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ABSTRACT
In this paper we give an efficient algorithm for computation
of order basis of a matrix of power series. For a problem with
an m × n input matrix over a field K, m ≤ n, and order σ,
our algorithm uses O∼(MM(n, �mσ/n�)) ⊂ O∼(nω�mσ/n�)
field operations in K, where the soft-O notation O∼ is Big-
O with log factors omitted and MM (n, d) denotes the cost
of multiplying two polynomial matrices with dimension n
and degree d. The algorithm extends earlier work of Stor-
johann, whose method can be used to find a subset of an
order basis that is within a specified degree bound δ using
O∼(MM(n, δ)) field operations for δ ≥ �mσ/n�.
Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems

General Terms: Algorithms, Theory

Keywords: Order basis, Complexity

1. INTRODUCTION
Let F ∈ K [[x]]m×n be a matrix of power series over a

field K with m ≤ n. Given a non-negative integer σ, we
say a vector p ∈ K [x]n×1 of polynomials gives an order σ
approximation of F, or p has order (F, σ) if

F · p ≡ 0 mod xσ,

that is, the first σ terms of F · p are zero. Examples of
such problems include Padé approximation, Hermite-Padé,
Simultaneous Padé, partial realizations of matrix sequences
and vector rational reconstruction just to name a few.

The set of all such order (F, σ) approximations form a
module over K [x]. An order basis - or minimal approximant
basis or σ-basis - is a basis of this module having a type of
minimal degree property. In the case of rational approxima-
tion order bases can be viewed as a natural generalization of
the Padé table of a power series [1] since they are able to de-
scribe all solutions to such problems given particular degree
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bounds [3]. Order bases are used in such diverse applica-
tions as inversion of structured matrices [8], normal forms
of matrix polynomials [5, 4], and other important problems
in matrix polynomial arithmetic including matrix inversion,
determinant and nullspace computation [6, 10].

In this paper we focus on the efficient computation of or-
der basis. Algorithms for fast computation of order basis
include that of Beckermann and Labahn [2] which converts
the matrix problem into a vector problem of higher order
(which they called the Power Hermite-Padé problem). Their
divide and conquer algorithm has complexity of O∼(n2mσ+
nm2σ) field operations. As usual, the soft-O notation O∼

is simply Big-O with log factors omitted. By working more
directly on the input m × n input matrix, Giorgi, Jean-
nerod and Villard [6] give a divide and conquer method with
cost O (MM(n, σ) log σ) ⊂ O∼ (MM (n, σ)) arithmetic oper-
ations, where MM(n, σ) ∈ O∼ (nωσ) denotes the cost of
multiplying two polynomial matrices with dimension n and
degree σ. Their method is nearly optimal if m is close to
the size of n but can be improved if m is small.

In a novel construction, Storjohann [9] effectively reverses
the approach of Beckermann and Labahn. Namely, rather
than convert a high dimension matrix order problem into
a lower dimension vector problem of high order, Storjohann
converts a low dimension problem to a high dimension prob-
lem with lower order. For example, computing an order basis
for a 1 × n vector input f and order σ can be converted to
a problem of order basis computation with an O (n)×O (n)
input matrix and an order O (�σ/n�). Combining this con-
version with the method of Giorgi et al can then be used ef-
fectively for problems with small row dimensions to achieve
a cost of O∼ (MM(n, �mσ/n�)).

However, while order bases of the original problem can
have degree up to σ, the nature of Storjohann’s conversion
limits the degree of order basis of the converted problem
to O (�mσ/n�) in order to be computationally efficient. In
other words, this approach does not in general compute a
complete order basis. Rather, in order to be computation-
ally efficient, it computes a partial order basis containing
basis elements with degrees within O (�mσ/n�), referred to
by Storjohann as a minbasis. Fast methods for computing a
minbasis are particularly useful for certain problems, for ex-
ample, in the case of inversion of structured block matrices
where one needs only precisely the minbasis [8]. However,
in other applications such as those arising in matrix polyno-
mial arithmetic one needs complete basis which specifies all
solutions of a given order, not just those within a particular
degree bound.



In this paper we give an algorithm which computes an en-
tire order basis with a cost of O (MM (n, �mσ/n�) log σ) ⊂
O∼ (MM(n, �mσ/n�)) field operations. We use a transfor-
mation that can be considered as an extension of Storjo-
hann’s transformation. This new transformation provides
a way to extend the results from one Storjohann’s trans-
formed problem to another Storjohann’s transformed prob-
lem of a higher degree, enabling us to use an idea from Stor-
johann and Villard’s null space basis computation [10] to
achieve efficient computation. At each iteration, basis ele-
ments within a specified degree bound are computed via a
Storjohann transformed problem. Then the partial result is
used to simplify the next Storjohann transformed problem
of a higher degree, allowing basis elements within a higher
degree bound to be computed efficiently. This is repeated
until all basis elements are computed.

The remaining paper is structured as follows. Some ba-
sic definitions and properties of order bases are given in the
next section. Section 3 provides an extension to Storjohann’s
transformation to allow higher degree basis elements to be
computed. Based on this new transformation, Section 4 es-
tablishes a link between two Storjohann transformed prob-
lems of different degrees, from which an recursive method
and then an iterative algorithm are derived. This is followed
in the next section by the complexity analysis and then a
concluding section which includes topics for future research.

2. PRELIMINARIES
In this section, we provide some of the background needed

in order to understand the basic concepts and tools needed
for order basis computation. We give the basic definitions
and look at the size of the input and the output for com-
puting such bases. We point out the challenges of balancing
input and handling unbalanced output. We review construc-
tion by Storjohann [9] which transforms the inputs to those
having dimensions and degree balance better suited for fast
computation. We then discuss an idea from Storjohann and
Villard [10] for handling unbalanced output.

2.1 Order Basis
Let K be a field, F ∈ K [[x]]m×n a matrix of power series

and �σ = [σ1, . . . , σm] a vector of non-negative integers.

Definition 2.1. A vector of polynomials p ∈ K [x]n×1

has order (F, �σ) (or order �σ with respect to F) if F · p ≡ 0
mod x�σ, that is,

F · p = x�σr =

⎡
⎢⎣

xσ1

. . .

xσm

⎤
⎥⎦ r

for some r ∈ K [[x]]m×1. If �σ = [σ, . . . , σ] is uniform, then
we say that p has order (F, σ) . The set of all order (F, �σ)
vectors is a module over K [x] denoted by 〈(F, �σ)〉.

