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We consider multivariate polynomials with exponents that are themselves
integer-valued multivariate polynomials, and we present algorithms to compute
their GCD and factorization. The algorithms fall into two families: algebraic

extension methods and interpolation methods. The first family of algorithms

2
uses the algebraic independence of x, ™, ™ , ™", etc, to solve related prob-

lems with more indeterminates. Some subtlety is needed to avoid problems
with fixed divisors of the exponent polynomials. The second family of algo-
rithms uses evaluation and interpolation of the exponent polynomials. While
these methods can run into unlucky evaluation points, in many cases they can
be more appealing. Additionally, we also treat the case of symbolic exponents
on rational coefficients (e.g. qn?+n _ 81) and show how to avoid integer fac-
torization.

1. Introduction

We wish to work with polynomials where the exponents are not known in
advance, such as 2" — 1. There are various operations we may want to
perform, such as squaring the value to get 24" — 222" + 1, or differentiating
it to get 2nz?"~!. Expressions of this sort arise frequently in practice, for
example in the analysis of algorithms, and it is very difficult to work with
them effectively in current computer algebra systems.

We may think of these objects as sets of polynomials, one for each value
of n, or we may think of them as single values belonging to some new ring.
In the ring setting, we wish to perform as many of the usual polynomial
operations on these objects as possible. Many computer algebra systems
will allow one to work with polynomials with symbolic exponents. They do
this, however, either by falling back on some form of weak manipulation



of general expressions or by treating all symbolic powers as independent.
There are therefore certain operations and simplifications they cannot per-
form as the relationship between exponents may be non-trivial. We would
like, for example, to factorize symbolic polynomials such as

In476n3+11n276(n+2m73) o loooooom —
$—12m % (m2p + 1Omxp+2m 4 102m$4m) % (xp + 1Omx2m)
X (ac2p — 1™ P2 4 102mx4m) X (xp — 1Omx2m)

p=1/6n*—n®>4+11/6 n> —n+3

and perform operations on symbolic integers
16™ — 81™ = (2™ — 3™)(2" + 3™)(2*" + 3°™).

This paper examines the problem of working with such symbolic poly-
nomials. The principal contributions are:

e to introduce a useful formulation of symbolic polynomials,

e to show this leads to a well-defined multiplicative structure, with unique
factorization

e to present two families of algorithms to compute GCDs, factorizations,
etc.,

e to extend the notion of symbolic polynomials to allow symbolic opera-
tions on the coefficients.

This extends ideas presented in an earlier paper.”

The remainder of the paper is organized as follows: Section 2 gives the
definition that we shall use as our model for symbolic polynomials. Section 3
discusses the multiplicative properties of symbolic polynomials and shows
they have a well-defined unique factorization structure. Section 4 presents
a family of algorithms to compute values based on the multiplicative struc-
ture of symbolic polynomials. The two examples given are greatest common
divisor and factorization. These algorithms are based on the algebraic in-
dependence of z, x™, x"2, etc and work in extensions of polynomial rings.
Section 5 presents a second family of algorithms for the same problems,
but this time based on projection methods. These methods are based on
evaluation and interpolation of the exponent variables. Section 6 addresses
technical problems that can arise in term identification in projection meth-
ods. Section 7 discusses a number of generalizations of symbolic polynomi-
als. One problem discussed there is treating elements of the coefficient ring
with symbolic exponents without having to perform factorizations there.

Finally, Section 8 concludes the paper.



2. Symbolic Polynomials

We can imagine a number of models for symbolic polynomials that have
desirable properties. Most generally, we could say that any set .S, which
under an evaluation map gives a polynomial ring R[x1, ..., 2], represents
symbolic polynomials. This would allow such forms as

ged(z™ — L, z™m —1)+1 (1)

or

(x — 1)2:&. (2)

Working in terms of explicit ring operations will be useful to us, so we begin
by generalizing to symbolic exponents only. This excludes expressions such
as (1) and (2).

