to regular chains. This has allowed us to establish a
necessary and sufficient condition for a regular chain T to generate
its saturated ideal sat(T ). Assume that T is not empty and write
T = T ′ ∪ {p} where p is the polynomial of T with largest main
variable. Theorem 4.4 states that the equality 〈T 〉 = sat(T ) holds
whenever 〈T ′〉 = sat(T ′) holds and the polynomial p is weakly
primitive over k[x]/〈T ′〉. This latter property is a generalization of
the usual notion of primitivity for polynomials over a UFD.

Examining the proof of Theorem 4.4, we make the following
observation. When p is not weakly primitive over k[x]/〈T ′〉, the
proof exhibits a polynomial q which belongs to sat(T ) but not to
〈T 〉. When p is weakly primitive over k[x]/〈T ′〉, the proof shows
that every polynomial q of sat(T ) belongs to 〈T 〉. The argument
is constructive providing that one has at hand an algorithm for divi-
ding a by b modulo 〈T ′〉, where b is a polynomial regular modulo
〈T ′〉 and is a multiple of the polynomial a modulo 〈T ′〉. This can
be done via Gröbner basis computations, see [16]. An algorithmic
solution based on the algorithms of the REGULARCHAINS library
is an ongoing research work.

Theorem 4.4 and its proof do not lead directly to an algorithm for
testing the equality 〈T 〉 = sat(T ). Algorithm 1 provides such a de-
cision procedure. This algorithm reduces to testing whether a poly-
nomial is regular modulo an ideal. Fortunately the involved ideal
is unmixed which allows us to rely on the algorithms of the REGU-
LARCHAINS library avoiding Gröbner basis computations. Our ex-
perimentation illustrates the practical efficiency of Algorithm 1.

An application of this procedure is in the removal of redundant
components for triangular decompositions in the sense of Kalk-
brener. However, this procedure provides only a criterion for re-
moving redundant components. Obtaining an algorithm, free of
Gröbner basis computations, for testing the inclusion of saturated
ideals remains an open problem.
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