An order basis for F and �σ is simply a basis for the module
〈(F, �σ)〉. In this paper we compute those order bases having
a type of minimality degree condition (also referred to as a
reduced order basis in [3]). While minimality is often given
in terms of the degrees alone it is sometimes important to
consider this in terms of shifted degrees [5].

The shifted column degree of a column polynomial vector
p with shift �s = [s1, . . . , sn] ∈ Z

n is given by

deg�s p = max
1≤i≤n

[deg p(i) + si] = deg(x�s · p).

We call this the �s-column degree, or simply the �s-degree of p.
A shifted column degree defined this way is equivalent to the
notion of defect commonly used in the literature. It is also
equivalent to the notion of H-degree from [3] for H = x�s. As
in the uniform shift case, we say a matrix is �s-column reduced
or �s-reduced if its �s-degrees cannot be lowered by column
operations. Note that a matrix P is �s-column reduced if
and only if x�s · P is column reduced.

Definition 2.2. An order basis [2, 3] P of F with order
�σ and shift �s, or simply a (F, �σ,�s)-basis, is a basis for the
module 〈(F, �σ)〉 having minimal �s-column degrees. If �σ =
[σ, . . . , σ] are constant vectors then we simply write (F, σ,�s)-
basis.

Although we allow different orders for each row in this def-
inition, we focus on order basis computation problem with
uniform order. However special cases of non-uniform order
problems are still needed in our analysis. We also assume
m ≤ n for simplicity. The case of m > n can be transformed
to the case of m ≤ n by compression [10]. We further as-
sume without loss of generality that n/m and σ are powers
of two, which can be achieved by padding zero rows to the
input matrix and multiplying it by some power of x.

From [3] we have the following.

Lemma 2.3. An (F, �σ,�s)-basis P satisfies the following
properties:

(a) P consists of n linearly independent columns, hence P
is a square n × n matrix.

(b) P is �s-column reduced.

(c) P has order (F, �σ) (or equivalently, each column of P
is in 〈(F, �σ)〉).

(d) Any q ∈ 〈(F, �σ)〉 can be expressed as a linear combi-
nation of the columns of P, given by P−1q.

The following also comes from [3]:

Lemma 2.4. The following are equivalent for a polyno-
mial matrix P:

(a) P is a (F, �σ,�s)-basis.

(b) P is comprised of a set of n minimal �s-degree poly-
nomial vectors that are linearly independent and each
having order (F, �σ).

(c) P does not contain a zero column, has order (F, �σ),
is �s-column reduced, and any q ∈ 〈(F, �σ)〉 can be ex-
pressed as a linear combination of the columns of P.

In some cases an entire order basis is unnecessary and in-
stead one looks for a minimal basis that generates only the
elements of 〈(F, �σ)〉 with �s-degrees bounded by δ. Such min-
imal basis is a partial (F, �σ,�s)-basis comprised of elements of
a (F, �σ,�s)-basis with �s-degrees bounded by δ. This is called
a minbasis by Storjohann in [9].



Definition 2.5. Let 〈(F, �σ,�s)〉δ ⊂ 〈(F, �σ)〉 denote the set
of order (F, �σ) polynomial vector with �s-degree bounded by δ.
A (F, �σ,�s)δ-basis is a polynomial matrix P not containing a
zero column and satisfying:

(a) P has order (F, �σ) .

(b) Any element of 〈(F, �σ,�s)〉δ can be expressed as a linear
combination of the columns of P.

(c) P is �s-column reduced.

A (F, �σ,�s)δ-basis is, in general, not square unless δ is large
enough to contain all n basis elements making it a complete
(F, �σ,�s)-basis.

2.2 Balancing Input with Storjohann’s Trans-
formation

For computing a (F, σ,�s)-basis with input matrix F ∈
K [[x]]m×n, shift �s, and order σ one can view F as a polyno-
mial matrix with degree σ−1, as higher order terms are not
needed in the computation. As such the total input size of
an order basis problem is mnσ coefficients. One can apply
the method of Giorgi et al [6] directly, which gives a cost
of O (MM (n, σ) log σ) ⊂ O∼ (MM (n, σ)) field operations,
close to the cost of multiplying two matrices with dimen-
sion n and degree σ. (Note that this cost is independent
of the degree shift.) This is optimal within a log factor if
m ∈ Θ (n). However, for small m, say m = 1 as in Hermite
Padé approximation, the total input size is only nσ coeffi-
cients. Matrix multiplication cannot be used effectively on
a such vector input.

Storjohann [9] provides a novel way to transform an order
basis problem with small row dimension to a problem with
higher row dimension and lower degree to take advantage of
Giorgi et al’s algorithm. We now provide a quick overview
of a slightly modified version of Storjohann’s method (The
small modification allows nonuniform degree shift for the in-
put, and provides slightly simpler degree shift, degree, and
order for the transformed problem. The proof of its cor-
rectness is provided in Section 3.). In order to compute
a (F, σ,�s)-basis, assuming without loss of generality that
min (�s) = 0, we first write

F = F0 + F1x
δ + F2x

2δ + · · · + Flx
lδ,

with degFi ≤ δ − 1 for a positive integer δ, and where we
assume (without loss of generality) that σ = (l + 1) δ. Set

F̄ =

⎡
⎢⎢⎢⎢⎢⎣

F0 + F1x
δ 0n,m(l−1)

F1 + F2x
δ

F2 + F3x
δ Im(l−1)

...
Fl−1 + Flx

δ

⎤
⎥⎥⎥⎥⎥⎦

and �s′ = [�s, 0, . . . , 0] (�s followed by m (l − 1) 0’s). A (F̄, 2δ, �s′)-
basis can then be computed by Giorgi et al’s method with
a cost of O∼ (MM(n, δ)) for δ ≥ �mσ/n�. Note that F̄ has
l block rows each containing m rows. We continue to use
a block row to represent m rows for the remaining of the
paper.

Clearly a (F̄, 2δ, �s′)-basis P̄ of the transformed problem is
not a (F, σ,�s)-basis of the original problem, as P̄ has a higher
dimension and lower degree. However, the top n-rows of the
(F̄, 2δ, �s′)δ−1-basis contained in P̄ is a (F, σ,�s)δ−1-basis.

