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ABSTRACT

We propose a new algorithm to find a rational solution to a
sparse system of linear equations over the integers. This al-
gorithm is based on a p-adic lifting technique combined with
the use of block matrices with structured blocks. It achieves
a sub-cubic complexity in terms of machine operations sub-
ject to a conjecture on the effectiveness of certain sparse
projections. A LINBOX-based implementation of this algo-
rithm is demonstrated, and emphasizes the practical benefits
of this new method over the previous state of the art.

Categories and Subject Descriptors

1.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, analysis of algorithms

General Terms
Algorithms.

Keywords

Sparse integer matrix, linear system solving, structured ma-
trix

1. INTRODUCTION

A fundamental problem of linear algebra is to compute the
unique solution of a non-singular system of linear equations.
Aside from its importance in and of itself, it is key compo-
nent in many recent proposed algorithms for other problems
involving exact linear systems. Among those algorithms are
Diophantine system solving [12, 20, 21], Smith form compu-
tation [9, 22|, and null-space and kernel computation [4]. In
its basic form, the problem we consider is then to compute
the unique rational vector A~'b € Q™*! for a given non-
singular matrix A € Z"*™ and right hand side b € Z"*'. In
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this paper we give new and effective techniques for when A
is a sparse integer matrix, which have sub-cubic complexity
on sparse matrices.

A classical and successful approach to solving this prob-
lem for dense integer matrices A was introduced by Dixon
in 1982 [6], following polynomial case studies from [19]. His
proposed technique is to compute, iteratively, a sufficiently
accurate p-adic approximation A~'b mod p* of the solution.
The prime p is chosen such that det(A) #Z 0 mod p (see,
e.g., [23] for details on the choice of p). Then, using radix
conversion (see e.g. [11, §12]) combined with continued frac-
tion theory [15, §10], one can easily reconstruct the rational
solution A~1b from A~'b mod p* (see [26] for details).

The principal feature of Dixon’s technique is the pre-
computation of the matrix A™! mod p which leads to a de-
creased cost of each lifting step. This leads to an algorithm
with a complexity of O™(n® log(|| A||+]|b]|)) bit operations [6].
Here and in the rest of this paper ||...|| denotes the maxi-
mum entry in absolute value and the O™ notation indicates
some possibly omitting logarithmic factor in the variables.

For a given non-singular matrix A € Z"*", a right hand
side b € Z™*', and a suitable integer p, Dixon’s scheme is
the following:

e compute B = A~ mod p;

e compute ¢ p-adic digits of the approximation itera-
tively by multiplying B times the right hand side,
which is updated according to each new digit;

e use radix conversion and rational number reconstruc-
tion to recover the solution.

The number ¢ of lifting steps required to find the exact ra-
tional solution to the system is O (nlog(||A|l + ||b]])), and
one can easily obtain the announced complexity (each lift-
ing steps requires a quadratic number of bit operations in
the dimension of A; see [6] for more details).

In this paper we study the case when A is a sparse integer
matrix, for example, when only O7(n) entries are non-zero.
The salient feature of such a matrix A is that applying A,
or its transpose, to a dense vector ¢ € Z™*! requires only
O (nlog(||A]l + |lell)) bit operations.

Following techniques proposed by Wiedemann in [27], one
can compute a solution of a sparse linear system over a fi-
nite field in O"(n?) field operations, with only O”(n) memory.
Kaltofen & Saunders [17] studied the use of Wiedemann’s
approach, combined with p-adic approximation, for sparse
rational linear system. While this combination does have ad-



vantages (see below), it doesn’t improve the worst-case bit-
complexity, which is still Q(n?) operations. One of the main
reasons that the worst-case complexity remains the same
is that Wiedemann’s technique requires the computation,
for each right hand side, of a new Krylov subspace, which
requires O(n) matrix-vector products by A mod p. This im-
plies the requirement of ©(n?) operations modulo p for each
lifting step, even for a sparse matrix (and O (n(log| Al +
[[b]])) such lifting steps are necessary in general). Employ-
ing the approach in [17] does offer some advantages over
the method proposed in this paper. First, only O(n) ad-
ditional memory is necessary, as compared to the O(n'-®)
additional space the algorithm proposed here needs to rep-
resent the matrix inverse modulo p (see Section 3 for details).
Also, the approach in [17] will terminate significantly more
quickly when the input matrix has a minimal polynomial of
low degree.

