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Abstract. A Barker sequence is a finite sequence of integers, each ±1, whose

aperiodic autocorrelations are all as small as possible. It is widely conjec-

tured that only finitely many Barker sequences exist. We describe connections

between Barker sequences and several problems in analysis regarding the exis-

tence of polynomials with ±1 coefficients that remain flat over the unit circle

according to some criterion. First, we amend an argument of Saffari to show

that a polynomial constructed from a Barker sequence remains within a con-

stant factor of its L2 norm over the unit circle, in connection with a problem of

Littlewood. Second, we show that a Barker sequence produces a polynomial

with very large Mahler’s measure, in connection with a question of Mahler.

Third, we optimize an argument of Newman to prove that any polynomial

with ±1 coefficients and positive degree n−1 has L1 norm less than
√

n − .09,
and note that a slightly stronger statement would imply that long Barker se-
quences do not exist. We also record polynomials with ±1 coefficients having
maximal L1 norm or maximal Mahler’s measure for each fixed degree up to

24. Finally, we show that if one could establish that the polynomials in a
particular sequence are all irreducible over Q, then an alternative proof that
there are no long Barker sequences with odd length would follow.

1. Introduction

For a sequence of complex numbers a0, a1, . . . , an−1, define its aperiodic auto-

correlation sequence {ck} by

ck :=

n−1−k
∑

j=0

ajaj+k

for 0 ≤ k < n and

c−k := ck.

We are interested here in the case when the aj are all of unit modulus, in particular
when each aj = ±1. Thus the peak autocorrelation c0 has the value c0 = n, and
in many applications it is of interest to minimize the off-peak autocorrelations c±k

with 0 < k < n. In the integer case, clearly the optimal situation occurs when
|ck| ≤ 1 for each k 6= 0, so ck = 0 if 2 | (n− k) and ck = ±1 otherwise. A sequence
achieving this for each k is called a Barker sequence. Barker first asked for ±1
sequences with this property in 1953 [1]. (In fact, Barker asked for the stricter
condition that ck ∈ {0,−1} for k 6= 0.) For the complex unimodular case, we
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say {ak} is a generalized Barker sequence if each off-peak autocorrelation satisfies
|ck| ≤ 1.

Since negating every other term of a sequence {ak} does not disturb the mag-
nitudes of its autocorrelations, we may assume that a0 = a1 = 1 in a Barker
sequence. With this normalization, just eight Barker sequences are known, all with
length at most 13. These are shown in Table 1. (Only three of these satisfy the
more strict condition requested by Barker—the ones of length 3, 7, and 11.) It
is widely conjectured that no additional Barker sequences exist, and in section 2
we survey some known restrictions on their existence. First however we describe a
broader conjecture that arises in signal processing, and an equivalent problem in
analysis regarding norms of polynomials.

Sequences with small off-peak autocorrelations are of interest in a number of
applications in signal processing and communications (see [1,13,19]). In engineering
applications, a common measure of the value of a sequence is the ratio of the square
of the peak autocorrelation to the sum of the squares of the moduli of the off-peak
values. This is called the merit factor of the sequence. For a sequence An = {aj}
of length n then its merit factor is defined by

MF(An) :=
n2

2
∑n−1

k=1 |ck|
2 .

Golay introduced this quantity in 1972 [16], and in [17] he conjectured that the
merit factor of a binary sequence is bounded, presenting a heuristic argument that
MF(An) < 12.32 for large n. Several researchers in engineering, physics, and math-
ematics have made similar conjectures; see for instance [4] or [19]. It is clear,
however, that a Barker sequence of length n has merit factor near n, so certainly
Golay’s merit factor conjecture contains the question of the existence of long Barker
sequences as a special case.

Table 1. Barker sequences with a0 = a1 = 1.

n Sequence Merit factor
2 ++ 2.00
3 ++- 4.50
4 +++- 4.00
4 ++-+ 4.00
5 +++-+ 6.25
7 +++--+- 8.17

11 +++---+--+- 12.10
13 +++++--++-+-+ 14.08

The merit factor problem may be restated as a question on polynomials. We
first require some notation. Given a sequence {aj}n−1

j=0 , define a polynomial f(z) of
degree n− 1 by

f(z) =

n−1
∑

j=0

ajz
j .