Note that there is no need to set the degree parameter δ
to less than �mσ/n�, as this produces fewer basis elements
without a better cost. The lowest cost is achieved when F̄
is close to square so matrix multiplication can be used most
effectively. This requires the number of block rows l of F̄
to be close to n/m, which requires δ = Θ(�mσ/n�). Recall
that mnσ is the total size of the original m×n input matrix
F, hence d = mnσ/n2 = mσ/n is the average degree of each
entry if we treat F as square. Choosing δ = Θ (�d�), the cost

of computing a (F̄, 2δ, �s′)-basis is then O∼ (MM(n, d)) =
O∼ (MM (n, �mσ/n�)). The ceiling function here is used to
take care of the case of mσ < n. For the remaining of
the paper, we assume that mσ ≥ n to avoid this case for
simplicity. Together with the assumption σ and n/m are
both powers of two, mσ/n is then always a positive integer
in this paper.

2.3 Unbalanced Output
Storjohann’s transformation can be used to efficiently com-

pute a (F, σ,�s)δ−1-basis if the degree parameter δ is close to
the average degree d = mσ/n. However, if δ is large, say
δ = Θ (σ), or if we want to compute a complete (F, σ,�s)-
basis, then the computation still cost O∼ (MM(n, σ)).

The underlying difficulty with computing a complete order
basis is that the basis can have degree up to σ. As the output
of this problem has dimension n×n and degree up to Θ (σ),
this may seem to suggest O∼ (MM (n, σ)) is about the best
that can be done. However, the total size of the output is
still O (mnσ), the same as the size of the input. This gives
some hope for a more efficient method.

Lemma 2.6. Let �t be the �s-column degrees of a (F, σ,�s)-
basis. Then

∑
i

(
�ti − �si

) ≤ mσ and maxi

(
�ti − �si

) ≤ σ.
In addition, the total size of any (F, σ,�s)-basis is bounded by
nmσ.

Proof. This can be shown by considering the sizes of the
pivots in the iterative order basis computation [2, 6].

As a result, the average degree of the entries of the output
matrix is also bounded by d = mσ/n.

Let us now look at the average column degree of the out-
put. We assume without loss of generality that min (�s) = 0
so degq ≤ deg�s q for any q ∈ K

n [x]. The situation is sim-
pler if the shift �s is uniform, then

∑
i
�ti ≤ mσ by Lemma

2.6, and the average column degree is therefore bounded
by d = mσ/n. In this paper, we consider a slightly more
general case – when the shift �s is balanced, that is, when
max�s ∈ O (d). In this case, Lemma 2.6 implies

∑
i

(
�ti

) ≤
mσ +

∑
i (�si) ∈ O (mσ + nd) = O (mσ), hence the average

column degree of the output basis remains O (d).
The fact that a (F, σ,�s)-basis can have degree up to σ

while its average column degree is O (mσ/n) implies that an
order basis can have quite unbalanced column degrees, espe-
cially if m small. A similar problem with unbalanced output
is encountered in null space basis computation. Storjohann
and Villard in [10] deal with this in the following way.

Let d be the average column degree of the output. Set the
degree parameter δ to twice of d which allows one to com-
pute at least half the columns of a basis (since the number
of columns with degree at least δ must be at most a half of
the total number of columns). One then simplify the prob-
lem so the computed basis elements are completely removed
from the problem. This reduces the dimension of the prob-
lem by at least a factor of 2. One then doubles the degree



bound δ in order to have at least 3/4 of the basis elements
computed. Repeating this, at iteration i, at most 1/2i of
the basis elements are remaining. Therefore, no more than
log n iterations are needed to compute all basis elements.

In this paper, we discuss a way to compute order basis
involving the ideas of [10] and [9].

3. EXTENDING STORJOHANN’S TRANS-
FORMATION

In this section, we discuss a transformation that can be
viewed as an extension of Storjohann’s transformation for a
full order basis to be computed. More generally as discussed
in the next section, this transformation provides a link be-
tween two Storjohann transformed problems constructed us-
ing different degree parameters. For easier understanding,
we first focus on a particular case of this transformation,
which extends immediately to the more general results, as
discussed towards the end of this section.

Consider the problem of computing a (F, σ,�s)-basis. We
assume σ = 4δ for a positive integer δ and write the input
matrix F as F = F0 + F1x

δ + F2x
2δ + F3x

3δ with degFi ≤
δ − 1. In the following, we show computing a (F, σ,�s)-basis

can be done by computing a (F̌, �ω, �s′)-basis of F̌ =

[
F 0

F̌21 F̌22

]
=

⎡
⎣ F0 + F1x

δ + F2x
2δ + F3x

3δ 0 0

F1 + F2x
δ Im 0

F2 + F3x
δ 0 Im

⎤
⎦

(1)
with order �ω = [4δ, . . . , 4δ, 2δ, . . . , 2δ] (with m 4δ’s and 2m

2δ’s) and degree shift �s′ = [�s, e, . . . , e] (with 2m e’s), where
e is an integer less than or equal to 1. We set e to 0 in
this paper for simplicity (Storjohann used e = 1 in [9]). In

fact, it is quite easy to construct a (F̌, �ω, �s′)-basis from a
(F, σ,�s)-basis, as we show later in Lemma 3.6. It requires

more work to extract a (F, σ,�s)-basis from a (F̌, �ω, �s′)-basis,
which is addressed eventually in Corollary 3.11.

Let

B =

⎡
⎣ In(

1/xδ
)
F0(

1/x2δ
) (

F0 + F1x
δ
)

⎤
⎦ .

Lemma 3.1. If q ∈ 〈(F, σ)〉, then Bq ∈ 〈(F̌ �, ω)〉.
Proof. The lemma follows from F̌Bq =⎡
⎣ F0 + F1x

δ + F2x
2δ + F3x

3δ

F0x
−δ + F1 + F2x

δ

F0x
−2δ + F1x

−δ + F2 + F3x
δ

⎤
⎦ q ≡ 0 mod x�ω.

Note that the bottom rows of B may not be polynomials,
but Bq is a polynomial vector as q ∈ 〈(F, σ)〉 implies q ∈
〈(F0, δ)〉 and q ∈ 〈(

F0 + F1x
δ, 2δ

)〉
.

The following lemma shows that the condition e ≤ 1 forces
deg�s′ Bq to be determined by q.

Lemma 3.2. If q ∈ 〈(F, σ,�s)〉τ for any degree bound τ ∈
Z, then deg�s′ Bq = deg�s q.

Proof. First from our assumption si ≥ 0 note that degq
≤ deg�s q. Now consider the degree of the bottom 2m entries
q1,q2 of⎡

⎣ q
q2

q3

⎤
⎦ = Bq =

⎡
⎣ q(

1/xδ
)
F0 · q(

1/x2δ
) (

F0 + F1x
δ
) · q

⎤
⎦ .