We recall the concept of a group ring: A monoid ring is a ring formed
from a ring R and monoid M with elements being the finite formal sums

Zrimi,m € R,m; € M.
%

A monoid ring has a natural module structure, with basis M, and addition
defined in terms of coefficient addition in R. Multiplication is defined to sat-
isfy distributivity, with rym; X remse = (r172)(mims). When the monoid M
is a group, then the algebraic structure is called a group ring. For example,
the Laurent polynomials with complex coefficients may be constructed as
the group ring C[Z], viewing Z as an additive group.

We now define a useful class of symbolic polynomials.

Definition 2.1. The ring of symbolic polynomials in x1,...,z, with expo-
nents in nq,...,ny, over the coefficient ring R is the ring consisting of finite
sums of the form

E cimiilwgm ... foin
%

where ¢; € R and e;; € Int(,, p,, .. n,)(Z). Multiplication is defined by

Clxill . xeln X 02$T21 .

ei1tez1 eintean
n n

ST = cpeony ceex
We denote this ring R[n1, ..., p; T1, ..., Ty ).
We make use of the integer-valued polynomials, Int[nhmnp](D). For an

integral domain D with quotient field K, univariate integer-valued polyno-
mials, usually denoted Int(D), may be defined as

Int;x)(D) = {f(X) | f(X) € K[X] and f(a) € D, for all a € D}



For example %nQ — %n € Intp,)(Z). Integer-valued polynomials have been
studied by Ostrowski® and Pélya,* and we take the obvious multivariate
generalization.

Our definition of symbolic polynomials is isomorphic to the group ring
R[(Int[nh.__,np] (Z))v] We view Intp,, . n,(Z) as an abelian group under
addition and use the identification

T LeC2 -, O (el7 .. ,ev) S (Int[m’__,mw](Z))v

We note that R[;21,...,2,] = R[z1,..., %y, —Z1, ..., —Zy]. Also, under any
evaluation ¢ : {n1,...,n,} — Z, we have

¢ : RNy, ...,np; 1, ..., Ty) — R[T1, .0y Ty, xl_l, oyt

That is, ¢ evaluates symbolic polynomials to Laurent polynomials. It would
be possible to construct a model for symbolic polynomials that, under eval-
uation, had no negative variable exponents. This, however, would require
keeping track of cumbersome domain restrictions on the exponent variables.

By definition, these symbolic polynomials have a ring structure. What
is more interesting is that they also have a useful unique factorization struc-
ture that can be computed effectively.

Symbolic polynomials, in the sense we have defined them, can be related
to exponential polynomials®® through the transformation z;" > e’ 1082
With exponential polynomials, however, it is awkward to capture the notion
that the exponents of x; must be integer valued.

There has also recently been some work on computing Groébner bases
with parametric exponents®® and systems of algebraic equations with para-
metric exponents.” One of the questions asked in this setting is to classify all
special cases under evaluation of the parameters. We ask an easier question.
Instead, we seek to compute results that are correct under every specializa-
tion. This allows us to obtain algorithms for the multiplicative structure of
the symbolic polynomials, something that had not been investigated earlier
in the parametric setting.

3. Multiplicative Properties

We now show the multiplicative structure of our symbolic polynomials. For
simplicity we treat the case when R = Q.



Theorem 3.1. Q[ny,...,np; 21, ..., Ty] s a UFD, with monomials being
units.

Proof. We first consider the case when exponents are in Z[ng, ..., n,]. The
fact that =, z", x"z, ... are algebraically independent can be used to remove
exponent variables inductively. We observe that

eik > higng nyd\ hi;
i =a = | I (mkl ) = | kaj i, hij € Zlna,...,np).
J J

This gives the isomorphism

Qlni,na, ...y np; 1, ... 2y | =

Q[n2, ooy Mp3 105 X115 L125 -+ Lldy s -+ Lw0s Lol T2, ---xvdl]

where d; is the maximum degree of 71 in any exponent polynomial and z;;

corresponds to :c?lj. Repeating this process p times, we obtain

Q[nlan2a cey Np T, xv] = Q[a Z10...0 "'axvdl...dp]a

which is a ring of multivariate Laurent polynomials with the desired prop-
erties.

