
On the Future of Computer Algebra Systems

at the Threshold of 2010

Stephen M. Watt

University of Western Ontario,
London, Ontario, Canada n6a 5b7

Stephen.Watt@uwo.ca

Abstract

This paper discusses ways in which software systems for computer algebra could be
improved if designed from scratch today rather than evolving designs from the 1980s.

1 Introduction

The prospect of building a general purpose computer algebra system from scratch is both
daunting and exciting. On one hand, the sheer magnitude of the effort compared to the
expected tangible reward is a tremendous barrier that few are able or willing to tackle. On
the other hand, a blank slate entices us to consider what new generation of problems could
be solved that would be difficult to address by incremental evolution of existing systems.

Computer algebra systems incorporate substantial amounts of code embodying sophis-
ticated mathematical algorithms. Building a general purpose computer algebra system is
a large effort requiring specialized human resources. Not only must the developers of a
system be judicious software architects and skilled programmers, they must also have a
high degree of mathematical expertise. Even if a group could build a new system, there
is the question of whether another system should be built. There is considerable benefit
in having a community where individuals can build on each other’s efforts. Dividing the
existing, relatively small community can lower this synergistic effect.

Setting aside for the moment whether we actually can or should build another major
computer algebra system, we can consider the question of how a system built in 2010
would be different from the current systems, whose basic structures were for the most part
established decades ago. This is the question addressed in the present article.

2 What is Different Today

Let us first take stock of the environmental factors that are different today than when the
current generation of established systems were conceived. Some of these factors would affect
any new design effort and are not specific to computer algebra.

Model of Interaction

The currently pervasive model of computer algebra is that of a dialogue between a user
and a computer in an interactive session. In contrast to the previous batch systems, the
direction of the computation can be decided by the user based on the results of each step.
While this has been sufficient for many uses, we should ask what other models of interaction
have proven useful in other applications.



Collaboration Today we see the emergence of social media as a common model of com-
puter interaction. Groups collaborate or whole communities interact using a networked
computing system as an intermediary, where the computational power is almost incidental.
Today both pure and applied mathematics is much more collaborative endeavour than in
the past decades. Natural support for technical collaboration is a new area of opportunity
for our systems.

Exploration The worksheet/notebook model of interaction forces us to think in a linear
fashion about a single line of computation. In solving problems, however, it is very often
desirable to try several avenues of approach at the same time. In this situation one wishes
to switch among cases, advancing a tree of exploration until one solution is found or perhaps
all cases are completely explored. Although some earlier systems supported this [1], the
popular computer algebra systems today offer essentially no assistance at case management
or switching back and forth among contexts in which different assumptions hold.

Presentation Much work has been done in other areas on summarizing data usefully.
Our systems for symbolic mathematical computation, however, for the most part present
mathematical objects either as fully explicit expressions, sometimes taking thousands of
lines, or as graphs of one sort or another. What has been discussed early on [10], but never
well realized, is the presentation of values more succinctly while highlighting the aspects
of interest. This direction can be developed quite a bit using programmatically identified
features of interest that vary from application to application. Once we start thinking in
this direction, it quickly follows that we should not see these graphical and expression
presentations as different derived values, but rather as different simultaneous views of the
same object.

Manipulation Users today are used to manipulating objects directly in a visual setting.
Direct manipulation is a natural paradigm for mathematical expression transformation, but
little has been done in this area. Our current systems provide many operations for trans-
forming expressions by applying various identities or sophisticated algorithms. What has
been lacking, however, in most of our systems is the ability to work on subexpressions in a
similar manner. Direct manipulation of subexpressions, applying identities or transforma-
tions in place, can give a qualitatively different style of interaction. Being able to perform
direct manipulation through multiple views leads to many interesting possibilities.