Our goal is to show deg�e

[
qT

2 ,qT
3

]T ≤ deg�s q. Since degq2 =

deg
(
F0q/xδ

) ≤ degq + δ − 1 − δ ≤ deg�s q − 1, and simi-

larly deg q3 ≤ deg�s q − 1, it follows that deg�e

[
qT

2 ,qT
3

]T
=

deg
[
qT

2 , qT
3

]T
+ e ≤ deg�s q − 1 + e ≤ deg�s q.

Corollary 3.3. If q ∈ 〈(F, σ,�s)〉τ for any degree bound

τ ∈ Z , then Bq ∈ 〈(F̌, �ω, �s′)〉τ .

Proof. This follows from Lemma 3.1 and Lemma 3.2.

Corollary 3.4. Let S̄τ be a (F̌, �ω, �s′)τ -basis and Sτ the
top n rows of S̄τ for any degree bound τ ∈ Z. Then any
q ∈ 〈(F, σ,�s)〉τ is a linear combination of the columns of
Sτ .

Proof. By Corollary 3.3, Bq ∈ 〈(F̌, �ω, �s′)〉τ , hence is a
linear combination of columns of S̄τ . I.e., there exists a
polynomial vector u such that Bq = S̄τu. This remains
true if we restrict the equation to the top n rows, that is,
q = [In,0]Bq = [In,0] S̄τu = Sτu.

Lemma 3.5. Let q̄ ∈ 〈(F̌, �ω, �s′)〉τ for any degree bound
τ ∈ Z, and q1 the first n entries of q̄. Then q1 ∈ 〈(F, σ,�s)〉τ .

Proof. The top rows of F̌q =[
F 0

F̌21 F̌22

] [
q1

q2

]
=

[
Fq1

F̌21q1 + F̌22q2

]
≡ 0 mod x�ω

gives Fq1 ≡ 0 mod xσ.

Lemma 3.6. If P is a (F, σ,�s)-basis, then

T̄ =

[
BP

0n,2m

x2δI2m

]

=

⎡
⎣ P 0n,m 0n,m(

1/xδ
)
F0 · P x2δIm 0m(

1/x2δ
) (

F0 + F1x
δ
) · P 0m x2δIm

⎤
⎦

is a (F̌, �ω, �s′)-basis.

Proof. T̄ has order (F̌, �ω) by Lemma 3.1 and T̄ is �s′-
column reduced as P dominates the �s′-degrees of T̄ on the
left side by Lemma 3.2. It remains to show that any q̄ ∈
〈(F̌, �ω, �s′)〉 is a linear combination of the columns of T̄.

Let q be the top n entries of q̄, then by Lemma 3.5, q ∈
〈(F, σ,�s)〉, hence is a linear combination of the columns of
P. I.e., q = Pu with u = P−1q ∈ K [x]n×1. Subtracting
the contribution of P from q̄, we get

q̌ = q̄ − BPu = q̄ − Bq =

[
0
v

]
,

which is still in 〈(F̌, �ω, �s′)〉, that is,

F̌q̌ =

[
0

I2mv

]
≡ 0 mod x�ω,

which requires v to have order (I2m, 2δ). This forces v to be
a linear combination of the columns of x2δI2m, the bottom

right submatrix of T̄. Now q̄ = T̄
[
uT ,vT

]T
as required.

Corollary 3.7. Let τ ∈ Z be any degree bound. Let
Pτ ∈ K [x]n×k be a (F, σ,�s)τ -basis. Let q̄ ∈ 〈(F̌, �ω, �s′)〉τ and
q be the top n entries of q̄. Then q̄ must have the form q̄ =
BPτu+x2δ[0, vT ]T = Bq+x2δ[0,vT ]T for some polynomial

vector u ∈ K [x]k×1 and v ∈ K [x]2m×1. In particular, if
deg�s′ q̄ < 2δ, then q̄ = BPτu = Bq.



Proof. This follows directly from Lemma 3.6 with �s′-
degrees restricted to τ .

Lemma 3.8. If S̄(1) is a (F̌, �ω, �s′)2δ−1-basis, then its first

n rows S(1) is a (F, σ,�s)2δ−1-basis.

Proof. By Lemma 3.5, S(1) has order (F, σ). By Corol-
lary 3.4, any q ∈ 〈(F, σ,�s)〉2δ−1 is a linear combination of

S(1). It remains to show that S(1) is �s-column reduced. By
Corollary 3.7, S̄(1) = BS(1), and by Lemma 3.5, the columns
of S(1) are in 〈(F, σ,�s)〉2δ−1, hence by Lemma 3.2 S(1) de-

termines the �s′-column degrees of S(1). Therefore, the �s′-
column reducedness of S̄(1) implies that S(1) is �s-column
reduced.

Lemma 3.9. Let S̄(12) = [S̄(1), S̄(2)] be a (F̌, �ω, �s′)2δ-basis,

with deg�s′ S̄
(2) = 2δ and deg�s′ S̄

(1) ≤ 2δ − 1. Let S(12),S(1),

S(2) be the first n rows of S̄(12), S̄(1), S̄(2) respectively. Let
I be the column rank profile (the lowest column indices that

indicate a full column rank submatrix) of S(12), which con-

tains all columns of S(1) by Lemma 3.8. Then the submatrix

S
(12)
I comprised of the columns of S(12) indexed by I is a

(F, σ,�s)2δ-basis.

Proof. Consider doing �s-column reduction on S(12). From
Lemma 3.8, we already know that S(1) is a (F, σ,�s)2δ−1-

basis. Therefore, only S(2) may be �s-reduced. If a col-
umn s of S(2) can be further �s-reduced, then it becomes
an element of 〈(F, σ,�s)〉2δ−1, which is generated by S(1).

Thus s must be reduced to zero by S(1). The only nonzero
columns of S(12) remaining after �s-column reduction are
therefore the columns that cannot be �s-reduced. Hence S(12)

�s-reduces to S
(12)
I . In addition, S

(12)
I has order (F, σ) as

S(12) has order (F, σ) by Lemma 3.5, and by Corollary 3.4

any q ∈ 〈(F, σ,�s)〉2δ is a linear combination of S(12) hence

also a linear combination of S
(12)
I .

To extract S
(12)
I from S(12), recall that doing �s-column re-

duction on S(12) is equivalent to the more familiar problem
of doing column reduction on x�sS(12). As S(12) �s-column

reduces to S
(12)
I , this corresponds to determining the col-

umn rank profile of the leading column coefficient matrix of
x�sS(12). Recall that the leading column coefficient matrix
of a matrix A = [a1, . . . ,ak] used for column reduction is

lcoeff (A) = [lcoeff (a1) , . . . , lcoeff (ak)]

= [coeff (a1, deg (a1)) , . . . , coeff (ak, deg (ak))] .

