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Abstract. The Liouville number, denoted l, is defined by

l := 0.100101011101101111100 . . . ,

where the nth bit is given by 1
2

(1 + λ(n)); here λ is the Liouville function

for the parity of prime divisors of n. Presumably the Liouville number is
transcendental, though at present, a proof is unattainable. Similarly, define

the Gaussian Liouville number by

γ := 0.110110011100100111011 . . .

where the nth bit reflects the parity of the number of rational Gaussian primes

dividing n, 1 for even and 0 for odd.
In this paper, we prove that the Gaussian Liouville number and its relatives

are transcendental. One such relative is the number
∞X

k=0

23k

23k2 + 23k + 1
= 0.101100101101100100101 . . . ,

where the nth bit is determined by the parity of the number of prime divisors

that are equivalent to 2 modulo 3.
We use methods similar to that of Dekking’s proof of the transcendence

of the Thue–Morse number [7] as well as a theorem of Mahler’s [16]. (For
completeness we provide proofs of all needed results.) This method involves

proving the transcendence of formal power series arising as generating functions

of completely multiplicative functions.

The Liouville function is the unique completely multiplicative function λ with
the property that for each prime p, λ(p) = −1. Denote the sequence of λ values by
L.

Recall that a binary sequence is simply normal if each bit occurs with asymptotic
frequency 1

2 , and normal to base 2 if each possible block of length k occurs with
asymptotic frequency 2−k.

The prime number theorem is equivalent to the simple normality of L; it is
believed that L is normal to base 2, though a proof of normality is at present
unattainable.

We can get at some properties of L, though the sequence definitions of these are
somewhat cumbersome. Define the Liouville number l as

l :=
∑
n∈N

(
1 + λ(n)

2

)
1
2n

= 0.100101001100011100001 . . . .
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The Liouville number is merely the translation of L into ones and zeroes, and then
a concatenation of the resulting sequence into a binary number. Properties of the
number l are properties of the sequence L. One noteworthy property is that l is
irrational.

Theorem 1. If l is the Liouville number, then l /∈ Q.

Proof. See proof of the general statement, Theorem 2. �

The irrationality of l tells us that the sequence L is not eventually periodic.
A fundamental question arises, which at present we are unable to answer. One
assumes that l is transcendental, though this is currently unapproachable. By con-
sidering other completely multiplicative functions like λ, we may approach similar
questions with success.

We will consider the class of functions f : N→ {−1, 1}, denoted F({−1, 1}) (this
notation was used by Granville and Soundararajan in [13]), and call such f gen-
eralized Liouville functions; this is not a particularly standard notation. Consider
the following example.

Let g be the completely multiplicative function defined on primes p by

gp =

{
−1 if p ≡ 3(mod 4)
1 otherwise.

As the function g takes the value −1 on those primes which are rational Gaussian
primes, we call g the Gaussian Liouville function. Denote by G the sequence of
values of g and define

γ :=
∑
n∈N

(
1 + gn

2

)
1
2n

as the Gaussian Liouville number. One can show that gn = (−1/n) where (·/n) is
the Jacobi symbol modulo n. The Gaussian Liouville number is easily seen to be
irrational. Indeed, it is a corollary to the following generalization of Theorem 1.

Theorem 2. Suppose that f : N→ {−1, 1} is a completely multiplicative function,
with f(p) = −1 for at least one prime p, and F it’s sequence of values. If ϕ :=∑
n∈N

(
1+f(n)

2

)
1
2n , then ϕ /∈ Q.

Proof. Towards a contradiction, suppose that ϕ ∈ Q. Thus F is eventually periodic,
say the sequence is periodic after the M–th term and has period k. Now there is
an N ∈ N such that for all n ≥ N , we have nk > M . Let p be a prime for which
f(p) = −1. Then

f(pnk) = f(p)f(nk) = −f(nk).
But pnk ≡ nk(mod k), a contradiction to the eventual k–periodicity of F. Hence
ϕ /∈ Q. �

Though the transcendence of the Liouville number is unattainable, it is possible
to establish the transcendence of the Gaussian Liouville number and many of its
reatives. The proof of this result is contained in Section 2, and rests on the fact
that the generating function of the sequence G satisfies a useful functional equation
(see Lemma 2). This functional equation leads to a striking power series represen-
tation of the functional equation, which is of interest (an example of such a series
representation is given in Section 1), and may lead to a quick transcendence result.
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As an example of the usefulness of such a representation, we prove in Section 2
that the generating function G(z) of the Gaussian Liouville sequence is

G(z) =
∞∑
k=0

z2k

1 + z2k+1 .