For a positive real number p, let ‖f‖p denote the value

‖f‖p :=

(
∫ 1

0

|f(e(t))|p dt
)1/p

,
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where e(t) := e2πit. If p ≥ 1, this is the usual Lp norm of f on the unit circle. We
also let ‖f‖∞ denote the supremum norm of f ,

‖f‖∞ := lim
p→∞

‖f‖p = sup
|z|=1

|f(z)| ,

and we let ‖f‖0 denote its geometric mean on the unit circle,

‖f‖0 := lim
p→0+

‖f‖p = exp

(
∫ 1

0

log |f(e(t))| dt
)

.

This is Mahler’s measure of the polynomial. We recall that if p < q are positive
real numbers and f is not a monomial, then

‖f‖0 < ‖f‖p < ‖f‖q < ‖f‖∞ .

Assuming that |aj | = 1 for each j, we have ‖f‖2
2 = n by Parseval’s formula, and,

since z = 1/z on the unit circle, it is easy to see that

(1.1) ‖f‖4
4 =

∥

∥f(z)f(z)
∥

∥

2

2
=
∥

∥

∥

n−1
∑

k=1−n

ckz
k
∥

∥

∥

2

2
= n2 + 2

n−1
∑

k=1

|ck|2 .

Thus, the merit factor of a sequence {aj} can be expressed in terms of certain Lp

norms of its associated polynomial,

MF(f) :=
‖f‖4

2

‖f‖4
4 − ‖f‖4

2

.

Golay’s problem on maximizing the merit factor of a family of sequences of fixed
length is thus equivalent to minimizing the L4 norm of a collection of polynomials of
fixed degree. This latter problem is one instance of a family of questions regarding
the existence of so-called flat polynomials.

For a positive integer n, let Un denote the set of polynomials in C[x] defined by

Un :=

{

f(z) =

n−1
∑

j=0

ajz
j : |aj | = 1 for 0 ≤ j < n

}

,

and let Ln denote the subset

Ln :=

{

f(z) =

n−1
∑

j=0

ajz
j : aj = ±1 for 0 ≤ j < n

}

.

We call the first set the unimodular polynomials of degree n−1, and the second set
the Littlewood polynomials of fixed degree. In 1966, Littlewood [23] asked about
the existence of polynomials in these sets with particular flatness properties. More
precisely, he asked if there exist absolute positive constants α1 and α2 and arbitrar-
ily large integers n such that there exists a polynomial fn ∈ Un (or, more strictly,
fn ∈ Ln), where

α1

√
n ≤ |fn(z)| ≤ α2

√
n

for all z with |z| = 1. Since each polynomial in such a sequence never strays far
from its L2 norm, we say such a sequence is flat. In 1980, Körner [21] established
that flat sequences of unimodular polynomials exist, and in the same year Kahane
[20] proved moreover that for any ε > 0 there exists a flat sequence of unimodular
polynomials with α1 = 1 − ε and α2 = 1 + ε. Such sequences are often called
ultraflat.
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Much less is known regarding flat sequences of Littlewood polynomials. The
Rudin-Shapiro polynomials [28,31] satisfy the upper bound in the flatness condition

with α2 =
√

2, but no sequence is known that satisfies the lower bound. In fact, the
best known result here is due to Carrol, Eustice, and Figiel [8], who used the Barker
sequence of length 13 to show that for sufficiently large n there exist polynomials
fn ∈ Ln with |fn(z)| > n.431 on |z| = 1. Also, in 1962 Erdős [12] conjectured that
ultraflat Littlewood polynomials do not exist, opining that there exists an absolute
positive constant ε such that

‖f‖∞
‖f‖2

> 1 + ε

for every Littlewood polynomial of positive degree. (Littlewood however [23, sec. 6;
24, prob. 19] in effect conjectured that no such ε exists.) Since ‖f‖4 ≤ ‖f‖∞, we
see then that Golay’s merit factor problem is in fact a stronger version of Erdős’
conjecture. Further, from (1.1) it follows that if the coefficients of f form a Barker
sequence of length n, then

‖f‖4√
n

≤
(

1 +
1

n

)1/4

< 1 +
1

4n
.

Therefore, to show that long Barker sequences do not exist, it would suffice to
prove that ‖f‖4 ≥ √

n + 1
4
√

n
for f ∈ Ln and n large. Similar observations occur

for example in [6, chap. 14] and [7].
In this paper, we describe some further connections between Barker sequences

and flatness problems for polynomials. Section 2 summarizes some known results
on Barker sequences. Section 3 shows that long Barker sequences provide an answer
to Littlewood’s question on flat polynomials, amending an argument of Saffari that
connects these two problems. Section 4 then ties the existence of long Barker
sequences to a problem of Mahler’s concerning Littlewood polynomials with large
measure. Section 5 connects the Barker sequence question to problems on the L1

norm of Littlewood polynomials, and optimizes an argument of Newman to provide
an improved restriction on the flatness of Littlewood polynomials with respect to
this norm. Finally, section 6 outlines a possible alternative method for establishing
that there are no Barker sequences of certain lengths.