The column rank profile of lcoeff(x�sS(12)) can be determined
by (the transposed version of) LSP factorization[7], which

factorizes lcoeff(x�sS(12)) = PSU as the product of a per-
mutation matrix P , a matrix S with its nonzero columns
forming a lower triangular submatrix, and an upper trian-
gular matrix U with 1’s on the diagonal. Then the indices

I of the nonzero columns of S indicate S
(12)
I in S(12).

Theorem 3.10. Let S̄ = [S̄(12), S̄(3)] be a (F̌, �ω, �s′)-basis,
with deg�s′ S̄

(12) ≤ 2δ and deg�s′ S̄
(3) ≥ 2δ+1. Let S, S(12),S(3)

be the first n rows of S̄, S̄(12), S̄(3) respectively. Let I be the

column rank profile of S(12). Then the submatrix [S
(12)
I ,S(3)]

of S is a (F, σ,�s)-basis.

Proof. By Lemma 3.5, S has order (F, σ), and so [S
(12)
I ,

S(3)] also has order (F, σ). By Corollary 3.4, any q ∈
〈(F, σ,�s)〉 is a linear combination of columns S, and so q is

also a linear combination of the columns of [S
(12)
I ,S(3)]. It

only remains to show that [S
(12)
I ,S(3)] is �s-column reduced.

Let P be a (F, σ,�s)-basis and T̄ be the (F̌, �ω, �s′)-basis con-

structed from P as in Lemma 3.6. Let T̄(3) be the columns of
T̄ with �s′-degrees greater than 2δ, and P(3) be the columns
of P with �s-degrees greater than 2δ. Assume without loss of
generality that S, P, and T̄ have their columns sorted ac-
cording to their �s-degrees and �s′-degrees respectively. Then
we have deg�s S(3) ≤ deg�s′ S̄

(3) = deg�s′ T̄
(3) = deg�s P(3).

Combining this with the �s-minimality of S
(12)
I from Lemma

3.9, it follows that deg�s[S
(12)
I ,S(3)] ≤ deg�s P. This combined

with the fact that [S
(12)
I , S(3)] still generates 〈(F, σ,�s)〉 im-

plies that deg�s[S
(12)
I ,S(3)] = deg�s P. Therefore, [S

(12)
I , S(3)]

is a (F, σ,�s)-basis.

Corollary 3.11. Let S̄ be a (F̌, �ω, �s′)-basis with its columns

sorted in an increasing order of their �s′ degrees, and S the
first n rows of S̄. Let J be the column rank profile of lcoeff(x�sS).
Then the submatrix SJ of S indexed by J is a (F, σ,�s)-basis.

Proof. This follows directly from the Theorem 3.10.

This rank profile J can be determined by LSP factorization
on lcoeff(x�s · S(12)) as discussed before.

The following two lemmas verify Storjohann’s result in the
case of degree parameter δ = σ/4. More specifically, we show

that the top n rows of a (F̄, 2δ, �s′)δ−1-basis is a (F, σ,�s)δ−1-
basis, with the Storjohann transformed input matrix

F̄ =

⎡
⎣ F0 + F1x

δ 0 0

F1 + F2x
δ Im 0

F2 + F3x
δ 0 Im

⎤
⎦ ≡ F̌ mod x2δ. (2)

Lemma 3.12. If q̄ ∈ 〈(F̄, 2δ, �s′)〉δ−1 and q is the first n
entries of q̄, then q̄ must have the form

q̄ = Bq =

⎡
⎣ q(

1/xδ
)
F0 · q(

1/x2δ
) (

F0 + F1x
δ
) · q

⎤
⎦

and q ∈ 〈(F, σ,�s)〉δ−1.

Proof. Let q,q2,q3 be be the top n entries, middle m
entries, and bottom m entries, respectively, of q̄ so

F̄q̄ ≡
⎡
⎣ F0q + xδF1q

q2 + F1q + xδF2q
q3 + F2q + xδF3q

⎤
⎦ ≡ 0 mod x2δ. (3)

From the first and the second block rows, we get F0q +
xδF1q ≡ 0 mod x2δ and q2 + F1q ≡ 0 mod xδ, which
implies

F0q ≡ xδq2 mod x2δ. (4)

Similarly, from the second row and the third row, we get
q2 +F1q+xδF2q ≡ 0 mod x2δ and q3 +F2q ≡ 0 mod xδ,
which implies q2 + F1q ≡ xδq3 mod x2δ.

Since degq ≤ deg�s q = δ − 1, we have degF0q ≤ 2δ − 2,
hence from (4) degq2 ≤ δ − 2 and q2x

δ = F0q. Similarly,
degq3 ≤ δ − 2 and q3x

2δ = q2x
δ + F1qxδ = F0q + F1qxδ.

Substituting this to Fq = (F0q + F1qxδ) + (F2qx2δ +
F3qx3δ), we get Fq = q3x

2δ + (F2qx2δ + F3qx3δ) ≡ 0
mod x4δ using the bottom block row of (3).



Lemma 3.13. If S̄δ−1 is a (F̄, 2δ, �s′)δ−1-basis, then its first
n rows Sδ−1 is a (F, σ,�s)δ−1-basis.

Proof. By Lemma 3.12, Sδ−1 has order (F, σ). Follow-
ing Lemma 3.1, Lemma 3.2, Corollary 3.3, Corollary 3.4 but
replace �ω by 2δ, we can conclude that any q ∈ 〈(F, σ,�s)〉δ−1

is a linear combination of Sδ−1. In addition, since S̄δ−1 =
BSδ−1 by Lemma 3.12 and Sδ−1 are in 〈(F, σ,�s)〉δ−1, it fol-

lows that Sδ−1 determines the �s′-column degrees of S̄δ−1 by
Lemma 3.2, hence the �s′-column reducedness of S̄δ−1 implies
that Sδ−1 is �s-column reduced.

Let us now consider an immediate extension of the above
results. Suppose that instead of a (F, σ,�s)-basis we now

want to compute a (F̄(i), 2δ(i), �s(i))-basis with a Storjohann
transformed input matrix

F̄(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 + F1x
δ(i)

0n,m(l(i)−1)

F1 + F2x
δ(i)

F2 + F3x
δ(i)

I
m(l(i)−1)

...