When the exponents come from the integer-valued polynomials
Int,, .. n,)(Z), as opposed to Z[ny,...n,|, care must be taken to find the
fixed divisors of the exponent polynomials. These fixed divisors are given
by the content when polynomials are written in a binomial basis. So to

show explicitly unique factorization with exponents in Intp,, . . (Z), we
n1Y...("p
make the change of variables x,(cl) (P) — Xpi,...i,- Note that the Xp;, i,

are in one to one correspondence with x;, . ;, and so are therefore also

algebraically independent. |

Symbolic polynomials can be related to exponential polynomials, which also
have a UFD structure.?

4. Extension Algorithms

n2
7

The proof of Theorem 3.1 introduces new variables to replace z!, x
’Vlrl TL2

331( 2 ), T , 37@( 2 ), etc. This idea may be used to obtain algorithms for

GCD, factorization, square-free decomposition and similar quantities over

Qln1, ...np; x1, ..., y]. We illustrate with algorithms for greatest common

divisors and factorization.

ning
%



Extension Algorithm for Symbolic Polynomial GCD

INPUT: Symbolic polynomials f1, fa € Q[n1,...np; X1, ..., Ty
OUuTPUT: g = ged(f1, f2) € Q[na, -..np; 21, ..oy Ty)

(1) Put the exponent polynomials of fi and fo in the basis (7;@)

(2) Construct polynomials Fi, Fy € Q[X10...0, ..., Xvd, ...d,], Where d; is the
maximum degree of n; in any exponent of fi or fo, using the corre-
spondence

(i)-(i)
yrayt Pl Xy iy
(3) Compute G = ged(Fy, Fy).
(4) Compute g =y~ 1(G).

Under any evaluation map on the exponents, ¢ : Intp,, . (Z) — Z, we
have that ¢(g) | ged(é(f1), @(f2)). This g is the maximal uniform ged in
the sense that any other polynomial ¢’ € Q[ng,...ny; 21, ..., ] such that
d(g") | o(F1) and ¢(g") | ¢(Fy), for all ¢, also satisfies ¢’ | g.

Extension Algorithm for Symbolic Polynomial Factorization

INPUT: A symbolic polynomial f € Q[ny,...np; T1, ..., Ty ).
OutpuT: The factors g1, ..., gn such that [[, g; = f, unique up to units.

(1) Put the exponent polynomials of f in the basis (7;)
(2) Construct polynomial F' € Q[X10...0, -, Xvd,...d,], where d; is the max-
imum degree of n; in any exponent of f, using the correspondence
(i)~()
VT Pl inl”»ip'
(3) Compute the factors G; of F.
(4) Compute g; =y '(Gy).

Under any evaluation map on the exponents, ¢ : Inty,, ., (Z) — Z, if
#(f) factors into fg1, ..., for these factors may be grouped to give the fac-
tors ¢(g;). That is, there is a partition of {1,...,7} into subsets I; such
that ¢(g;) = [[;cs, foj- This factorization into g; is the maximal uniform
factorization in the sense that any other factorization g; has V;3;9; | ;-

It may be that under every evaluation map there is a finer factorization.
Erich Kaltofen gives the example (z" — 1) x (y"*1 — 1). For each n, either
the first or second factor is a difference of squares and therefore factors
further. There is no further factorization, however, valid for all values of n.



Examples

We use the following pair of polynomials for our examples:

2 2 2 2
p= an +6n+44+m°—m __ 21,271 +7n+2mnyn +3n (3)
o 3xn2+3n+2mnyn2+3n 4 12$4+m2—m+2n
2 2 2 2 2
q= 417” +4n+m“4+6m 28In +8n+m +6m+2y4n —4n (4)

2 2 2 2
4 an +4n 141,71 +8n+2y4n —4n 4 6CCm +6m

2 2 2
_ 42xm +6m+4n+2y4n —4n 21y4n —4nx4n+2 + 3

We demonstrate the computation of the GCD of p and ¢ and the factor-
ization of p. To begin, we note that the exponents of x in p and ¢ are
polynomials in m and n of maximum degree 2. We therefore use

() o= rv75) - [ m ).

as a basis for the exponents of x. Likewise we note that the exponents of y

are polynomials in n alone and are of maximum degree 2. For them we use

the basis
() o=vsa)-(omes2)

Now we make the change of variables

vy={x— A, 2" — B, x(g)»—>0’ 2" — D, 2" — E, {L‘(ZL)HF7
ye G,y H, yG) - 1)

to give:
p=8A*B"C?*F? — 2B°C*E*H*I?> — 3B*C?E*H*I? + 12A*B*F?

q=4B°C?D"F? — 28A%B°C?D"F?I® + 2B°C? — 14A2B°C?I®
+6D"F? —42A?B*D"F?1® — 21A2B*I® + 3.