2. Barker sequences

We first record some facts about Barker sequences. The following results are due
to Turyn and Storer [32,33]; we include the proof here for the reader’s convenience.

Theorem 2.1. Suppose a0, a1, . . . , an−1 is a sequence of integers with each ai =
±1, and let {ck} denote its aperiodic autocorrelations. Then

ck + cn−k ≡ n mod 4.

If in addition the sequence {ak} is a Barker sequence, then

akan−1−k = (−1)n−1−k.

If furthermore n is even and n > 2, then n = 4m2 for some integer m, and

cn−k = −ck for 0 < k < n. If n is odd, then ck + cn−k = (−1)(n−1)/2 for each k.
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Proof. Since ck records the difference between the number positive and negative

terms in
∑n−1−k

i=0 aiai+k, it follows that

(2.1)
n−k−1
∏

i=0

aiai+k = (−1)(n−k−ck)/2

for 0 ≤ k ≤ n. Multiplying this product by the same expression with k replaced by
n− k, we obtain

(−1)(n−ck−cn−k)/2 =

k−1
∏

i=0

aiai+n−k

n−k−1
∏

i=0

aiai+k = 1,

so ck+cn−k ≡ 0 mod 4. Assume now that {ak} forms a Barker sequence of length n.
Multiplying (2.1) by the same equation with k replaced by k+ 1, we compute that

akan−1−k = (−1)n−1−k.

Also, certainly ck = 0 if 0 < k < n and n ≡ k mod 2, and ck = ±1 for the other k
in this range. In particular, if n is even and n > 2, then c2 + cn−2 = 0, so n ≡ 0
mod 4. It follows then that ck + cn−k = 0 for 0 < k < n in this case. Last, since

( n−1
∑

i=0

ai

)2

= c0 +
n−1
∑

k=1

(ck + cn−k) = n,

we see that n is a perfect square if n ≥ 4 is even. ¤

Recall that a polynomial f(z) with integer coefficients is skew-symmetric if
f(z) = ±zdeg ff(−1/z). We remark that Theorem 2.1 then shows that every Barker
sequence of odd length corresponds to a skew-symmetric Littlewood polynomial.

Much more is known about possible lengths of Barker sequences. Turyn and
Storer [32] proved that if the length n of a Barker sequence is odd then n ≤ 13,
so the complete list for this case appears in Table 1. It also follows from this that
no additional sequences satisfy Barker’s original requirement for sequences whose
off-peak autocorrelations are all 0 or −1, since Theorem 2.1 implies that any such
sequence must have length n ≡ 3 mod 4. For the even case, we write n = 4m2.
In 1965 Turyn [34] showed in effect that m must be odd and cannot be a prime
power (see also [2, sec. 2D and 4C; 10,11]). In 1990, Eliahou, Kervaire, and Saffari
[9] proved that if p | m then p ≡ 1 mod 4; in 1992 Eliahou and Kervaire [10] and
Jedwab and Lloyd [18] both used this constraint, together with some additional
restrictions on m, to show that there are no Barker sequences with 1 < m < 689.
In 1999, Schmidt [30] obtained much stronger restrictions on m, determining that
no Barker sequences exist with m ≤ 106. This method was refined and extended
by Leung and Schmidt in 2005 [22], who established that no Barker sequences exist
with 1 < m ≤ 5 · 1010, that is, with even length n satisfying 4 < n ≤ 1022. Another
restriction was obtained in 1989 by Fredman, Saffari, and Smith [15], who proved
that a Barker sequence may not be palindromic.

3. Littlewood’s problem

In 1990, Saffari [29] noted that if there are in fact infinitely many Barker se-
quences, then Littlewood’s conjecture on the existence of flat polynomials with ±1
coefficients follows. We present Saffari’s proof here, in part because we require the
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result in section 3, but also to correct an oversight in the original article. The
correction here affects the values of the constants in the following theorem.

Theorem 3.1. Suppose f is a Littlewood polynomial of degree n−1 whose sequence

of coefficients {ak} forms a Barker sequence of length n. Then

α1 +O

(

1

n

)

≤ |fn(z)|√
n

≤ α2 +O

(

1

n

)

for each z of modulus 1, where α1 =
√

1 − θ = 0.52477485 . . ., α2 =
√

1 + θ =
1.31324459 . . ., and

θ = sup
t>0

sin2 t

t
= 0.7246113537 . . . .

