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Introduction

A lattice path model is a combinatorial class defined by a region and
a direction set S ⊆ {0, 1,−1} × {0, 1,−1}.

eg. Q = the set of walks in the first quadrant with steps from
S = {(0, 1), (1,−1), (−1,−1)}.

An element of Q with 100 steps:

Let qS(n) be the # of walks of length n in the first quadrant. Typi-
cally

qS(n) ∼ κβnnα, κ ∈ R+, α ≤ 0.

Goal: Given model QS, find βS.

This is the exponential growth factor. We write qS ./ β.

Motivation

• In statistical mechanical applications, the exponential growth is the
limiting free energy, linked to the entropy of the system.

•Although we can estimate β with series computations, we prefer an
approach that is direct, systematic and combinatorial.

•Experimentally we see that the drift

eg. δ( ) =

is key. We would like to explain the link in detail.

History

•Full plane: Trivial, factor is always βS = |S|.

•Half plane: Drift dependent, fully explicit results based on singu-
larity analysis of Banderier and Flajolet [1].

•Quarter plane: Experimental results from series analysis are known
[2], as well as several enumerative strategies. A few sporadic cases
are solved [3].

Conjectured values of Bostan and Kauers

For 23 models with vertical drift, Bostan and Kauers found the fol-
lowing asymptotic expressions in [2].
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Table 1: Parameters for qS(n) for all non-isomorphic quarter plane classes with zero or vertical
drift.

Proving the hypotheses

1. The growth of 1/4-plane models is bounded above by 1/2-plane
models.

2. Explicit lower bounds are computed by reducing to 11 base cases
using the following lemma.

Lemma: Let d(j) be the number of Dyck prefixes of length j and
let w(i) ∼ κβiiα, where α ≤ 0, κ, β ∈ R+. Then:

w′(n) =
∑
i≥0

(
n

i

)
w(i) ./ (β + 1)n; (1)

w′′(n) =
∑
i≥0

(
n

i

)
w(i)d(n− i) ./ (β + 2)n. (2)

Figure 1: The number of ways of inserting a single step not toward any boundary is given
by Equation (1) (first mapping), and Equation (2) gives the number of ways of inserting a Dyck
prefix on a pair of steps with drift away from any boundary (second mapping).

Examples

We apply the methodology to a pair of examples. The first is a base
case.

Proposition 1: q (n) ./ 2
√

2.

1. Upper bound given by 1/2 plane model

lim
1

n
log q (n) ≤ log 2

√
2.

2. Lower bound found by counting walks returning to the origin. The
count is a product of Catalan numbers q (0, 0; 4n) = C2nCn, giving
(since Cn ./ 4)

log 2
√

2 ≤ lim
1

n
log q (n).

The second uses our lemma to import a lower bound.

Proposition 2: q (n) ./ 2(1 +
√

2).

1. Upper bound given by 1/2 plane model

lim
1

n
log q (n) ≤ log 2(1 +

√
2).

2. Lower bound found by applying Equation (2) of the Lemma to the
result of Proposition 1, giving

log 2(1 +
√

2) ≤ lim
1

n
log q (n).

Perspective

•Unified approach - reduce the amount of case analysis.

•Generalise:

1. More interesting drift: δ( ) =

2. Bigger steps

3. Higer dimensional lattices

•Understand the underlying singular behaviour of generating func-
tions for 1/4 plane models, à la [1].
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