The main contribution of this current paper is to pro-
vide a new Krylov-like pre-computation for the p-adic algo-
rithm with a sparse matrix which allows us to improve the
bit complexity of linear system solving. The main idea is
to use a block-Krylov method combined with special block
projections to minimize the cost of each lifting step. The
Block Wiedemann algorithm [5, 25, 16] would be a natural
candidate to achieve this. However, the Block Wiedemann
method is not obviously suited to being incorporated into
a p-adic scheme. Unlike the scalar Wiedemann algorithm,
wherein the minimal polynomial can be used for every right-
hand side, the Block Wiedemann algorithm needs to use
different linear combinations for each right-hand side. In
particular, this is due to the special structure of linear com-
binations coming from a column of a minimal matrix gener-
ating polynomial (see [25, 24]) and thus is totally dependent
on the right hand side.

Our new scheme reduces the cost of each lifting step, on
a sparse matrix as above, to O"(n'*®) bit operations. This
means the cost of the entire solver is O™(n?®(log (|| A||+|5)))
bit operations. The algorithm makes use of the notion of an
efficient sparse projection, for which we currently only offer
a construction which is conjectured to work in all cases.
However, we do provide some theoretical evidence to support
its applicability, and note its effectiveness in practice. Also,
while we address only non-singular matrices here, we note
that the methods of [27, 17] would allow us to solve singular
systems as well, at least with the same asymptotic cost.

Perhaps most importantly, the new algorithm is shown
to offer practical improvement on sparse integer matrices.
The algorithm is implemented in the LINBoX library (7], a
generic C++ library for exact linear algebra. We compare it
against the best known solvers for integer linear equations,
in particular against the Dixon lifting scheme and Chinese
remaindering. We show that in practice it runs many times
faster than previous schemes on matrices of size greater than
2500 x 2500 with suffiently high sparsity. This also demon-
strates the effectiveness in practice of so-called “asymptoti-
cally fast” matrix-polynomial techniques, which employ fast
matrix/polynomial arithmetic. We provide a detailed dis-
cussion of the implementation, and isolate the performance
benefits and bottlenecks. A comparison with Maple dense
solver emphasizes the high efficiency of the LINBoX library
and the needs of well-designed sparse solvers as well.

2. BLOCK PROJECTIONS

The basis for Krylov-type linear algebra algorithms is the
notion of a projection. In Wiedemann’s algorithm, for ex-
ample, we solve the ancillary problem of finding the minimal
polynomial of a matrix A € F**™ over a field F by choosing
random u € F'*™ and v € F™*! and computing the min-
imal polynomial of the sequence uA®v for i = 0...2n — 1
(which is both easy to compute and with high probability
equals the minimal polynomial of A). As noted in the in-
troduction, our scheme will ultimately be different, a hybrid
Krylov and lifting scheme, but will still rely on the notion
of a structured block projection.

For the remainder of the paper, we adopt the following
notation:

e A € F"*™ be a non-singular matrix,
e s be a divisor of n, the blocking factor, and
e m:=n/s.
Ultimately F will be Q and we will have A € Z"*™, but for
now we work in the context of a more general field F.
For a block v € F**® and 0 < t < m, define

]C(A7U) = [ v ‘ Av ‘ ‘ Am*IU } c gEnxn

We call a triple (R, u,v) € F**™ x F**™ x F"** an efficient
block projection if and only if

(1) K(RA,v) and K((RA)T,u") are non-singular;
(2) R can be applied to a vector with O7(n) operations;

(3) we can compute vz, u”x, yv and yu” for any x € F**!
and y € F'*™ with O(n) operations in F.

In practice we might hope that R, u and v in an efficient
block projection are extremely simple, for example R is a
diagonal matrix and u and v have only n non-zero elements.

CONJECTURE 2.1. For any non-singular A € F™*™ and
s |n there exists an efficient block projection (R, u,v) € F**™x
FSXTL X FTLXS.

2.1 Constructing efficient block projections

In what follows we present an efficient sparse projection
which we conjecture to be effective for all matrices. We
also present some supporting evidence for its theoretical ef-
fectiveness. As we shall see in Section 4, the projection
performs extremely well in practice.

We focus only on R and v, since its existence should imply
the existence of a u of similar structure.