We then obtain the GCD of p and q as
g=2B°C?+3
and the factorization of p as
p=B*x (2B°C? 4 3) x (2A°F — BCEIH?) x (2A*F + BCEIH?).

1

Applying v~*, we have the desired results:

g= 2" Hin 4 3
p= I2n X (2zn2+4n + 3)
% (2$1/2m2—1/2m+2 _ m1/2n2+mn+1/2ny1/2n2+3/2n)

% (2x1/2m2—1/2m+2 +x1/2n2+mn+1/2ny1/2n2+3/2n) .

Remarks

We have described this transformation as though the exponent polynomials
were dense, in which case transforming from a power basis to binomial basis
introduces no new terms. This is often not the case, so blindly changing to
a binomial basis is not always the best strategy.

In the worst case, the number of variables in the new polynomials will
be v(D + 1)?, where v is the number of base variables, x;, p is the number
of exponent variables, n;, and D is the degree bound on the n; in the
exponents. In practice, it is often the case that the number of variables
occurring in exponents will be small and the exponent polynomials will
be of low degree so the introduction of new variables may be acceptable.
In other cases, such as when the exponent polynomials are sparse, other
approaches may be preferable.

5. Projection Methods

If the number of exponent variables is large and the exponent polynomials
are sparse, then it may be advantageous to use an evaluation/interpolation
approach. Exponent polynomials may be mapped to integers at several
points, the problem solved, and the images combined via interpolation. We
illustrate with algorithms for greatest common divisors and factorization.



Projection Algorithm for Symbolic Polynomial GCD
(Dense Version)

INPUT: Symbolic polynomials f1, fa € Q[n1,...np; T1, ..., Ty
OUTPUT: g = ged(f1, f2) € Q[na, ...np; 21, ..oy Ty)

(1) If p = 0 solve problem in Q[z1, ...,xv7xf1, ..., 2, ). Return result.

(2) Let d be the degree bound of n; in any exponent of fi or fs.

(3) Choose d + 1 distinct evaluation points e; € Z.
Let ¢; be the evaluation map ny — e;.

(4) Compute d + 1 GCD images ¢, = ged(¢i(f1),¢i(f2)) €
Q[ng, ..., np; X1, ..., | by recursive application of this algorithm.

(5) Identify corresponding terms in the g;.

(6) Choose one set of corresponding terms and normalize the polynomials
so these terms are equal (e.g. make those terms 1).

(7) For each set of corresponding terms, interpolate the exponent polyno-
mial to form the corresponding term of g, the GCD.

(8) Return g.

This gives the same GCD as the Extension Algorithm for GCD.

If an evaluation gives a GCD image that is “larger” than the other
images, then it is a special case evaluation and should be discarded and
another point chosen. If an evaluation point gives a GCD image that is
“smaller” than the other images, then the previous evaluations were all
unlucky and new points must be chosen.

An important problem is that in step 5 it is not always straightforward
to identify corresponding terms. We discuss this in Section 6.

Projection Algorithm for Symbolic Polynomial
Factorization (Dense Version)

INPUT: A symbolic polynomial f € Q[nq,...np; T1, ..., Ty ).
OutpuT: The factors g1, ..., gn such that [], g; = f, unique up to units.

(1) If p = 0 solve problem in Q[z1, ...,xv,xl_l, ..., 25 ). Return result.

(2) Let d be the degree bound of ny in any exponent of f.

(3) Choose d + 1 distinct evaluation points e; € Z.
Let ¢; be the evaluation map ni +— e;.

(4) Compute d 4 1 factorization images g; X -+ - X gn; = factor(¢;(f)) €
Q[ng, ..., np; x1, ..., | by recursive application of this algorithm.