Input modalities Modern user interfaces are making use of a broad range of modalities,
from the usual keyboard and mouse, to voice, cameras and various motion capture devices.
It is tempting to let the imagination run wild here, but there are some very practical and
obvious next steps. One is the digital pen that is now commonly available on Tablet PCs,
digital white boards and PDAs [6]. Not only would it be natural to enter equations using
handwritten two-dimensional notation, but there are a number of gestures commonly used in
simplification. These include canceling or combining terms in a sum or factors in a quotient.
A second use of the digital pen would be for sketching or making annotations. Personally,
I find that when I am working on a problem I almost always make use of various informal
ad hoc notations as tools for thought. Using a digital pen here would allow this thought
process to flow naturally, without the distracting mechanics of some drawing program, plus
it would be useful to keep these notes together with the computation.



Locus

Related to the model of interaction is the question of locus of code and data, not only
in support of collaboration but also in support of individuals with multiple computing
resources.

Data It is increasingly uncommon for applications or data to be confined to a single
device. It has been commonplace for more than a decade to access information via various
network protocols, but more recently it has become usual to update data in a universal
store this way. This is one of the principal ingredients of cloud computing and opens
many opportunities for symbolic mathematical computing, for example evolving shared
databases of mathematical definitions, facts, proofs and constructions as well as objectives
and conjectures. As these build on each other, interface mechanisms will be required to
ensure the correctness of the compositions.

Programs Mathematical software has the fortunate property that, compared to other ap-
plications, it is relatively easy to specify cleanly what a program is supposed to do. There
is therefore the possibility to have a variety of components to solve the same problem. This
could include versions of code maintained by experts deploying from their own servers. It
also allows, for example, simple versions that can be deployed freely and rapidly, sophisti-
cated versions using different algorithms for higher performance, versions generating results
carrying correctness certificates or domains of applicability, and so on.

Access Universal store need not be shared among different users — it may also be used by
a single user to provide access to his or her data and computations from various locations and
devices. User interface issues arise in how to create, explore and manipulate mathematical
objects from a wide variety of devices, including personal workstations, tablet PCs, smart
phones and digital whiteboards.

Computation Modern server farms use virtualization extensively to deploy computa-
tional resources flexibly, and grid computing has become a practice to solve scientific and
technical problems, principally so far of a numerical nature. Locus of computation may
also be determined by the location of specialized web services, where the application code
must run at a specific location for technical or economic reasons.

Embedding At the other end of the spectrum, we have increased opportunity for em-
bedded computer algebra in a wider range of applications than ever before. For example,
document processing software was earlier dwarfed by the size of computer algebra systems.
But now these systems can be very sophisticated, with lexical and grammatical knowledge
of many languages, advanced multilingual formatting and so on. Computer algebra software
for reformatting mathematical expressions intelligently can now exist as a small component
of such document editors. Optimizing compilers are another example where an embedded
computer algebra component would be relatively small compared to the overall system.
Such a component would be useful in reformulating code to make use of identities, to share
non-obvious common sub-expressions or to solve optimization sub-problems. At a lower
level, computer algebra has long been used in the design of devices (such as error-correcting
disk controllers), but we now have the possibility to compute symbolic or symbolic-numeric
values on the fly.



Computing Power

Present computer algebra systems had their basic design decided in an era when it was
envisaged they would run in an environment with orders of magnitude less memory and
processor cycles. This changes several design points.

We have more computing power than ever before... Today’s computers have more
cache memory than there was primary memory in the design for today’s most used com-
puter algebra systems. The speed of single processors has likewise scaled up. We must
therefore review all the underlying assumptions in our system designs, from data structures
to patterns of memory access. In some situations we have overly complicated approaches to
problems that can be greatly simplified in today’s more powerful computing environments.
In others, we have methods that were perfectly acceptable for smaller systems, but cause
significant inefficiencies with today’s architectures. For example, the order in which mem-
ory should be traversed in garbage collection is greatly dependent on the specifics of the
memory hierarchy.

... and it is still not enough In the initial design of our current computer algebra
systems, it was possible to consider that problems of a size that would fit in memory were
of a size suitable for classical algorithms. Now, any general purpose system must consider
that problems that can be handled by classical methods are not the principal bottleneck. At
the same time, multi-core processors with highly parallel graphical processing units are the
norm for personal computers. We are at a stage where high performance computer algebra
requires both asymptotically fast algorithms and taking proper advantage of modern parallel
hardware.