For convenience, assume for now that all elements in v
and R are algebraically independent indeterminates, mod-
ulo some imposed structure. This is sufficient, since the
existence of an efficient sparse projection with indetermi-
nate entries would imply that a specialization to an effective
sparse projection over Z, is guaranteed to work with high
probability, for sufficiently large p. We also consider some
different possibilities for choosing R and v.

2.1.1 Dense Projections

The “usual” scheme for block matrix algorithms is to
choose R diagonal, and v dense. The argument to show
this works has several steps. First, RA will have distinct
eigenvalues and thus will be non-derogatory (i.e., its min-
imal polynomial equals its characteristic polynomial). See
[3], Lemma 4.1. Second, for any non-derogatory matrix B



and dense v we have K(B,v) non-singular (see [16]). How-
ever, a dense v is not an efficient block projection since con-
dition (3) is not satisfied.

2.1.2  Structured Projections

The following projection scheme is the one we use in prac-
tice. Its effectiveness in implementation is demonstrated in
Section 4.

Choose R diagonal as before. Choose

v = : c knxs (1)

*

with each * of dimension m x 1. The intuition behind the
structure of v is twofold. First, if s = 1 then v is a dense
column vector, and we know K(RA, v) is non-singular in this
case. Second, since the case s = 1 requires only n nonzero
elements in the “block”, it seems that n nonzero elements
should suffice in the case s > 1 also. Third, if E is a diagonal
matrix with distinct eigenvalues then, up to a permutation of
the columns, K(E,v) is a block Vandermonde matrix, each
m x m block defined via m distinct roots, thus non-singular.
In the general case with s > 1 we ask:

QUESTION 2.2. For R diagonal and v defined as in (1),
is K(RA,v) necessarily nonsingular?

Our work thus far has not led to a resolution of the question.
However, by focusing on the case s = 2 we have answered
the following similar question negatively: If A is nonsingu-
lar with distinct eigenvalues and v is as in (1), is (A4, v)
necessarily nonsingular?

LEMMA 2.3. If m = 2 there exists a nonsingular A with
distinct eigenvalues such that for v as in (1) the matriz
K(A,v) is singular.

PRrROOF. We give a counterexample with n = 4. Let

1 0 00 10 0 O
02 00 01 1/4 0
E= and P =
00 3 0 01 1 0
0 0 0 4 00 0 1
Define
0 0
-1 0
A=3P 'EP=

o O o w
S s Ut O
—
o
(e}

0 12
For the generic block

a1
a2
b |7
b2
the matrix IC(A, v) is singular. By embedding A into a larger

block diagonal matrix we can construct a similar counterex-
ample for any n and m =2. [

Thus, if Question 2.2 has an affirmative answer, then prov-
ing it will necessitate considering the effect of the diagonal
preconditioner R above and beyond the fact that “RA has
distinct eigenvalues”. For example, are the eigenvalues of
RA algebraically independent, using the fact that entries in
R are? This may already be sufficient.

2.1.3 A Positive Result for the Case s = 2

For s = 2 we can prove the effectiveness of our efficient
sparse projection scheme.

Suppose that A € F**™ where n is even and A is diagonal-
izable with distinct eigenvalues in an extension of F. Then
A = X 'DX € F™*" for some diagonal matrix D with
distinct diagonal entries (in this extension). Note that the
rows of X can be permuted (replacing X with PX for some
permutation P),

A= (PX)"Y(PDP ")(PX),

and PDP ™! is also a diagonal matrix with distinct diagonal
entries. Consequently we may assume without loss of gen-
erality that the top left (n/2) x (n/2) submatrix X1, of X
is nonsingular. Suppose that

X1 Xip
X=| b ooh
{ Xo1 Xop }

and consider the decomposition
A=2"'4z, (2)

where
X1 0 I Zip
Z — 1,1 - X — 5
[ 0 lell } { Za Loy
for n/2 x n/2 matrices Z1,2, Z2,1, and Z3 2, and where

~ [ X4 o0 X1 0
A*{ 0 X Dl Xi1 |’

so that

-~ A1 0
v a]
for matrices A; and A>. The matrices A; and A are each
diagonalizable over an extension of F, since A is, and the
eigenvalues of these matrices are also distinct.
Notice that, for vectors a,b with dimension n/2, and for
any nonnegative integer i,

o I I a
fs]-rn] o]
il 0 _ 15| Zi,2b
o[]-rn] 28]

Thus, if

— a d — >
T= Zg’la an v= Z2,2b

then the matrix with columns

a0 LB A

is nonsingular if and only if the matrix with columns

z, A\Za A\va s 72n/271x7y7 A\yv A\2y7 L) A\n/Zfly



is nonsingular. The latter condition fails if and only if there
exist polynomials f and g, each with degree less than n/2,
such that at least one of these polynomials is nonzero and

F(A)z + g(A)y = 0. (3)

To proceed, we should therefore determine a condition on A
ensuring that no such polynomials f and g exist for some
choice of = and y (that is, for some choice of a and b).

