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ABSTRACT. A very simple class of algorithms for the computation of the
Riemann-zeta function to arbitrary precision in arbitrary domains is pro-
posed. These algorithms compete with the standard methods based on Euler-
Maclaurin summation, are easier to implement and are easier to analyze.

1. Introduction

We propose some very simple algorithms for the arbitrary precision calculation
of the Riemann-zeta function which is the analytic continuation of

(1.1) ((s): = % re(s) > 1
n=1
X (_1\n+l
= _121—3) Z ( 2)3 re(s) >0

n=1

These algorithms do not compete with the Riemann-Siegel formula based algo-
rithms for computations concerning zeros on the critical line (Im(s) = 1/2) where
multiple low precision evaluations are required. (See [2,6].) They can however im-
prove on the standard algorithms for arbitrary precision computation of the zeta
function in the major symbolic algebra packages (all of Maple, Mathematica and
Pari use Euler-Maclaurin based algorithms [2,5,7]). They are easier to implement
and far easier to analyse.

2. Algorithms

We commence by presenting the algorithm in generic form and then offer two
specializations.
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ALGORITHM 1. Let p,(z) := > j_, arz”® be an arbitrary polynomial of degree
n that does not vanish at -1. Let

J

(2.1) cw=FW<§]4ﬁ%—mFD>

k=0
then
(22) C(S) _ jl — @] : + fn(S)
(1=21"")pa(-1) &5 (1+)"
where
- 1 1 (" pu(z)|logz|*~*
(2.3) €n(s) = pn(—1)(1 = 21=5) T'(s) /0 1+z de

Here T is the gamma function.

Note that the ¢; are (up to sign) just the coefficients of % which is
a polynomial of degree n — 1.

ProOF. We use the standard formulae.

_ 1 Y llogz|*—!
(2.4) ((s) = ) /0 itz dz re(s) >0
and
(2.5) (mil)s = ng) /0 z™|log z|* " dx re(s) >0

See [1,7], though both follow easily from

o} 1
(2.6) L(s) = / u*le Udy = / |log z|*~dx re(s) >0
0 0

which is just the definition of I and (1) .
We now write

o 1 1 ! pn(2)|log 2[5!
bals): = [ dz

P D=2 (s i
= 1 1 L pn(=1)|logz|*~*
_'pM—Uﬂ—2kﬂr@LA [

1 1 [ pa(=1) = pa(2) .

Pn(=1)(1 —2'7#) I(s) /0 1+zx |log 21°~ dx

The first term above gives ((s) by (2.4) and the last term expands with (2.5) to
give the series expansion in (2.2). O

The trick now is to choose p,, so that the error in the integral for £,, divided by
pn(—1) is as small as possible.

The Chebychev polynomial, shifted to [0, 1], and suitably normalized maximizes
the value p,(—1) over all polynomials of comparable supremum norm on [0,1]. So
the Chebychev polynomials are one obvious choice for p,, and give the next result.
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ALGORITHM 2. Let

k
z—l '4’

i=

then

= (=D)k(dy —dy,
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k 0

where for s = o + it with o >
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PrOOF. The formula we need for the nth Chebychev polynomial on [0,1] is

(n+k
T nz 7(%)) 4k gk

from which the expression for dj, is deduced. To estimate the error we observe that,
by Algorithm 1,

1 1 LT, (z)|log | *~*
Im(s)l = dp(1 —21-%) F(s) / 1+z dz

|

2 / |log z|*~ 1
(34 /8)" |(1—21 L(s)| 1+z

since on [0, 1], |T(z)| is bounded by 1 and |T,(—1)| > 1(3++/8)". We now compute
that

" |logz|3
/7dm§.68
o 14z

to deduce that

1.36 1
B+ V8" [(1-21=*)I(s)|"

Now for s = o + it with 0 > 1

Iy ()] <

T ornye
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So

S

1 (H?f:o(l + ﬁ))

RO [(T(0)]
(Mo + )
IC(0)]

§ (23 (sinh(trr))
= ()]

[N

M=

Since |T(0)| ! < 1.5 on [},00) we are done. O

Since (3 +1/8) = 5.828... and this is the driving term in the estimate, we see
that we require roughly (1.3)n terms for n digit accuracy, provided we are close to
the real axis.