Proof. Suppose f ∈ Ln with n > 13, and write n = 4m. Using the fact that the
off-peak autocorrelations satisfy cn−k = −ck from Theorem 2.1, and that c2j = 0
for j ≥ 1, we compute

∣

∣f
(

eit
)∣

∣

2 − n = 2

n−1
∑

k=1

ck cos kt

= 2
2m−1
∑

k=1

ck
(

cos kt− cos((n− k)t))
)

= 4 sin(2mt)

2m−1
∑

k=1

ck sin((2m− k)t)

= 4 sin(2mt)

m
∑

k=1

c2m−2k+1 sin((2k − 1)t).

Thus

(3.1)

∣

∣

∣

∣

∣

∣

∣f
(

eit
)∣

∣

2

n
− 1

∣

∣

∣

∣

∣

≤ θm,

where θm is defined by

θm := max
0≤t<2π

|sin(2mt)|
m

m
∑

k=1

|sin((2k − 1)t)| .

Define φm and ψm by

φm := max
0≤t≤π/4

|sin(2mt)|
m

m
∑

k=1

|sin((2k − 1)t)|

and

ψm := max
0≤t≤π/4

|sin(2mt)|
m

m
∑

k=1

|cos((2k − 1)t)| ,

so that θm = max{φm, ψm}. For φm, note first that the quantity

1

m

m
∑

k=1

|sin((2k − 1)t)|
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is the midpoint approximation over m subintervals of equal size for the integral
∫ 1

0

|sin(2mtx)| dx.

We consider the error incurred when approximating this integral with the sum over
each interval [(k− 1)/m, k/m]. If no cusp occurs in the interval, certainly the error
is at most 1/24m3, so the total error incurred from these intervals is O(1/m2). If
a cusp occurs in an interval, in the worst case it lies at the midpoint, and the ratio
of the error incurred in this case to the error when the cusp occurs at an endpoint
is tan(t/2)/(t− sin t). If π/

√
m ≤ t ≤ π/4, this ratio is 3m/π2 +O(1), so the total

error incurred on the intervals with cusps is

O

(

3m

π2
· 1

24m3
· m

2

)

= O

(

1

m

)

.

If 0 ≤ t < π/
√
m, then there are at most 2

√
m cusps, and the error in the worst

case at each cusp is (2 − cos(π/
√
m))/2π

√
m, so the total error in this case is also

O(1/m). Therefore,

φm = max
0≤t≤π/4

|sin(2mt)|
∫ 1

0

|sin(2mtx)| dx+O

(

1

m

)

≤ sup
α≥0

|sinα|
∫ 1

0

|sin(αt)| dt+O

(

1

m

)

= sup
n≥0

max
0≤x≤π

(2n+ 1 − cosx) sinx

nπ + x
+O

(

1

m

)

= max
0≤x≤π

(1 − cosx) sinx

x
+O

(

1

m

)

= 0.6639534894 . . .+O

(

1

m

)

.

(3.2)

In the same way,

ψm = max
0≤t≤π/4

|sin(2mt)|
∫ 1

0

|cos(2mtx)| dx+O

(

1

m

)

≤ sup
α≥0

|sinα|
∫ 1

0

|cos(αt)| dt+O

(

1

m

)

= sup
n≥0

max
−π

2
≤x≤π

2

(2n+ sinx) |sinx|
nπ + x

+O

(

1

m

)

= max
0≤x≤π

2

sin2 x

x
+O

(

1

m

)

= 0.7246113537 . . .+O

(

1

m

)

.

(3.3)

The statement then follows from (3.1), (3.2), and (3.3). ¤

We remark that Saffari computed the limiting value of θm to be 0.66395 . . . by
considering only computation of φm above for 0 ≤ t ≤ 2π. However, this argument
breaks down when t is very close to π/2 or 3π/2.
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4. Mahler’s problem

In 1963, Mahler [25] posed the question of maximizing the normalized measure
‖f‖0 / ‖f‖2 of polynomials with complex coefficients and fixed degree. He proved
that for each degree the maximum is attained by a unimodular polynomial, and
Fielding [14] proved that there exist unimodular polynomials with normalized mea-
sure arbitrarily close to 1. Beller and Newman [3] proved further that there exists a
positive constant c such that for each n > 0 there exists a polynomial fn ∈ Un such
that ‖fn‖0 >

√
n− c log n. The problem remains open for Littlewood polynomials;

the largest known normalized measure in this case is 0.98636598 . . ., achieved by
the polynomial whose coefficients form the Barker sequence of length 13. We prove
here that long Barker sequences would also provide an answer to Mahler’s problem
for the case of Littlewood polynomials.