A suitable condition on A is easily described: We will
require that the top right submatrix Zi 2 of Z is nonsingular.

Now suppose that the entries of the vector b are uniformly
and randomly chosen from some (sufficiently large) subset
of F, and suppose that a = —Z; 2b. Notice that at least one
of f and g is nonzero if and only if at least one of f and g— f
is nonzero. Furthermore,

F(A) () + g(A)(y) = F(A)(z + 1) + (g — F)(A)(y).
It follows by the choice of a that

T+y= 0
(Z2,2 — Z2,1Z1,2)b

Since A is block diagonal, the top n/2 entries of f(A\)(a:er)
are zero as well for every polynomial f. Consequently, failure
condition (3) can only be satisfied if the top n/2 entries of
the vector (g — f)(g)(y) are also all zero.

Recall that g — f has degree less than n/2 and that A,
is diagonalizable with n/2 distinct eigenvalues. Assuming,
as noted above, that Z; 2 is nonsingular (and recalling that
the top half of the vector y is Zi,2b), the Schwartz-Zippel
lemma is easily used to show that if b is randomly chosen as
described then, with high probability, the failure condition
can only be satisfied if g — f = 0. That is, it can only be
satisfied if f = g.

Observe next that, in this case,

F(A) () + g(A)(y) = F(A)(z + ),

and recall that the bottom half of the vector x+v is the vec-
tor (Z2’2 — 22’121,2)5. The matrix Zgyz — ZQ,:[ZLQ is clearly
nonsingular (it is a Schur complement formed from Z) so,
once again, the Schwartz-Zippel lemma can be used to show
that if b is randomly chosen as described above then f(A)(z+
y) = 0 if and only if f = 0 as well.

Thus if Z1,2 is nonsingular and a and b are chosen as
described above then, with high probability, equation (3) is
satisfied only if f = g = 0. There must therefore exist a
choice of a and b providing an efficient block projection —
once again, supposing that Zi > is nonsingular.

It remains only to describe a simple and efficient random-
ization of A that achieves this condition with high probabil-
ity: Let us replace A with the matrix

PO A7 2 I I Y I —tl I tl
I E A T R
where t is chosen uniformly from a sufficiently large subset
of F. This has the effect of replacing Z with the matrix

7 I | I Zio +tI
0 I | | Zey Zoo+tZan

(see, again, (2)), effectively replacing Z; o with Zi 2 + tI.
There are clearly at most n/2 choices of ¢ for which the
latter matrix is singular.

Finally, note that if v is a vector and ¢ > 0 then

o | I —tI | I tl
Av_{o I]A{O I}v.

It follows by this and similar observations that this random-
ization can be applied without increasing the asymptotic
cost of the algorithm described in this paper.

Question: Can the above randomization and proof be gen-
eralized to a similar result for larger s?

Other sparse block projections

Other possible projections are summarized as follows.

e Toeplitz projections. Choose R and/or v to have
a Toeplitz structure. As demonstrated in [17], these
have excellent mixing properties, and ensure that mi-
nors of RA will be non-zero with high probability. This
provides important genericity to RA which may be
useful in proving a projection effective.

e Transpose projections. As shown in [10], using
R = DA" also ensures that many minors are non-zero,
which appears useful (and perhaps necessary) in argu-
ments on the effectiveness of block projections.

3. NON-SINGULAR SPARSE SOLVER

In this section we show how to employ a block-Krylov type
method combined with the (conjectured) efficient block pro-
jections of Section 2 to improve the complexity of evaluating
the inverse modulo p of a sparse matrix. Applying Dixon’s
p-adic scheme with such an inverse yields an algorithm with
better complexity than previous methods for sparse matri-
ces, i.e., those with a fast matrix-vector product. In partic-
ular, we express the cost of our algorithm in terms of the
number of applications of the input matrix to a vector, plus
the number of auxiliary operations.