(5) Identify corresponding factors in the images, and terms within the fac-
tors.
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(6) For each set of corresponding polynomial images, choose one set of
corresponding terms and normalize the polynomials so these terms are
equal.

(7) For each term interpolate the exponent polynomial to form the corre-
sponding term of g, the k" factor.

(8) Return g1,--- , gn.

This gives the same factorization, up to units, as the Extension Algorithm
for Factorization. As with the GCD computation, there is the problem is
that in step 5 it may be difficult to identify corresponding terms. This
is discussed later. As with other factorization algorithms, it may be the
case that image factorizations have different numbers of factors and that
combinations must be tried to form the gy;.

Sparse Algorithms

With naive dense interpolation, a number of problems exponential in the
number of variables must be solved in Q[z1, ..., z,]. Using sparse interpola-
tion techniques, this is not always necessary. The sparse versions of these
algorithms use sparse interpolation of the individual exponent polynomials.

Examples

We use the same p and ¢ as before, defined by equations (3) and (4), and
compute the GCD of p and ¢ and the factors of p. The maximum power
of m or m in any exponent is 2. For simplicity, we use dense interpolation
with m € {1,2,3} and n € {1,2,3}. Letting p;; denote p evaluated at
m =1i,n = j, we have:

P11 = —2m11y4 + 8zl — 3m6y4 +124°
pro = —2026510 4 820 _ 314,10 | 9,8
P13 = —2045y18 4 831 _ 324,18 | 19,10
po1 = —22 3y 4+ 8213 — 328yt + 1248
pag = —2230y10 4 822 _ 3,18,10 | 15,10
pag = —22°1y18 4 8033 _ 3430,18 | 19,12
P31 = —2210y* 4+ 8217 — 31044 4 19212

3 = —2034y10 4 826 _ 3222,/10 | 19,14

pas = — 22Ty 4 8257 — 336,18 | 19,16



Similarly, letting ¢;; denote ¢ evaluated at m =4,n = j gives:

g1 = 4a"? —
qr2 = 420 —
g3 = 42 —
g1 = 42!

o2 = 42*® —
qo3 = 42”7 —
g31 = 4a*? —
g3z = 42 —
qs3 = 42 —

28218 + 225 — 142 + 627 — 42213 + 3 — 212°

28x
28x

28x
28x

20,8 1 9212 142228 4 627 — 4221 Ty® 4+ 3 — 2135210

Y

42 24
)

38 8
Y

51 24
)

35 24 21 24

35 24 30, 24

28238 1 245 — 142" 46227 — 42433 13- 2145

28x
28x

49,8 1 9012 142228 4 6227 — 425578 + 3 — 2138210

)

62 24 + 233’21 _ 143:35 24

Y Y + 6277 — 42z Yy +3-21y"x

41 24

Then we calculate g;; = ged(pij, ¢ij):

g11 = 22" +3 g12 =222 +3 g13 = 22" +3
go1 = 22" +3 g22 =222 +3 go3 = 227" 3
g31 = 22° +3 932 =222 +3 g33 = 2¢° +3

This gives one exponent polynomial to interpolate and we obtain

We now turn our attention to factoring p. We factor the image polyno-

mials in Z[x, y]:

p11

P12

p13

p21

P22

p23

P31

p32

P33

g= 9" A 4 3,

_g8 (y2 — 2) (y2 42 (3 + 2x5)
_gB (3 + 23:12) (a:3y5 - 2) (m3y5 n 2)
_z10 (3 T 2:1;21) (ﬂc7y9 - 2) (:c7y9 + 2)
B (y2 — 2) (y2 + 2) (3 + 2x5)
—z10 (3 + 2m12> (m4y5 f 2) (x4y5 + 2)

—zt? (3 + 29621) (a:gyg — 2) (xgyg + 2)

20 (3+2°) (20— 9?) (20 +47)

T (3 + 2x12) (w4y5 _ 2) (a:4y5 + 2)

— 16 (3 + 23:21) (xloyg _ 2) (mloyg + 2)

+ 2271 — 1423592 + 627 — 42271y 4+ 3 — 2192
— 28277 + 22° — 142" + 621¢ — 422°% + 3 — 212°
+ 2212 — 1427248 + 621¢ — 422258 4+ 3 — 214821°