An even simpler algorithm, though not quite as fast, can be based on taking
pn(x) == 2™(1 — )™

ALGORITHM 3. Let

e = (VY. g = 2
k=0

(where the empty sum is zero). Then

1 2n—1 e
_ J
O e & Gep T
where for s = o + it with ¢ > 0

t|m

1 (L+|t)e

< _ g
|7n(8)| — 8" |1 _ 21_3|

If —(n—1) <o <0 then

d
as) < ——2 2
871 — 21| |T(s)]

(Note that the v,(s) =0for s=-1,-2,...,—-n+1.)

The details of this are very similar to those of Algorithm 2 on using p,(z) :=
z™(1 — )" and we omit them. The fact that convergence persists into the part of
the half plane {re(s) < 0} is a consequence of the fact that

1

n(l — n

/ M“Ogﬂsfl dx
0 1+3§'

converges provided re(s) > —n. Thus Algorithm 3 gives another proof of the an-
alytic continuation of {(s)(1 — s). (Note that |e;/2"| = 1 for j = 0,...,n and
lej /2™ <1 for all j.)
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Because 1/T'(s) = 0 for s a negative integer we have that v,(s) = 0 for s =
—1,-2,...,—n + 1. However since

¢(-2n+1) = —%

the sum in Algorithm 2 computes Bernoulli numbers, for s = —1,...,—n + 1,
exactly.

In order to make comparisons some care has to be taken. For an Euler-
Maclaurin based computation, Bernoulli numbers have to be computed. If they
are then stored a second evaluation will be much faster than an initial evaluation.
Part of what makes Euler-Maclaurin unattractive for very large precision compu-
tations is that it is storage intensive and computationally expensive to compute
the Bernoulli numbers, at least by usual methods. Roughly speaking, order of n
Bernoulli numbers are required for n-digit precision and this requires in excess of
order of n? storage.

The Binomial-like coefficients of Algorithms 2 and 3 are much easier to compute
and if done sequentially require only one additional binomial coefficient per term
which computes by a single multiplication and division.

3. Optimality

Algorithms 2 and 3 are nearly optimal in the following sense. There is no
sequence of n-term exponential polynomials that can converge to {(s) on an interval
[a,b],a > 1 very much faster than those of the algorithms. Precisely we have.

THEOREM 3.1. Let 1 < a < 3 and let n be fixred. Then

n

l1¢(s) — Z (Z_gH[a,oo) > m

k=1
and
n ar .
1) = ) > (Dl 8)
k=1 "k
for any real (ay) and (b). Here D(a,[3) is a positive constant that depends only
on o and 3 and ||.|[[o, denotes the supremum norm on [a, ().

PRrROOF. The proof follows the method of [4]. Under the change of variables
s = —log(z)/ log(2) for some real (c), (di) and (eg)

n

M@—Z%Wﬂ

k=1

= Z plog(k)/log(2) _ Z arz ||3-5 3]
k=1 k=1

n n
211225 =D diat s 3
k=0 k=1

where the last inequality follows by the comparison theorem (Corollary 2 of [4]).
Now Theorem 8 of [4] gives the explicit estimate
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n n 1
30 =3 s oo > .
k=0 k=1 (C+vC?-1)

where C' := (3 + 2=(0=)/(1 — 2-(F=2)) and the result follows with the aid of
Corollary 2 of [4] again. O

Another way in which Algorithms 2 and 3 are (somewhat) near optimal is the
following. At even integers the algorithms generate rational approximations that
satisfy, for each positive integer IV,

Pn 1
C2N)-=—|| < —
I n I an
for infinitely many integers (p,), (¢») and some positive € := €(N). But results

of Mahler show that no such inequalities exist with arbitrarily large € and it is
expected that in fact € can be no greater than two. (See Chapter 11 of [3].)
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