More precisely, given A € Z™*™ and w € Z™*!, let p(n)
be the number of operations in Z to compute Aw or w” A.
Then, assuming Conjecture 2.1, our algorithm requires
O (n*®(log(||A|| +|b]])) matrix-vector products w +— Aw on
vectors w € Z™*! with ||w|| = O(1), plus O (n*®(log(]| Al +
|Ib]|)) additional bit operations.

Summarizing this for practical purposes, in the common
case of a matrix A € Z"*™ with O™(n) constant-sized non-
zero entries, and b € Z™*! with constant-sized entries, we
can compute A~'b with O"(n*®) bit operations.

We achieve this by first introducing a structured inverse
of the matrix A, = A mod p which links the problem to
block-Hankel matrix theory. We will assume that we have
an efficient block projection (R, u,v) € Zp*"™ x Z;*™ X Zp™*®
for Ay, and let B = RA € Zy*". We thus assume we can
evaluate Bw and w” B, for any w € Z}*', with O (u(n))
operations in Zj,. The proof of the following lemma is left
to the reader.

LEMMA 3.1. Let B € Zy*" be non-singular, where n =
ms for m,s € Zso. Let u € Zy*™ and v € Zy™* be efficient
block projections such that V = [v|Bv|---|B™ 'v] € Z*"
and UT = [WT|BTWT| - |(BT)™ '] € Z2*™ are non-
singular. The matric H = UBV € Zy*™ is then a block-
Hankel matriz, and the inverse for B can be written as
B™'=VH'U.



In fact
aq (05 A Qm
az Qs Am+1 nxn
H=| . ez, (4)
Qam Qm Qa2m—1

with oy = uB'v € Z°%° for i = 1...2m — 1. H can thus
be computed with 2m — 1 applications of B to a (block)
vector plus 2m — 1 pre-multiplications by u, for a total cost
of 2np(n)+O"(n?) operations in Z,. For a word-sized prime
p, we can find H with O"(nu(n)) bit operations (where, by
“word-sized”, we mean having a constant number of bits,
typically 32 or 64, depending upon the register size of the
target machine).

We will need to apply H ™' to a number of vectors at each
lifting step and so require that this be done efficiently. We
will do this by first representing H ! using the off-diagonal

inverse formula of [18]:
<5m1 ﬁo> (’anl SN} )
Hl— . . .
Bo Cmo
Ym—2 =+ Y0 0

.. Br, - By
- o (5)
Y - B
0

where 03;, B, vi, Vi € Zy*°.

This representation can be computed using the Sigma Ba-
sis algorithm of Beckermann-Labahn [1, 18]. We use the ver-
sion given in [13] which ensures the desired complexity in all
cases. This requires O™ (s®m) operations in Z,, (and will only
be done once during the algorithm, as pre-computation to
the lifting steps).

The Toeplitz/Hankel forms of the components in this for-
mula allow to evaluate H~'w for any w € Z;*" with O"(s*m)
or O"(ns) operations in Z, using an FFT-based polynomial
multiplication (see [2]). An alternative to computing the
inversion formula would be to use the generalization of the
Levinson-Durbin algorithm in [16].

COROLLARY 3.2. Assume that we have pre-computed the
matriz inverse H™ ' € Zy*™ for a word-sized prime p. Then,
for any w € Zg“, we can compute B~ w mod p with 2(m—
1)pu(n) + O (n(m + s)) operations in Zy.

ProOOF. By Lemma 3.1 we can express the application
of B™! to a vector by an application of U, followed by an
application of H~! followed by an application of V.

To apply U to a vector w € Z'*!, we note that (Uw)” =
[(ww)T, (uBw)T, ..., (uB™ ) Tw)!|T. We can find this iter-
atively, fori = 0, ..., m—1, by computing b; = B'w = Bb;_;
(assume by = w) and uB'w = ub;, for i+ = 0..m — 1 in se-
quence. This requires (m — 1)pu(n) + O"(mn) operations in
Zp.

To apply V to a vector y € Zp* ! we consider the splitting
y=[voly1| - |ym—1], where y; € Z5. Then

Vy = vyo + Boys + B*vyz + - + B™ Loym_1
=vyo + B (vy1 + B (vy1 + - (vYm—2 + Boym—1)---)))

which can be accomplished with m — 1 applications of B
and m applications of the projection v. This requires (m —
1)p(n) + O™ (mn) operations in Z,.