Theorem 4.1. Let fn be a Littlewood polynomial whose coefficients form a Barker

sequence of length n. Then

‖fn‖0√
n

> 1 − 1√
n

for sufficiently large n.

Proof. Let fn(z) =
∑n−1

j=0 ajz
j , with {aj} a Barker sequence. Since the off-peak

autocorrelation ck is 0 if n ≡ k mod 2 and ±1 otherwise, it follows from (1.1) that

‖fn‖4
4 = n2 + n− ε(n),

where ε(n) = 0 if n is even and 1 if n is odd. Thus

∫ 1

0

(

|fn(e(t))|2
n

− 1

)2

dt =
‖fn‖4

4

n2
− 1 =

n− ε(n)

n2
.

Next, if a > b > 0 it is straightforward to verify that

a− b

b
≥ log a− log b,

so setting a(t) = max{1, |fn(e(t))|2
n } and b(t) = min{1, |fn(e(t))|2

n } for t in [0, 1], we
obtain

∫ 1

0

(

|fn(e(t))|2
n

− 1

)2

dt ≥
∫ 1

0

min

{

|fn(e(t))|2
n

, 1

}2

(2 log |fn(e(t))| − log n)
2
dt,

so
∫ 1

0

(2 log |fn(e(t))| − log n)
2
dt ≤ 1

α2
1n

+O

(

1

n2

)

,

where α1 = 0.52477 . . . is the constant appearing in statement of Theorem 3.1. By
the Schwarz inequality,

∫ 1

0

∣

∣2 log |fn(e(t))| − log n
∣

∣ dt ≤ 1

α1
√
n

+O

(

1

n3/2

)

,

and so
∫ 1

0

log |fn(e(t))| dt ≥ log
√
n− 1

2α1
√
n

+O

(

1

n3/2

)

.



BARKER SEQUENCES AND FLAT POLYNOMIALS 9

Since 1/2α1 = 0.9527 . . ., it follows then that

‖fn‖0√
n

≥ 1 − 1

2α1
√
n

+O

(

1

n3/2

)

> 1 − 1√
n

for sufficiently large n. ¤

For each n ≤ 25, Table 2 lists a Littlewood polynomial with degree n− 1 having
maximal Mahler’s measure over Ln. We remark that the coefficient sequences for
n = 2, 3, 4, 5, 7, 11, and 13 are precisely the Barker sequences. (The two Barker
sequences of length 4 correspond to polynomials with identical Mahler’s measure.)

Table 2. Maximal Mahler’s measure of Littlewood polynomials
by degree.

n Coefficients of f ‖f‖0 ‖f‖0 /
√
n

√
n− ‖f‖0

2 ++ 1.00000 0.70711 0.41421
3 ++- 1.61803 0.93417 0.11402
4 +++- 1.83929 0.91964 0.16071
5 +++-+ 2.15372 0.96317 0.08235
6 ++++-+ 2.22769 0.90945 0.22180
7 +++--+- 2.49670 0.94366 0.14905
8 ++++--+- 2.64209 0.93412 0.18634
9 +++-+--++ 2.72501 0.90834 0.27499

10 ++++-+--++ 2.92076 0.92363 0.24152
11 +++---+--+- 3.16625 0.95466 0.15038
12 +++++--++-+- 3.33463 0.96262 0.12948
13 +++++--++-+-+ 3.55639 0.98637 0.04916
14 ++++++--++-+-+ 3.57536 0.95556 0.16630
15 +++++--++--+-+- 3.74089 0.96589 0.13209
16 +++-+++---+-++-+ 3.77645 0.94411 0.22355
17 ++-++--++++-+-+-- 3.87848 0.94067 0.24463
18 +++-+++---+-++-+-- 4.01406 0.94612 0.22858
19 ++-+---+-++++-++++- 4.16269 0.95499 0.19621
20 +++++-+---+-++---++- 4.30167 0.96188 0.17047
21 ++-------++--+-+-+--+ 4.39853 0.95984 0.18405
22 +++++-++--+-+-++---+++ 4.47518 0.95411 0.21523
23 +++++++---++--+--+-+-+- 4.57183 0.95329 0.22400
24 ++--+++------+-+-+--+--+ 4.71462 0.96237 0.18436
25 +++---+++++++-+-+--+--++- 4.83413 0.96683 0.16587