3 Aspects of Computer Mathematics

There has always been the need to consider how computer algebra systems should interact
with traditional numerical computing and graphics software. Today additional interactions
should be considered.

Symbolic-numeric computation The past decade and a half has seen significant ad-
vance in our understanding of symbolic-numeric algorithms, particularly for polynomials.
However neither the data structures nor the overall logic of present computer algebra li-
braries are organized to have symbolic-numeric objects as first-class objects that are perva-
sively understood. Pervasive incorporation of symbolic-numeric structures and algorithms
is an important direction in providing consistent handling of algebraic objects with approx-
imate coefficients or partially evaluated expressions on floating point data.

Specialized kernels While considering interfaces that generalize the interactions of our
systems, we must also make them work well in important specialized settings. There are a
variety of settings where particularly efficient special-purpose software packages are or will
become available. Notably, efficient specialized packages exist for linear algebra over various
fields, semi-algebraic geometry, polynomial system solving and computational group theory
(e.g. [3, 4, 9]).

Symbolic mathematical computation The past decades have seen an increasing sep-
aration between “symbolic mathematical computation”, by which I mean computation on
expressions in term algebras, and “computer algebra”, by which I mean algebraic algorithms



in specific domains (that might involve symbols). With a few exceptions, there has been
little attention to solving problems where symbols are other than variables or coefficient
parameters in rational functions. The problems of polynomials with symbolic exponents
or matrices with internal structure of symbolic size have been considered elsewhere [5, 7].
But this is a much more general problem. A systematic approach is required to handle ex-
pressions involving symbols representing unspecified objects of different types. A common
conceptual framework should provide, for example, simplification of expressions involving
symbolic matrices (e.g. AAT /det A), polynomials with symbolic exponents, expressions
involving Bessel functions of symbolic complex index, etc. This should be determined au-
tomatically by the algebraic specification of the domain of concrete values and should allow
for partial evaluation of symbols to these values. In most cases algorithms on the symbolic
values will be different than algorithms on the concrete values, completely analogously to
the case with symbolic-numeric computation.

Inter-operation with proof assistants With a few notable exceptions, computer al-
gebra systems and automated proof assistants have existed in separate circles so far. The
present generation of widely used computer algebra systems has little ability to make use of
mathematical facts provided by proof assistants. In the 1980s, it was arguably reasonable
to take this direction based on the state of proof systems then. For example, in the design
of Axiom, it was considered whether to require a complete set of axiomatic properties in
the signatures of domains. This idea was rejected because, at the time, the state of the
art would allow little use to be made of these properties, even to the extend of verifying
their consistency. Today we should consider as a standard feature much closer interaction
between proof assistance and computer algebra software. Several areas can benefit from
this, including specification of interfaces among components, certification of results and
domains of applicability, justification of optimizations and, in the other direction, use of
efficient algebra in proofs.

Knowledge management In addition to each system managing knowledge about its
own library, we can foresee that mathematical knowledge will more generally be indexed
and searchable in various ways. At the moment, some systems provide rudimentary access
to a mathematical dictionary. In the future, when working on mathematical objects, it
should be possible to search for known facts about these objects. Initially, these facts will
not be in a form that can be used directly by the software system, but rather will be
for the user’s benefit. So how our mathematical software system organizes and represents
knowledge becomes important not only for self-organization, but also for pulling in useful
information from external sources.

Longitudinal inter-operation We need to plan for longevity of our mathematical soft-
ware systems. All of our currently popular systems contain code older than many of their
users. (Some of the code I have written in Maple is now almost 30 years old.) This longevity
has many implications, foremost among them relating to the overall system architecture.
Code will be written at different times and in different places, yet still be related in terms
of the objects handled. Old and new code will need to be used together in some composable
manner. Old code will need to be used in unanticipated new ways.