P-adic scheme

We employ the inverse computation described above in the
p-adic lifting algorithm of Dixon [6]. We briefly describe the
method here and demonstrate its complexity in our setting.
Input: A € Z™ ™ non-singular, b € Z"*1;
Output: A~1p € Q™*!

(1) Choose a prime p such that det A Z 0 mod p;

(2) Determine an efficient block projection for A:
Rou,v € ZM" x Z3" x Z%%; Let B = RA;

(3) Compute o; = uB™v for i =1...2m — 1 and define H
as in (4). Recall that B~' = VH'U;

(4) Compute the inverse formula of H~" (see above);
(5) Let £:= %-[log, (n||A[|*) +log, ((n — D[ A|I* + [[6]I*)]);

0 = 03
6) For i from 0 to ¢ do
7) x; := B7'b; mod p;
8) bit1 = pil(bi — Bz;)

9) Reconstruct € Q™*! from x, using rational recon-
struction.

THEOREM 3.3. The above p-adic scheme solves the sys-
tem A™'b with O"(n*" (log(||Al| + ||b])) matriz-vector prod-
ucts by Amod p (for a machines-word sized prime p) plus
O (0?5 (log(||All + ||8]])) additional bit-operations.

PRrROOF. The total cost of the algorithm is O (nu(n) +
n? + nlog(||Al|l + ||6]])(mu(n) + n(m + s)). For the opti-
mal choice of s = \/n and m = n/s, this is easily seen to
equal the stated cost. The rational reconstruction in the
last step is easily accomplished using radix conversion (see,
e.g., [11]) combined with continued fraction theory (see [26]
for details). While in theory we need to employ a half-GCD
algorithm to obtained the desired complexity, in practice it
only takes a few GCDs. We employ the method of [4] for
this step. [

4. EFFICIENT IMPLEMENTATION

An implementation of our algorithm has been done in the
LiNBox library [7]. This is a generic C++ library which of-
fers both high performance and the flexibility to use highly
tuned libraries for critical components. The use of hybrid
dense linear algebra routines [8], based on fast numerical
routine such as BLAS, is one of the successes of the library.
Introducing blocks to solve integer sparse linear systems is
then an advantage since it allows us to use such fast dense
routines. One can see in Section 4.2 that this becomes neces-
sary to achieve high performance, even for sparse matrices.

4.1 Optimizations

In order to achieve the announced complexity we need to
use asymptotically fast algorithms, in particular to deal with
polynomial arithmetic. One of the main concerns is then
the computation of the inverse of the block-Hankel matrix
and the matrix-vector products with block-Toeplitz/Hankel
matrices.

Consider the block-Hankel matrix H € Zp*" defined by
2m — 1 blocks of dimension s denoted «; in equation (4).
Let us denote the matrix power series

H(Z) =) +a2z4+ ...+ CY277L—12'27W7



One can compute the off-diagonal inverse formula of H using
[18, Theorem 3.1] with the computation of

e two left sigma bases of [H(2)T |I]T of order 2m — 1
and 2m + 1, and

e two right sigma bases of [H(z) | I] of order 2m — 1 and
2m + 1.

This computation can be done with O(s*m) field oper-
ation with the fast algorithm PM-Basis of [13]. However,
the use of a slower algorithm such as M-Basis of [13] will
give a complexity of O(s®m?) or O(n?s) field operations. In
theory, the latter is not a problem since the optimal s is
equal to /n, and thus gives a complexity of O(n*®) field
operations, which still yields the announced complexity.

In practice, we developed implementations for both algo-
rithms (M-Basis and PM-Basis), using the efficient dense
linear algebra of [8] and an FFT-based polynomial matrix
multiplication. Note, however, that only half of the result
computed by these algorithms is needed. This corresponds
to the denominator of a Padé fraction description of H(z).
Therefore, by modifying algorithm M-Basis to handle only
the calculation of this denominator, we are able to divide
its complexity by a factor of two, and thus provide a faster
implementation. Using this last implementation leads us in
practice to the best performance, considering that approxi-
mation degrees remain small (i.e. less than 1000).