5. Newman’s problem

One may also study flatness properties of polynomials by using the L1 norm.
In this case, again the problem is largely resolved for unimodular polynomials,
and largely open for Littlewood polynomials. For the unimodular case, in 1965
Newman [27] proved that there exists a positive constant c so that for each n ≥ 2
there exists a polynomial fn ∈ Un so that ‖f‖1 >

√
n−c. In his proof, Newman first

constructed a polynomial fn whose L4 norm satisfies ‖fn‖4 /
√
n = 1 + O(1/

√
n),

then used Hölder’s inequality to obtain a lower bound on ‖fn‖1 of the desired form.
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Much less is known for the Littlewood case. In [26], Newman mentioned a
conjecture (without attribution) for the L1 norm for these polynomials, similar to
Erdős’ conjecture for the supremum norm: There exists a positive constant c < 1
so that ‖f‖1 < c

√
n whenever f ∈ Ln and n ≥ 2. This problem remains open,

as does the weaker question of whether there exists a positive constant c so that
‖f‖1 <

√
n − c for f ∈ Ln of positive degree. Resolving a still weaker problem

however suffices for answering the question of the existence of Barker sequences of
large degree.

Theorem 5.1. If f(z) =
∑n−1

k=0 ajzj is a Littlewood polynomial whose coefficients

form a Barker sequence of length n, then ‖f‖1 >
√
n− 1.

Proof. Suppose f ∈ Ln has coefficients forming a Barker sequence. From (1.1) we
see that

‖f‖4
4 = n2 + n− ε(n),

where ε(n) = 1 if n is odd and 0 if n is even. Using Hölder’s inequality, we have

‖f‖2
2 < ‖f‖2/3

1 ‖f‖4/3
4 ,

and so

‖f‖2
1 >

n3

n2 + n− ε(n)
= n− 1 +

1

n+ 1

(

1 +
ε(n)n2

n2 + n− 1

)

. ¤

This statement in fact appears in the 1968 paper of Turyn [35], who attributes
the observation to Newman.

Newman in fact proved a statement similar to Theorem 5.1 in 1960 [26], showing
that ‖f‖1 >

√
n− .03 for f ∈ Ln of positive degree. We revisit Newman’s argument

here, choosing parameters in an optimal way and employing the results of some
computations on Littlewood polynomials to obtain an improved lower bound. It is
clear from the proof however that a new approach is needed to obtain the constant 1,
as Newman observed.

Theorem 5.2. If f is a Littlewood polynomial of positive degree n− 1, then

‖f‖1 <
√
n− .09.

Proof. Let f(z) =
∑n−1

k=0 akz
k with ak = ±1 for 0 ≤ k < n, and let α > 1 be a

real number whose value will be selected later. The argument splits into two cases,
depending on the size of ‖f‖∞.

Case 1: ‖f‖∞ ≤ α
√
n. Let ck denote the kth aperiodic autocorrelation of the

sequence of coefficients of f . Since
∑n−1

k=1 c
2
k ≥ bn/2c, using (1.1) we have

‖f‖4
4 ≥ n2 + n− ε(n),

where ε(n) = 1 if n is odd and 0 otherwise. Next, since
∫ 1

0

(

|f(e(t))|2 − n
)2

dt = ‖f‖4
4 − 2n ‖f‖2

2 + n2 ≥ n− ε(n),

we compute

∫ 1

0

(

|f(e(t))| −
√
n
)2
dt =

∫ 1

0

(

|f(e(t))|2 − n

|f(e(t))| + √
n

)2

dt ≥ n− ε(n)

(α+ 1)2n
.
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However,
∫ 1

0

(

|f(e(t))| −
√
n
)2
dt = 2n− 2

√
n ‖f‖1 ,

so

‖f‖2
1 ≤ n− n− ε(n)

(α+ 1)2n
+

(n− ε(n))2

4(α+ 1)4n3

= n− 1

(α+ 1)2
+O(1/n).

(5.1)

Case 2: ‖f‖∞ > α
√
n. Suppose max|z|=1 |f(z)| = A

√
n, occurring at z = e(t0).

By Bernstein’s inequality, |f ′(z)| ≤ A(n− 1)
√
n, so for 0 ≤ t ≤ 1, it follows that

|f(e(t))| ≥ A
√
n
(

1 − 2π(n− 1) |t− t0|
)

.