Fl(i)−1 + Fl(i)x
δ(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

constructed with degree parameter δ(i) = 2id for some in-
teger i between 2 and log (σ/d) − 1, and a shift �s(i) =

[�s, 0, . . . , 0] (with m(l(i) − 1) 0’s), where l(i) = σ/δ(i) − 1
is the number of block rows. To apply a transformation
analogous to (1), we write each Fj = Fj0 + Fj1δ

(i−1) and

set F̌(i) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F00 + F01x
δ(i−1)

+ F10x
2δ(i−1)

+ F11x
3δ(i−1)

0

F01 + F10x
δ(i−1)

F10 + F11x
δ(i−1)

+ F20x
2δ(i−1)

+ F21x
3δ(i−1)

F11 + F20x
δ(i−1)

... I

F(l(i)−1)0 + F(l(i)−1)1x
δ(i−1)

+ Fl(i)x
δ(i)

F(l(i)−1)1 + Fl(i)0x
δ(i−1)

Fl(i)0 + Fl(i)1x
δ(i−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

and �ω(i) =

[[
[2δ(i)]m, [δ(i)]m

]l(i)

, [δ(i)]m
]
, where [◦]k rep-

resent ◦ repeated k times. The order entries 2δ(i), δ(i) in
�ω(i) correspond to the degree 2δ(i) − 1, degree δ(i) − 1 rows
in F̌(i) respectively. Let E(i) =

⎡
⎢⎢⎢⎢⎢⎣

In 0n,m 0n,m

0m Im

0m Im

. . .
. . .

0m Im

⎤
⎥⎥⎥⎥⎥⎦

with l(i)−1 blocks of [0m, Im] and hence an overall dimension

of (n+m(l(i) − 1))× (n+m(l(i−1) − 1)), so E(i)M picks out
from M the first n rows and the even block rows from the re-
maining rows except the last block row for a matrix M with
(n + m(l(i−1) − 1)) rows. In particular, if i = log (n/m)− 1,

then (F̌(i), �ω(i), �s(i−1)) = (F̌, �ω, �s′), which gives the problem

considered earlier in this section, and E(i) = [In,0n,m,0n,m]

is used to pick up the top n rows of a (F̌, �ω, �s′)-basis for a
(F, σ,�s)-basis to be extracted.

We can now state the analog of Corollary 3.11:

Theorem 3.14. Let Š(i) be a (F̌(i), �ω(i), �s(i−1))-basis with

its columns sorted in an increasing order of their �s(i−1) de-
grees. Let Ŝ(i) = E(i)Š(i). Let J be the column rank profile

of lcoeff(x�s(i)
Ŝ(i)). Then Ŝ

(i)
J is a (F̄(i), 2δ(i), �s(i))-basis.

Proof. One can follow the same arguments used before
from Lemma 3.1 to Corollary 3.11. Alternatively, this can be
derived from Corollary 3.11 by noticing the redundant block
rows that can be disregarded after applying (1) directly to

the input matrix F̄(i).

Lemma 3.13 can also be extended in the same way to cap-
ture Storjohann’s transformation with more general degree
parameters:

Lemma 3.15. If P̄
(i−1)
1 is a (F̄(i−1), 2δ(i−1), �s(i−1))δ(i−1)−1-

basis, then E(i)P̄
(i−1)
1 is a (F̄(i), 2δ(i), �s(i))δ(i−1)−1-basis and

the top n rows of P̄
(i−1)
1 is a (F, σ,�s)δ(i−1)−1-basis.

Proof. Again, this can be justified in the same way as
Lemma 3.13. Alternatively, one can apply Storjohann’s trans-
formation with degree parameter δ(i−1) to F̄(i) as in (2).
The lemma then follows from Lemma 3.13 after noticing the
redundant block rows that can be disregarded.

Notice that if i = log (n/m) − 1, then Theorem 3.14 and
Lemma 3.15 specialize to Corollary 3.11 and Lemma 3.13.

4. COMPUTATION OF ORDER BASES
In this section, we first establish a link between two differ-

ent Storjohann transformed problems, by dividing the trans-
formed problem from the previous section to two subprob-
lems and then simplifying the second subproblem. This im-
mediately leads to a recursive way of computing order bases.
We then describe our algorithm in the equivalent iterative
way.

4.1 Dividing to Subproblems
Section 3 shows that the problem of computing a (F, σ,�s)-

basis can be converted to the problem of computing a (F̌, �ω, �s′)-
basis and more generally, computing a (F̄(i), 2δ(i), �s(i))-basis,
a Storjohann transformed problem with degree parameter
δ(i), can be converted to a (F̌(i), �ω(i), �s(i−1))-basis computa-
tion problem. We now consider dividing the new converted
problem to two subproblems.

The first subproblem is computing a (F̌(i), 2δ(i−1), �s(i−1))-

basis or equivalently a (F̄(i−1), 2δ(i−1), �s(i−1))-basis P̄(i−1),
which is another Storjohann transformed problem with de-
gree parameter δ(i−1). The second subproblem is comput-
ing a (F̌(i)P̄(i−1), �ω(i),�t(i−1))-basis Q̄(i) using the residual

F̌(i)P̄(i−1) from the first subproblem along with a degree
shift �t(i−1) = deg�s(i−1) P̄(i−1). From Theorem 5.1 in [3] we

then know that the product P̄(i−1)Q̄(i) is a (F̌(i), �ω(i), �s(i−1))-

basis and deg�s(i−1) P̄(i−1)Q̄(i) = deg�t(i−1) Q̄(i).
We now show that the dimension of the second subprob-

lem can be significantly reduced. First, the row dimension
can be reduced by over a half. Let P̂(i−1) = E(i)P̄(i−1).

Lemma 4.1. A (F̄(i)P̂(i−1), 2δ(i),�t(i−1))-basis is a

(F̌(i)P̄(i−1), �ω(i),�t(i−1))-basis.



Proof. This is because F̄(i)P̂(i−1) is a submatrix of
F̌(i)P̄(i−1) after removing rows already having the correct
order 2δ(i−1).

The column dimension of the second subproblem can be re-
duced by disregarding the (F̄(i), 2δ(i), �s(i))δ(i−1)−1-basis al-
ready computed. More specifically, after sorting the columns
of P̄(i−1) in an increasing order of their �s(i−1)-degrees, let

[P̄
(i−1)
1 , P̄

(i−1)
2 ] = P̄(i−1) be such that deg�s(i−1) P̄

(i−1)
1 ≤

δ(i−1) − 1 and deg�s(i−1) P̄
(i−1)
2 ≥ δ(i−1). Then P̂

(i−1)
1 =

E(i)P̄
(i−1)
1 is a (F̄(i), 2δ(i), �s(i))δ(i−1)−1-basis by Lemma 3.15.