Another important point in the algorithm is the applica-
tion of H~! to a vector in step (7). The precomputed repre-
sentation (5) gives H~! = ST*—T'S* for structured matrices
S, T*,T,S*. We sketch here how we optimize the applica-
tion of the triangular block-Hankel matrix S to a vector
T € Z;Xl; the application of the other structured matrices
T*, T, and S™ to a vector is handled similarly. We can avoid
the use of FFT-based arithmetic to compute Sz by precom-
puting the Lagrange representation of S before the start of
the lifting: using Horner’s scheme, at a cost of O(n?) field
operations, we evaluate Bo+ 812+ 4 Bm-12"""1 € Zp[2]7**
at the points z = 0,1,...,2m — 2. The vector x is cut into
chunks of size s and thus defines the polynomial vector

Computing y = Sx now reduces to:

(a) computing the Lagrange representation of Z(z);

(b) 2m — 1 matrix-vector products of dimension s;

(c) interpolating g(z) from its Lagrange representation.
Steps (a) and (c) cost O(m?s) field operations using Horner’s
scheme and Lagrange interpolation, respectively. Step (b)
costs O(ms?) field operations. This gives O(n'®) field op-
erations for the optimal choice s = m = y/n. Our imple-
mentation uses a Vandermonde matrix and its inverse to
perform the evaluation/interpolation steps. This maintains
the announced complexity and benefits from the fast dense
linear algebra routine of LINBOX library.

4.2 Timings

We now compare the performance of our new algorithm
against the best known solvers. As noted earlier, the previ-
ously best known complexity for algorithms solving integer
linear systems is O"(n® log(||A||+|b||)) bit operations, inde-
pendent of their sparsity. This can be achieved with several
algorithms: Wiedemann’s technique combined with the Chi-

nese remainder algorithm [27], Wiedemann’s technique com-
bined with p-adic lifting [17], or Dixon’s algorithm [6]. All of
these algorithms are implemented within the LINBoX library
and we ensure they benefit from the optimized code and li-
braries to the greatest extent possible. In our comparison,
we refer to these algorithms by respectively: CRA-Wied, P-
adic-Wied and Dizon. In order to give a timing reference, we
also compare against the dense (modular) solver in Maple
10. Note that algorithm used by Maple is based on the Chi-
nese Remainder Theorem, and has a complexity which is
quartic in the matrix dimension.

In the following, matrices are chosen randomly sparse,
with fixed or variable sparsity, and some non-zero diagonal
elements are added in order to ensure the non-singularity.

system order
400 900 1600 2500 3600

Maple 64.7s 849s 11098s - —
CRA-Wied 14.8s  168s 1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s  2629s 8034s
Dixon 0.9s 10s 42s  178s 429s
Our algo. 2.4s 15s 61s 175s 426s

Table 1: Solving sparse integer linear system (10
non-zero elts per row) on a Itanium2, 1.3GHz

First, one can see from Table 1 that even if most of the al-
gorithms have the same complexity, their performance varies
widely. The P-adic-Wied implementation is a bit faster than
CRA-Wied since the matrix reduction modulo a prime num-
ber and the minimal polynomial computation is done only
once, contrary to the O™(n) times needed by CRA. This ta-
ble also highlights the efficiency of dense LINBOX ’s routines
compared to sparse routines. Note the practical improve-
ment by a factor 10 to 20 with Dixon’s implementation. An
important feature is that O(n) sparse matrix-vector prod-
ucts are not as fast in practice as one dense matrix-vector
product. Our new algorithm takes this into account since
it introduces dense block operations and then reduces the
number of sparse operations. In practice, this allows us
to achieve similar performance to Dixon implementation.
Consistent with the better complexity, our implementation
become faster as soon as matrices are getting larger. Nev-
ertheless, the improvement by /7 is somehow amortized by
the influence of the sparsity in the complexity.

In order to emphasize the asymptotic benefit of our new
algorithm, we now compare it on larger matrices with differ-
ent levels of sparsity. In Figure 1, we study the behaviour of
our algorithm compared to that of Dixon with fixed sparsity
(10 and 30 non-zero elements per rows). Our goal is to ob-
serve the behaviour of our algorithm for a given complexity
along the system orders.