Let β be a small positive number whose value will be selected later, let I denote
the interval [t0 − β/n, t0 + β/n], and let B =

∫

I
|f(e(t))|2 dt. Then

B ≥ 2α2n

∫ t0+β/n

t0

(

1 − 2π(n− 1)(t− t0)
)2
dt

= 2α2β

(

1 − 2πβ

(

1 − 1

n

)

+
4π2β2

3

(

1 − 1

n

)2
)

.

(5.2)

It follows that

(5.3) B ≥ 2α2β
(

1 − 2πβ + 4π2β2/3
)

if β < 3/4π.
Next, let J denote the complement of I (modulo 1) in [0, 1] so that

∫

J

|f(e(t))|2 dt = n−B.

By the Schwarz inequality,
(
∫

I

|f(e(t))| dt
)2

≤ 2βB/n

and
(
∫

J

|f(e(t))| dt
)2

≤ (n−B)(1 − 2β/n),

so

(5.4) ‖f‖1 ≤
√

2βB/n+
√

(n−B)(1 − 2β/n).

The expression on the right is decreasing in B for B ≥ 2β, so assuming that
α2(1− 2πβ + 4π2β2/3) ≥ 1, we may replace B in (5.4) with the expression in (5.3)
to obtain

‖f‖2
1 ≤

(

2αβ
√

(1 − 2πβ + 4π2β2/3)/n

+
√

(n− 2α2β(1 − 2πβ + 4π2β2/3))(1 − 2β/n)

)2

= n− 2β
(

1 + α2 − 2α2βπ + 4α2β2π2/3 − 2α
√

1 − 2βπ + 4β2π2/3
)

+O(1/n).

(5.5)
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Figure 1. Optimal constant term.
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Selecting parameters. Now we wish to choose α and β, subject to the identified
constraints, so that the constant terms in the expressions (5.1) and (5.5) match and
are as large as possible. (Newman uses α = 2

√
π ≈ 3.54, β = 1/4π ≈ .0796, and

B ≥ 1, which yields .0484 in case 1 and .361 in case 2). Selecting candidate values
for β between 0 and 3/4π produces the values of 1/(α+1)2 shown in Figure 1. The
optimal value is approximately .092347, occurring near α = 2.2907 and β = .064804.

When n is even, we obtain from (5.1) that ‖f‖2
1 ≤ n− .091281, and it is straight-

forward to verify that the bound in (5.5) is slightly smaller for all n. However, for

odd n ≥ 3 we obtain from (5.1) that ‖f‖2
1 ≤ n − .09 only for n ≥ 41. To obtain

the inequality for all odd n, we first perform the analysis a bit more carefully to
decrease this threshold, then we complete the proof by determining for small n the
maximal value of the L1 norm of a Littlewood polynomial of degree n− 1. To this
end, we replace the parameter α with the expression α − γ/n and use the more
precise lower bound from (5.2) for B in (5.4) in place of the bound (5.3). Choosing
γ = .899634 to balance the 1/n terms in the respective asymptotic expansions, we

verify that both (5.1) and (5.4) yield ‖f‖2
1 < n− .09 when n is odd for n ≥ 21.

To complete the proof, we therefore need only check that every Littlewood poly-
nomial with even degree n− 1 ≤ 18 satisfies ‖f‖1 <

√
n− .09. This is established

in Table 3, which displays for each n ≤ 25 a Littlewood polynomial of degree n− 1
having maximal L1 norm. ¤

We remark that the last column of the table shows that the value of .09 in
Theorem 5.2 cannot in general be replaced with any number larger than .1856 . . ..
We also note that the extremal polynomials with respect to the L1 norm in Table 3
are precisely the same as the extremal Littlewood polynomials with respect to
Mahler’s measure in Table 2. In particular, the coefficient sequences appearing in
Table 3 for n = 2, 3, 4, 5, 7, 11, and 13 are Barker sequences. Again, the other
Barker sequence of length 4 has the same L1 norm as that of the n = 4 entry in
the table.