In the second subproblem, the remaining basis elements of a

(F̄(i), 2δ(i), �s(i))-basis can then be computed without P̄
(i−1)
1 .

Let P̂
(i−1)
2 = E(i)P̄

(i−1)
2 ,�b(i−1) = deg�s(i−1) P̄

(i−1)
2 , Q̄

(i)
2 be

a (F̄(i)P̂
(i−1)
2 , 2δ(i),�b(i−1))-basis (or equivalently a (F̌(i)P̄

(i−1)
2 ,

�ω(i),�b(i−1))-basis), and k(i−1) be the column dimension of

P̄
(i−1)
1 . Then

Lemma 4.2. The matrix

Q̄(i) =

[
Ik(i−1)

Q̄
(i)
2

]

is a (F̄(i)P̂(i−1), 2δ(i),�t(i−1))-basis (equivalently a (F̌(i)P̄(i−1),

�ω(i),�t(i−1))-basis).

Proof. First note that Q̄(i) has order (F̄(i)P̂(i−1), 2δ(i))

as F̄(i)P̂(i−1)Q̄(i) = [F̄(i)P̂
(i−1)
1 , F̄(i)P̂

(i−1)
2 Q̄

(i)
2 ] ≡ 0 mod

x2δ(i)
. In addition, Q̄(i) has minimal �t(i−1) degrees as Q̄

(i)
2

is �b-minimal. Hence Q̄(i) is a (F̄(i) ·P̂(i−1), 2δ(i),�t(i−1))-basis
by Lemma 2.4.

Lemma 4.2 immediately leads to the following.

Lemma 4.3. Let Ŝ = [P̂
(i−1)
1 , P̂

(i−1)
2 Q̄

(i)
2 ], I the column

rank profile of lcoeff(x�s(i)
Ŝ). Then ŜI is a (F̄(i), 2δ(i), �s(i))-

basis.

Proof. From Lemma 4.2, Q̄(i) is a (F̌(i)P̄(i−1), �ω(i),�t(i−1))-

basis, hence P̄(i−1)Q̄(i) is a (F̌(i), �ω(i), �s(i−1))-basis. Now

Theorem 3.14 applies as [P̂
(i−1)
1 , P̂

(i−1)
2 Q̄

(i)
2 ] = E(i)P̄(i−1)Q̄(i).

Lemma 4.3 gives us a way of computing a (F, σ,�s)-basis. We

can simply set i to log (n/m)−1 so (F̄(i), 2δ(i), �s(i))=(F, σ,�s),

and compute a (F̄(i), 2δ(i), �s(i))-basis. By Lemma 4.3, this
can be divided to two subproblems. The first produces

[P̂
(i−1)
1 , P̂

(i−1)
2 ] = P̂(i−1) = E(i)P̄(i−1) from computing a

(F̄(i−1), δ(i−1), �s(i−1))-basis P̄(i−1). The second subproblem

then computes a (F̄(i)P̂
(i−1)
2 , 2δ(i),�b(i−1))-basis Q̄

(i)
2 . Note

the first subproblem of computing a (F̄(i−1), δ(i−1), �s(i−1))-
basis can again be divided to two subproblems just like be-
fore. This can be repeated recursively until we reach the
base case with degree parameter δ(1) = 2d. The total num-
ber of levels of recursion is therefore log (n/m) − 1.

Notice that the transformed matrix F̌(i) is not used explic-
itly in the computation, even though it is crucial for deriving
our results.

4.2 The Iterative View
In this subsection we present our algorithm, which uses

an iterative version of the computation discussed above.

Algorithm 1 uses a subroutine OrderBasis, the algorithm
from Giorgi et al., for computing order bases with balanced

input. Specifically, [Q,�a] = OrderBasis(G, σ,�b) computes a

(G, σ,�b)-basis and also returns its �b-column degrees �a. The
other subroutine StorjohannTransform is the transformation
described in Section 2.2.

Algorithm 1 proceeds as follows. In the first iteration,
which is the base case of the recursive approach, we set
the degree parameter δ(1) to be twice of the average de-
gree d and apply Storjohann’s transformation to produce
a new input matrix F̄(1), which has l(1) block rows. Then
a (F̄(1), 2δ(1), �s(1))-basis P̄(1) is computed. Note this is in

fact the first subproblem of computing a (F̄(2), 2δ(2), �s(2))-
basis, which is another Storjohann transformed problem and
also the problem of the second iteration. Now at the sec-
ond iteration, we work on a new Storjohann transformed
problem with the degree doubled and the number of block
rows l(2) = (l(1) − 1)/2 reduced by over a half. The column
dimension is reduced by using the result from the previ-
ous iteration. More specifically, we know that a P̄(1) al-

ready provides a (F̄(2), 2δ(2), �s(2))δ(1)−1-basis P̂
(1)
1 , which

can be disregarded in the remaining computation. Now
the remaining work in the second iteration is to compute

a (F̄(2)P̂
(1)
2 , 2δ(2),�b(1))-basis Q̄(2), where �b(1) = deg�s(1) P̄

(1)
2 ,

and then to combine it with the result from the previous it-

eration to form a matrix [P̂
(1)
1 , P̂

(1)
2 Q̄(2)] in order to extract

a (F̄(2), 2δ(2), �s(2))-basis P̄(2).

With a (F̄(2), 2δ(2), �s(2))-basis computed, we can repeat

the same process to use it for computing a (F̄(3), 2δ(3), �s(3))-

basis. Continue, using the computed (F̄(i−1), 2δ(i−1), �s(i−1))-

basis to compute a (F̄(i), 2δ(i), �s(i))-basis, until all n elements
of a (F, σ,�s)-basis have been determined.

5. COMPUTATIONAL COMPLEXITY

Lemma 5.1. Algorithm 1 computes a (F, σ,�s)-basis in no
more than log (n/m) − 1 iterations.

Proof. Each iteration i computes a (F̄(i), 2δ(i), �s(i))-basis.
At iteration log (n/m)− 1, the degree parameter is σ/2 and

(F̄(i), 2δ(i), �s(i)) = (F, σ,�s).