+ 2271 — 1423592 + 6210 — 42239971 4+ 3 — 2142

We determine which factors correspond by inspection. We let fi; be the
factor with coefficients {2, 3}, fo with {£+1,F2}, f3 with {1,2} and u the

monomial.
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Recall that, in the ring of symbolic polynomials, and in Q[x,y, 21,y 1],
monomials are invertible and factorization is unique up to units. We pick
an arbitrary monomial in each of f; to be the constant term and normalize.
(In principle we could normalize the constant term to 1, but it is convenient
here to divide through only by the power product z*1y*2.) The resulting
factors are shown in the following table.

m | n u f1 f2 f3

1 {1 —2% | 22°+3 y? -2 Y +2
1 2 —8 2212 4+ 3 x3y5 -2 w3y5 +2
1|3 =2 [ 222 +3 | 2% -2 | 27y? +2
2 | 1| —2% | 22°+3 y? -2 > +2
2 [ 2| =29 | 22243 | 2% —2 | 2P +2
2 | 3| =22 | 222 4+3 | 2% -2 | 2% +2
3 |1 —z'2 | 22°+3 z_lyQ -2 m_lyz +2
312 2™ | 222+3 | 2% -2 | z%¥P 42
3|3 —z10 | 2221 +3 wloyg -2 mwyg +2

Interpolating the exponent polynomials, we obtain

2_
u= _:L,4+m m—+2n

fl 2$n2+4n +3
fo = x*1/2m2+mn+1/2n2+1/2m+1/2n72y1/2n2+3/2n _9

_ 2 2 _ 2 .
f3 = 1/2m*+mn+1/2n*+1/2m+1/2n 2y1/2n +3/2n +2.

This gives the factorization

p=uX f1 X fo X f3,

which is the same, up to units, as what we obtained with the extension
algorithm. To see this, let e = m? — m + 4 and multiply v by —x~¢, f» by
—2¢/2 and f3 by x¢/2.

6. Finding Corresponding Terms

In general, problems may arise in projection methods when identifying sets
of terms for interpolation. In computing GCDs, for example, this amounts
to determining which terms correspond in the GCD images. There are three
problems that arise:

e The first problem is that, under certain evaluations of the exponent vari-
ables, exponent polynomials become equal and terms of the result com-
bine. If there is only one exponent variable, then this can occur for at
most DT(T — 1)/2 evaluation points, where T' is the number of terms
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in the GCD and D is the degree bound on the exponent variable. This
is because there are up to T(T — 1)/2 pairs of distinct exponent poly-
nomials, each pair having at most D common values. For multivariate
exponents, terms may combine at an unlimited number of points, but
choosing random evaluation points effectively avoids the problem.

e The second problem is that, even if terms do not combine, it may still not
be obvious which terms correspond. For example the GCD may have mul-
tiple terms with the the same coefficient and variables. If the coefficient
ring is not large enough, then this can occur with high probability.

e The third problem is that one or more evaluation points may give special
case results. This is the exceptional case, however. Depending on the
problem, the special case results might give an interesting short-cut to a
solution or they might be useless and simply be discarded.

In computing factorizations, we have the above problems as well as the

usual problem of factor identification.
We illustrate the problem of difficulty identifying corresponding expo-

nents under evaluation with another GCD example, using v and v given
as:
U :x3n274n+8 + 9x2n2+4 + xn3+n274n+4 + 14xn2+4n + an3 (5)

2 2 3,2 2 3
v :£C3n +8 + 8!172n +4n+4 + :rn +n“+4 + 7xn +8n + wn +4n. (6)

The exponent polynomials are of degree at most 3, so we evaluate at
four points.

n=1= ged(u, v)

n=2= ged(u,v) = 8212 + 28
n=3= ged(u,v) = 227 + 222 4 722
n=4= ged(u, v) = 2% + 236 4 7272

We see that the different evaluations give polynomials with different num-
bers of terms. It appears that there are three terms in the symbolic poly-
nomial, and that the evaluation at n = 2 made two of the exponents equal,
giving terms x'? and 722,

When the image has three terms, two of the coefficients are the same so
it is not clear how to assign the images to symbolic terms for interpolation.
Note that the evaluation does not necessarily preserve term order: for n = 1
the term with coefficient 7 is of middle degree, for n = 2 it is of highest
degree and for n = 3 and n = 4 it is of lowest degree. We must therefore
consider the possibility that the terms with coefficient 1 may appear in any
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order. Thus, even with only two terms having equal coefficients, we have a
number of cases to consider exponential in the degree of n. These are shown
in the table below. The entries are lists of values for the exponents e; at
n = [1,2, 3, 4] respectively.