With 10 non-zero element per row, our algorithm is al-
ways faster than Dixon’s and the gain tends to increase
with matrix dimension. We do not see exactly the same
behaviour when matrices have 30 non-zero element per row.
For small matrices, Dixon still outperforms our algorithm.
The crossover appears only after dimension 10000. This
phenomenon is explained by the fact that sparse matrix
operations remain too costly compared to dense ones until
matrix dimensions become sufficiently large that the overall
asymptotic complexity plays a more important role.



sparsity = 10elts/row sparsity = 30elts/row

Our algo. —*— Our algo. —+—
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Time (104 s)
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Figure 1: Comparing our algo. with Dixon’s algo-
rithm (fixed sparsity) on a Itanium2, 1.3GHz

This explanation is verified in Figure 2 where different
sparsity percentages are used. Here, the sparsity percentage
expresses the number of non zero elements over the total
number of elements in the matrix (e.g. %nz non zero
elements in the matrix). One can see that the sparser the
matrices are, the earlier the crossover appears. For instance,
with a sparsity of 0.07%, our algorithm becomes more effi-
cient than Dixon’s for matrices dimension greater than 1600,
while this is only true for dimension greater than 2500 with
a sparsity of 1%. Figure 2 emphasizes another phenomenon
related to experimentions with sparsity in percentage. When
matrices become large, Dixon’s algorithm again becomes the
most efficient. This is explained by the sparsity given in per-
centage which leads to a variable complexity along system
order. For a given sparsity, the larger the matrix dimensions
the more non-zero entries per row, and the more costly our
algorithm is. As an example, with 1% of non zero element,
the complexity is doubled from matrix dimension n = 3000
ton = 6000. As a consequence, the relative performance of
our algorithm drops with matrix dimension in this particular
case.

sparsity=0.07% —%—

sparsity=0.30% -

sparsity=1.00%
crossover line

Q
=]
o
(]
(]
&
0.5 Lo ‘ ‘ ‘ ‘ ‘
1000 2000 3000 4000 5000 6000
System order
Figure 2: Speed up of our algorithm vs Dixon’s

(variable sparsity) on an Itanium2, 1.3GHz

4.3 The practical effect of different blocking
factors

In order to achieve even better performance, one can try
to use different block dimensions rather than the theoretical
optimal y/n. Table 2 shows experimental blocking factors
for matrices of dimension n = 10000 and n = 20000 with a
fixed sparsity of 10 non-zero elements per rows.

[ system order = 10000 ‘

block size 80 125 200 400 500
timing 7213s | 5264s | 4059s 3833s | 4332s

[ system order = 20000 ‘

block size 125 160 200 500 800
timing 44720s | 35967s | 30854s | 28502s | 37318s

Table 2: Blocking factor impact (sparsity= 10 elts
per row) on a Itanium2, 1.3GHz

One notices that the best experimental blocking factors
are far from the optimal theoretical ones (e.g., the best
blocking factor is 400 when n = 10 000 whereas theoretically
it should be 100). This behaviour is not surprising since the
larger the blocking factor is, the fewer sparse matrix opera-
tions and the more dense matrix operations are performed.
As we already noted earlier, operations are performed more
efficiently when they are dense rather than sparse (the cache
effect is of great importance in practice). However, as shown
in Table 2, if the block dimensions become too large, the
overall complexity of the algorithm increases and then be-
comes too important compared to Dixon’s. A function which
should give a good approximation of the best practical block-
ing factor would be based on the practical efficiency of sparse
matrix-vector product and dense matrix operations. Mini-
mizing the complexity according to this efficiency would lead
to a good candidate blocking factor. This could be done
automatically at the beginning of the lifting by checking ef-
ficiency of sparse matrix-vector and dense operation for the
given matrix.

Concluding remarks

We give a new approach to finding rational solutions to
sparse linear systems over the integers by using sparse or
structured block projections. The algorithm we exhibit works
well in practice. We demonstrate it on a collection of very
large matrices and compare it against other state-of-the art
algorithms. Its theoretical complexity is sub-cubic in terms
of bit complexity, though it rests still on a conjecture which
is not proven in the general case. We offer a rigorous treat-
ment for a small blocking factor (2) and provide some sup-
port for the general construction.

The use of a block-Krylov-like algorithm allows us to link
the problem of solving sparse integer linear systems to poly-
nomial linear algebra, where we can benefit from both theo-
retical advances in this field and from the efficiency of dense
linear algebra libraries. In particular, our experiments point
out a general efficiency issue of sparse linear algebra: in prac-
tice, are (many) sparse operations as fast as (correspond-
ingly fewer) dense operations? We have tried to show in this
paper a negative answer to this question. Therefore, our
approach to providing efficient implementations for sparse
linear algebra problems has been to reduce most of the op-



erations to dense linear algebra on a smaller scale. This work
demonstrates an initial success for this approach (for inte-
ger matrices), and it certainly emphasizes the importance
of well-designed (both theoretically and practically) sparse,
symbolic linear algebra algorithms.
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