Lemma 5.2. If the shift �s = [0, . . . , 0], then a (F, σ,�s)δ(i)−1-

basis (or equivalently a (F̄(i), 2δ(i), �s(i))δ(i)−1-basis) computed

at iteration i has at least n − n/2i elements, hence at most
n/2i elements remain to be computed. If the shift �s is bal-

anced, the number of remaining basis elements n(i) at itera-
tion i is O(n/2i).

Proof. The uniform case follows from the idea of Stor-
johann and Villard [10] on null space basis computation dis-
cussed in Section 2.3. For the balanced case, the average col-
umn degree is bounded by cd = cmσ/n for some constant

c. The first iteration λ that δ(λ) reaches cd is therefore a
constant. I.e., δ(λ) = 2λd ≥ cd > δ(λ−1), hence λ = �log c�.
By the same argument as in the uniform case, the number
of remaining basis elements n(i) ≤ n/2i−λ = 2λ(n/2i) ∈
O(n/2i) at iteration i ≥ λ. For iterations i < λ, certainly

n(i) ≤ n < 2λ(n/2i) ∈ O(n/2i).

Theorem 5.3. If the shift �s is balanced with min (�s) = 0,
then algorithm 1 computes a (F, σ,�s)-basis with a cost of
O (MM (n, d) log σ) ⊂ O∼ (MM(n, d)) field operations.



Algorithm 1 FastBasis (F, σ,�s)

Input: F ∈ K [x]m×n,σ ∈ Z≥0,�s ∈ Z
n satisfying n ≥ m,

n/m and σ are powers of 2 and min (�s) = 0
Output: a (F, σ,�s)-basis P ∈ K [x]n×n and deg�s P

1: if 2m ≥ n then return OrderBasis (F, σ,�s) ;

2: i := 1; d := mσ/n; δ(1) := 2d;

3: F̄(1) := StorjohannTransform(F, δ(1));

4: l(1) := rowDimension(F̄(1))/m;

5: �b(0) := [�s, 0, . . . , 0] ; { m(l1 − 1) 0’s}
6: [P̄(1),�a(1)] := OrderBasis(F̄(1), 2δ(1),�b(0));

7: Sort the columns of P̄(i) and �a(i) by the shifted column
degrees �a(i) = deg�b P̄(i) in increasing order;

8: �t(i) := �a(i);
9: k(i) :=number of entries of �a(i) less than δ(i);

10: [P̄
(i)
1 , P̄

(i)
2 ] := P̄(i) with P̄

(i)
1 ∈ K [x]n×k(i)

;

11: while columnDimension(P̄
(i)
1 ) < n do

12: i := i+1; δ(i) := 2δ(i−1); l(i) := (l(i−1)−1)/2;

13: F̄(i) := StorjohannTransform(F, δ(i));

14: P̂
(i−1)
2 := E(i)P̄

(i−1)
2 ;

15: G(i) := F̄(i)P̂
(i−1)
2 ;

16: �b(i−1) := �t(i−1)[k(i−1)+1 . . . n+m(l(i−1)−1)];

17: [Q(i),�a(i)] := OrderBasis(G(i), 2δ(i),�b(i−1));

18: Sort the columns of Q(i) and �a(i) by �a(i) =
deg�b(i−1) Q(i) in increasing order;

19: P̌(i) := P̂
(i−1)
2 Q(i);

20: J := the column rank profile of

lcoeff(x[�s,0,...,0][E(i)P̄
(i−1)
1 , P̌(i)]);

21: P̄(i) := [E(i)P̄
(i−1)
1 , P̌(i)]J ,

22: �t(i) := deg[�s,0,...,0] P̄
(i);

23: k(i) :=number of entries of �t(i) less than δ(i);

24: [P̄
(i)
1 , P̄

(i)
2 ] := P̄(i) with P̄

(i)
1 ∈ K [x]n×k(i)

;
25: end while
26: return the top n rows of P̄

(i)
1 , �t(i) [1..n];

Proof. The computational cost depends on the degree,
the row dimension, and the column dimension of the prob-
lem at each iteration. The degree parameter δ(i) is 2id at
iteration i. The number of block rows l(i) is σ/δ(i) − 1,
which is less than σ/(2id) = n/(2im) at iteration i. The
row dimension is therefore less than n/2i at iteration i.

The column dimension of interest at iteration i is the
column dimension of P̂

(i−1)
2 (equivalently the column di-

mension of P̄
(i−1)
2 ), which is the sum of two components,

n(i−1)+(l(i−1)−1)m. The first component n(i−1) ∈ O(n/2i)

by Lemma 5.2. The second component (l(i−1) − 1)m <
n/2i−1 − m < n/2i−1 comes from the size of the identity
matrix added in Storjohann’s transformation. Therefore,
the overall column dimension of the problem at iteration i
is O(n/2i).

At each iteration, the four most expensive operations are
the multiplications at line 15 and 19, the order basis com-
putation at line 17, and extracting basis at line 20.

The matrices F̄(i) and P̂
(i−1)
2 have degree O(2id) and di-

mensions O(n/2i)×O (n) and O (n)×O(n/2i). The multi-
plication cost is therefore 2i MM(n/2i, 2id) field operations,

which is in O (MM(n, d)). The matrices P̂
(i−1)
2 and Q̄(i)

of the second multiplication have the same degree O(2id)

and dimensions O (n) × O(n/2i) and O(n/2i) × O(n/2i)
and can also be multiplied with a cost of O (MM (n, d))
field operations. The total cost of the multiplications over
O(log (n/m)) iterations is therefore O (MM (n, d) log (n/m)).

The input matrix G(i) = F̄(i)P̂
(i−1)
2 of the order basis

computation problem at iteration i has dimension O(n/2i)×
O(n/2i) and the order of the problem is 2δ(i) ∈ O(2id).
Therefore, the cost of the order basis computation at iter-
ation i is O(MM(n/2i, 2id) log(2id)). The total cost over
O(log (n/m)) iterations is then O(

∑
MM(n/2i, 2id) log 2id)

= O (MM(n, d) log d).
Extracting an order basis by LSP factorization cost O (nω),

which is dominated by other costs.
Combining the above gives O(MM (n, d) (log n/m+log d))

= O (MM (n, d) log σ) as the total cost of the algorithm.

6. FUTURE RESEARCH
A number of problems remain to be solved. In particu-

lar, the efficient computation of order basis with a general
unbalanced shift remains an open problem. Order bases are
also closely related to many other problems in polynomial
matrix computation, for example matrix normal forms. We
are interested in seeing how our tools can be used to solve
these problems more efficiently. We are primarily interested
in the computation of shifted normal forms [5] and in par-
ticular those related to shifted Popov forms.
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