Model Term 1 Term 2 Term 3

1 xz 1 x z¢ T X x°
1 [6,12,27.64] [1,8,22,36] [5,12,21,32]
2 [6,12,27.36]  [1,8,22,64] [5,12,21,32]
3 [6,12,22.64] [1,8,27,36] [5,12,21,32]
4 [6,12,22.36]  [1,8,27,64] [5,12,21,32]
5 [6,8,27,64]  [1,12,22,36] [5,12,21,32]
6 [6,8,27,36]  [1,12,22,64] [5,12,21,32]
7 [6,8,22,64]  [1,12,27,36] [5,12,21,32]
8 [6,8,22,36]  [1,12,27,64] [5,12,21,32]

To discover which is the correct combination, we evaluate at one extra
point.

n=>5= ged(u,v) = 2'2° 4 25 4 7295,

At n = 5 either (a) ey = 125, e5 = 54 or (b) e; = 54, e = 125. Interpolating
each model with both choices, we see that model 4 with (b) gives e; =
2n2 + 4 and ey = n3 with degrees < 3 as required. All other combinations
give interpolants of degree 4. We therefore have

gcd(u,v) — x2n2+4 + an + 7xn2+4n

If there are T terms and N evaluation points, then there will be (71)V 1
possible assignments of evaluation points to terms. One of them will give in-
terpolants satisfying the degree bound. Unless 7" and N are very small, this
strategy will obviously be infeasible and another approach will be needed.

We also observe that if there is only one exponent variable, then there
will be some value beyond which evaluations give images that have a con-
sistent order. This is because a finite set of univariate polynomials will have
a finite set of points that make two of the polynomials equal. If this bound
can be determined, in principle it avoids the problem of determining which
images correspond. In practice, however, it may be too large to be useful
(at least in the case of factorization).

Interpolation of Symmetric Functions

There is a better alternative to address the problem of term identification.
If there are terms that cannot be distinguished, then we may take advan-
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tage of the symmetry and interpolate symmetric functions of the exponent
polynomials.

If ¢1, ..., tr are the terms that cannot be distinguished, then we interpo-
late S;(t1, ..., tr) for different j, where S; is the j-th elementary symmetric
function. We then use one evaluation point to break the symmetry and
solve for the exponents of the ¢;.

We use this method to compute the GCD of v and v given by equations
(5) and (6). We wish to determine the exponents of the two terms z4(")
and 22 where

A(n) = asn® + asn® + ain + ap
B(TL) = b3n3 + b2n2 + bl’fl + bo
To do this we interpolate S;j(A(n),B(n)) = A(n) + B(n) and

Sa2(A(n), B(n)) = A(n) x B(n). The polynomial for Sy will be of degree
< 6, so we need three extra points. We compute:

n=>5= ged(u,v) = 2% 4 2% 4 70"
n==6= ged(u,v) = 2216 4+ 270 + 729
n="7= ged(u, v) = 2343 4 2192 4 7277

We now have

n A(n) + B(n) | A(n) x B(n)

1 146 1x6

2 8+ 12 8 x 12

3 22 427 22 x 27

4 36 + 64 36 x 64

5 54 x 125

6 76 x 216

7 102 x 343
Interpolation | n® + 2n% +4 2n® + 4n?