4 Elements of a Computer Algebra System

What do these desiderata imply for the structure of future computer algebra systems? While
there are many possible directions, a few things seem to be clear in any future scenario.

Modular architecture All successful computer algebra systems have a significant code
base, including the core system and additional libraries. To be scalable, well-defined and
well-structured interactions among the parts is important. How these interactions are struc-
tured can be designed around the criteria discussed. Systems such as Axiom and Magma
have used modern algebra together with data abstraction for modularity. These algebraic
ideas remain useful, but must be augmented with systematic interfaces to dovetail expres-
sion (term algebra) views of component objects. Supporting these interfaces pervasively
across modules will be required to support composite mathematical types well.

Interfaces as mathematical objects In a system for symbolic mathematical compu-
tation the interface specifications can themselves be mathematical objects. These can be
reasoned with to perform module selection, to form simplification rules over the appropriate
equational theories, etc. In particular, it would be desirable to have symbolic expression
algebra views generated automatically from the signatures of the algebraic interfaces.

Federation We should strive to have sufficient precision in the interfaces to mathematical
modules to allow correct inter-operation of components from a variety of sources, both free
and proprietary, local and remote. There should be no technological impediment to making
components as low-level/efficient or high-level/abstract as desired. As discussed elsewhere,
the programming languages for library development and for top-level scripting have different
requirements and should therefore probably be different [8].

Library reflection A large, mature system or federation of systems will work on a vast
selection of objects with a plethora of available functionality, applicable in a variety of
different contexts. No single person will be able to keep track of everything offered. In
our setting, the majority of the functionality will be of a mathematical nature, so the
properties of the modules can themselves mathematical objects that can be manipulated,
reasoned with, organized and searched. At the very least, it should be possible to provide
intelligent library browsing tools based on this mathematical structure, and it is not too
much to imagine that object composition and algorithm selection could be at least partially
automated.

Levels of abstraction Much of mathematics is about abstraction. We may wish to work
at one level of abstraction, or at several levels. Some would argue that computer algebra
works precisely because we have theorems and constructions that relate these different
levels. In any case, we must be able to express ideas and compute with objects at the
various levels and move among them. A framework for smooth movement between elements
of symbolic domains and value domains is important to allow modular development of
systems. Being able to view terms as values in domains and domain elements as parts
of terms should allow composition of abstractions without special extra machinery. For
example, we should be able to use the same mechanisms to work with matrices of numbers,
matrices of parameterized rational functions, symbolic matrix expressions and expressions
involving the rings and fields themselves.



Certification Our systems will need to make some sort of statements about the cor-
rectness of their results. This arises from two directions: First, if an engineer relies on a
calculation performed by a computer algebra system as part of a design, then in signing
off on that design it is required to record the justification. This is jurisdiction-dependent
legal issue. From a systems software point of view, the minimum requirement would be
for the computation to keep track of the conditions under which it is valid (for example,
which quantities have appeared as denominators and so must be non-zero). Secondly, as
computer algebra systems and proof systems interact more closely, there is an increasing
set of libraries that are proven correct. A different kind of correctness certificate comes
from using only libraries that have been formally proven.

Computational interfaces We have discussed the need to express well-defined interfaces
among components, and the need to manipulate those interfaces themselves as mathemat-
ical objects. More work is needed in this area. We will also need to transmit data between
components, including a variety of modules from different sources, services at different lo-
cations and displays with different views. It may be that specific subsets of OpenMath
and MathML will be sufficient for these purposes. Or it may be that some other specifi-
cation language will be required. In any case, attention to these computational interfaces
is required. It is here that the design will either succeed or fail in supporting separately
developed modules to hang together nicely.

Human interfaces We have also discussed at length above how users’ interactions with
systems can evolve. Ideally, our interfaces should support all of the ideas discussed: collab-
oration, exploration, presentation, manipulation and input modalities. Most immediately,
however, an interface that supports collaborative exploration might have the highest impact.