6. An irreducibility question

As we noted in section 2, Turyn and Storer [32] proved that no Barker sequences
of odd length n exist for n > 13. Their proof is elementary, though somewhat
complicated, and relies on showing that long Barker sequences of odd length must
exhibit certain patterns. We describe here a possible alternative route to proving
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Table 3. Maximal L1 norms of Littlewood polynomials by degree.

n Coefficients of f ‖f‖1 ‖f‖1 /
√
n n− ‖f‖2

1

2 ++ 1.27324 0.90032 0.37886
3 ++- 1.67761 0.96857 0.18562
4 +++- 1.92555 0.96277 0.29227
5 +++-+ 2.19412 0.98124 0.18583
6 ++++-+ 2.33899 0.95489 0.52912
7 +++--+- 2.58397 0.97665 0.32311
8 ++++--+- 2.73681 0.96761 0.50989
9 +++-+--++ 2.87385 0.95795 0.74097

10 ++++-+--++ 3.04989 0.96446 0.69817
11 +++---+--+- 3.25835 0.98243 0.38317
12 +++++--++-+- 3.40074 0.98171 0.43498
13 +++++--++-+-+ 3.57946 0.99276 0.18749
14 ++++++--++-+-+ 3.65775 0.97757 0.62088
15 +++++--++--+-+- 3.80732 0.98305 0.50430
16 +++-+++---+-++-+ 3.89389 0.97347 0.83764
17 ++-++--++++-+-+-- 4.00380 0.97106 0.96956
18 +++-+++---+-++-+-- 4.13097 0.97368 0.93505
19 ++-+---+-++++-++++- 4.26105 0.97755 0.84344
20 +++++-+---+-++---++- 4.39129 0.98192 0.71659
21 ++-------++--+-+-+--+ 4.50012 0.98201 0.74893
22 +++++-++--+-+-++---+++ 4.58809 0.97818 0.94943
23 +++++++---++--+--+-+-+- 4.68409 0.97670 1.05934
24 ++--+++------+-+-+--+--+ 4.81295 0.98244 0.83550
25 +++---+++++++-+-+--+--++- 4.92189 0.98438 0.77497

this result, in the hope of spurring further research. The material in this section
also appears in [5].

For a polynomial f(x), we define its reciprocal polynomial f ∗(x) by f∗(x) :=
xdeg ff(1/x). For f(x) ∈ Z[x], we say f is reciprocal if f = ±f ∗.

Theorem 6.1. If the polynomial

gm(x) :=

m
∑

k=1

(

x2m−2k + x2m+2k
)

+ (−1)m(2m+ 1)x2m

is irreducible, then no Barker sequence of length 2m+ 1 exists.

Proof. Suppose {ak} is a Barker sequence of length 2m + 1, and let fm(x) =
∑2m

k=0 akx
k. By Theorem 2.1, the aperiodic autocorrelation ck is 0 if k is odd

and (−1)m if k 6= 0 and k is even. Thus

fm(x)f∗m(1/x) =

m
∑

k=−m

c2kx
2k+2m

= (2m+ 1)x2m +

m
∑

k=1

(−1)m
(

x2m+2k + x2m−2k
)

,

and so gm(x) = (−1)mfm(x)f∗m(x). ¤
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The polynomials gm(x) are in fact irreducible for 6 < m ≤ 750, and it would be
interesting if there is a short proof of this for large m. We note however that Erich
Kaltofen has observed that the polynomials gm(x) are in fact always reducible mod
p, for any prime p. With his permission, we include his proof of the following more
general statement.

Theorem 6.2. Suppose f(x) is an even, reciprocal polynomial with integer coeffi-

cients and deg(f) ≥ 4. Then f(x) is reducible mod p for every prime p.

Proof. If f = −f∗ then f(±1) = 0 so f is reducible over Q. If f = f ∗ and
deg(f) = 4n+ 2 then f(±i) = 0, so again f is reducible over Q for n ≥ 1. Suppose
then that f = f∗ and deg(f) = 4n with n ≥ 1, and write f(x) = g(x2). Clearly
f(x) ≡ g(x)2 mod 2, so suppose p is an odd prime, and g(x) is irreducible mod p.
Let α be a root of g in its splitting field Fp2n over Fp, so that

g(x) =
2n−1
∏

k=0

(

x− αpk
)

.

Let γ be a primitive element of Fp2n , and let α = γt for some integer t. Since g is

reciprocal, α−1 is also a root of g, so α−1 = γ−t = αpj

= γtpj

for some positive

integer j < 2n. Then γtp2j

= γ−tpj

= γt, so αp2j−1 = 1, and consequently j = n.
Therefore γt(pn+1) = 1, so (pn − 1) | t and thus t is even. Let β = γt/2. Then

f(x) =

2n−1
∏

k=0

(

x+ βpk
)

·
2n−1
∏

k=0

(

x− βpk
)

,

and each of these products lies in Fp[x]. ¤
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