To break the symmetry, we arbitrarily assign A(1) = 1 and B(1) = 6.
Additionally, we equate coefficients in

A(n) + B(n) =n®+2n% + 4
A(n) x B(n) = 2n° + 4n®
to obtain 13 equations in the 8 unknowns {a;,b; }. Solving, we obtain:
ag =0 a1 =0 as =10 ag =1
bg =14 b1 =0 by =2 bs =0

This determines the two exponents.
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7. Generalizations

As mentioned earlier, we may contemplate other algebraic structures to
encompass a wider class of expressions. Without going to the most general
model of polynomial-valued integer functions, we may consider

e Allowing exponent variables to also appear as regular variables. To do
this we can work in R[ny, ..., Mp; N1, ...y Ny, L1, ..., Ty]. This is useful if we
require formal derivatives.

e Symbolic exponents on coefficients. We discuss these more below.?%

e Non-uniform problems. That is, we may ask how to partition Z? as |J; D;
to obtain more specialized factorizations, ged, etc, valid when restricted
to substitutions on individual domains, ¢ : (n1, ...,n,) — D;.

e Symbolic polynomials as exponents, or richer structures.

e Other polynomial forms, such as exponential polynomials

o Other problems, e.g. Grébner bases of symbolic polynomials.®?

Let us examine more closely the question of symbolic exponents on
coefficients. Suppose we wish to factor a polynomial of the form z*™ — 247,
Assuming m and n may take on only integer values, the factorization over Q
is (2™ +22") (™ +2") (2™ —2"). This, however is equivalent to 4™ — 16",
which is not manifestly the difference of fourth powers. So how can we
approach symbolic integer coefficients?

If the coefficient ring is a principal ideal domain, then we may extend
our definition to allow symbolic exponents on prime coefficient factors:

Definition 7.1. The ring of symbolic polynomials in x1, ..., z, with expo-
nents in ni, na, ..., Ny, and symbolic coefficients over the coeflicient ring R, a
PID with quotient field K, is the ring consisting of finite sums of the form

E dij €il .€i2 €i
leCJ .xl 1-2 ...an"
i J

where each product has a finite number of nonzero d;;, k; € K, c; are primes
€ R, di € Int[nhng,“ (Z)\Z and eij € Int[nl,ng,...,np] (Z). Multiplication
is defined by

SNp)

di1 dim €11 e do1 d €21 ean _
klcl ...cn%mxl ...l‘nln X k2cl '..C’ﬂfmml ...:L'n2"_

klkzctliu-‘rdm . CZ%erdzmxt;n +ea1 |, xflanrezn

We consider the case of integer coefficients and initially restrict our
attention to the situation where the c; are prime so relationships among
symbolic coeflicients are apparent. We may use the algebraic independence
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()-()

of p?, p?Q, etc to treat p,
for factoring, GCD, and related operations.

This straightforward approach requires factoring each integer that ap-
pears with a symbolic exponent. In practice we do not want to factor the

as new variables, as before, in algorithms

constant coefficients. Instead, we can form, for any particular problem, a
GCD-free basis.! For example, if 70" and 105" appear, then using the basis
{X;1 = 2", X53", X3 = 35"} avoids factoring. Such a basis may be com-
puted efficiently using only integer GCD and k-th roots.

8. Conclusions

We see a mathematically rich and practically important middle ground
between the usual approaches of “symbolic computation” and “computer
algebra.” In this light, we have explored how to usefully work with symbolic
polynomials — polynomial-like objects where the exponents can themselves
be integer-valued polynomials.

We have modeled symbolic polynomials using the formal structure of a
group ring. These are able to represent the kinds of symbolic polynomials
we have seen in practice, for example in the analysis of algorithms. This al-
gebraic structure allows us to perform arithmetic on symbolic polynomials,
to simplify and transform them. We find, moreover, a UFD structure that
admits algorithms for factorization, GCD, etc.

We have sketched two families of algorithms for symbolic polynomials.
One puts the exponent polynomials in to a basis that makes their fixed
divisors manifest, and then introduces new variables for the symbolic pow-
ers. The second family of algorithms is based on evaluation/interpolation,
where multiple image problems are solved and the images combined. This
approach sometimes has a technical problem in determining which images
correspond to do the interpolation. Interpolating symmetric functions of
the desired exponent polynomials can avoid some of these difficulties.

We have experimental implementations of both the extension and sparse
projection methods, but it is too early to say which method will be most
useful in practice.
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