5 The Great Unknown

Much of the success of modern symbolic computing systems is based on powerful algebraic
constructions. But this captures only a small part of what mathematicians do, and an even
smaller part of how mathematics is applied in its various settings. If we are to compose a
next generation system based solely on some elegant ideas of modularity, composability and
reflection, we run the risk of building a system exclusively for a small set of constructive
pure mathematicians.

A lot of what a symbolic computing system must do cannot be expressed readily in
terms of abstract algebra alone. We must acknowledge, and provide support for, exploratory
procedures where the mathematical computing is done as part of an investigation and the
form the answer should take, or even the precise nature of the question, is not known in
advance. Hypotheses may be made and discarded, ad hoc approximations may be used
without justification, and a result may depend on some analytic or numeric properties. At
the same time, the backbone of the system and the majority of its components must work
in precisely defined ways.

There has been much discussion about symbols and unknowns in computer algebra (e.g.
[2]). Previous systems have confounded the notions of programming variables, indetermi-
nates and parameters in algebraic structures, universally or existentially quantified symbols,
unification variables and other ideas. We really must be clearer in what is meant by sym-
bols. Our hypothetical future system must be able to deal with unknowns that arise in
these and other ways.



As well as using symbols to represent values quantified over given types, we must be
able to work with symbols representing values from unknown types. That is, where we do
not yet know the structure for which they represent elements. Not only must we be able
to compose well-defined structures that are fully understood, we must also be able to work
with partially defined structures and partially thought out ideas in a contained way.

6 Conclusions

This article has given a personal view of some desirable directions for the evolution of
computer algebra systems. We have not concentrated on current concerns of identifying
important algebraic algorithms or high performance computing issues. These are already
the subject of much fruitful work. Instead, we have focused on how computer algebra
systems might be organized in the future. Certain of the points may by obvious to a
practitioner in the field and others may be seen as controversial. Some of these ideas can
be retro-fit to existing systems and others may have to await a new generation of systems
cut from whole cloth.

Acknowledgements

I would like to thank Jacques Carette, Bruce Char and James Davenport for thoughtful
comments on an earlier draft.

References and Notes

[1] A. Bonadio. Theorist (software), Prescience Corp., 939 Howard St., San Francisco, CA 94103,
USA, 1989.

[2] J. Davenport and Ch. Faure. The “Unknown” in Computer Algebra. Programmirovanie, Jan,
1994. 4-10.

[3] J.-Ch. Faugère, GB (software), 2009. http://www-calfor.lip6.fr/∼jcf/Software/Gb/

[4] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B.D. Saun-
ders, W.J. Turner and G. Villard. LinBox: A generic library for exact linear algebra. Proc.
International Congress on Mathematical Software (ICMS), World Scientific, 2002. 40-50.

[5] A.P. Sexton, V. Sorge and S.M. Watt. Reasoning with Generic Cases in the Arithmetic of
Abstract Matrices, Proc. Conferences on Intelligent Computer Mathematics (CICM), Springer
Verlag LNAI 5625, 2009. 138-153.

[6] E. Smirnova and S.M. Watt. Communicating Mathematics via Pen-Based Computer Inter-
faces. Proc. 10th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), IEEE Computer Society, 2008. 9-18.

[7] S.M. Watt. Two Families of Algorithms for Symbolic Polynomials. Computer Algebra 2006:
Latest Advances in Symbolic Algorithms – Proceedings of the Waterloo Workshop, I. Kot-
sireas, E. Zima (editors), World Scientific, 2007. 193-210.

[8] S.M. Watt. What Happened to Languages for Symbolic Mathematical Computation?
Proc. Programming Languages for Mechanized Mathematics (PLMMS), J. Carette and F.
Wiedijk (editors), http://www.risc.uni-linz.ac.at/publications/download/risc 3120/

PLMMS proc.pdf, RISC-Linz, 2007. 81-90.

[9] V. Shoup, NTL (software), 2009. http://www.shoup.net/ntl

[10] D. Stoutemyer. Qualitative analysis of mathematical expressions using computer symbolic
mathematics. Proc. Symposium on Symbolic and Algebraic Manipulation (SYMSAC). ACM,
1976. 97–104.