Noting that γ = G(1/2), a quick transcendence result may be gained after some
rearrangement and application the following theorem of Duverney [8].

Theorem 3 (Duverney, 2001). Let a ∈ N\{0, 1} and let bn be a sequence of rational
integers satisfying |bn| = O(η−2n

) for every η ∈ (0, 1). Suppose that a2n

+ bn 6= 0
for every n ∈ N. Then the number

S =
∞∑
n=0

1
a2n + bn

is transcendental.

Though Duverney’s theorem is very easy to apply1, it does not readily generalize
enough for our purposes. With the goal of developing more general methods, we
prove the transcendence of the Gaussian Liouville number without the application
of this theorem.

An ingredient is the proof of the transcendence of the generating function of
the sequence G. While this may be proven from results found with difficultly in
the literature (see Fatou [11]), for completeness and ease of reading, we offer a
direct and elementary proof of this. In fact, one can prove transcendence of various
functions using the following beautiful result.

Theorem 4 (Fatou, 1906). A power series whose coefficients take only finitely
many values is either rational or transcendental.

There is a recent proof of this by Allouche [1]; see also Borwein and Coons [3]
and Borwein, Erdélyi and Littmann [4].

The method used in our proof can be used to prove more general results regarding
other completely multiplicative functions. Section 3 contains these results (for an
account of the properties of these functions see [2]).

A few historical remarks are in order. The irrationality of the values of power
series similar to those of our investigation have been studied by, among others,
Erdős, Golomb, Mahler, and Schwarz. Erdős [10] proved that the series

∞∑
n=1

zn

1− zn
=
∞∑
n=1

d(n)zn,

where d(n) is the divisor counting function, gives irrational values at z = 1
t for

t = 2, 3, 4, . . ., and Allouche [1] has shown this function to be transcendental, but
all values are still open, for example z = 1

2 presumably gives a transcendental value.
Indeed Erdős writes [9],

“It is very annoying that I cannot prove that
∑∞
n=1

1
2n−3 and∑∞

n=2
1

n!−1 are both irrational (one of course expects that
∑∞
n=1

1
2n+t

and
∑∞
n=2

1
n!+t are irrational and in fact transcendental for every

integer t.)”

1In Duverney’s theorem, we need only set a = 2, bn = 2−2n
, and let η ∈ (0, 1). Then for all

n ∈ N, η < 2 implies that |bn| = 2−2n
< η−2n

= O(η−2n
).
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Partially answering Erdős’ question, Borwein [5] has shown that for q ∈ Z with
|q| > 1 and c ∈ Q with c 6= 0 and c 6= −qn (n ∈ N),

∞∑
n=1

1
qn + c

and
∞∑
n=1

(−1)n

qn + c

are irrational; the special values c = −1 and q = 2 give that the sum of the
reciprocals of the Mersenne numbers is irrational. Later, Golomb proved in [12]
that the values of the functions

∞∑
n=0

z2n

1 + z2n and
∞∑
n=0

z2n

1− z2n

are irrational at z = 1
t for t = 2, 3, 4, . . . , the interesting special case of which is

that the sum of the inverse of the Fermat numbers is irrational; transcendence of
the sum of the inverse of the Fermat numbers is implied by Duverney’s theorem.
Schwarz [19] has given results on series of the form

∞∑
n=0

zk
n

1− zkn .

In particular, he showed that this function is transcendental at certain rational
values of z when k ≥ 2 is an integer. We take these results further and prove that
for a completely multiplicative function f , with recursive relations fp = ±1 and
fpk+i = fi for i = 1, 2, . . . , p− 1, the series

∞∑
k=0

f(n)zn =
∞∑
k=0

fkpΦ(z)
1− zpk+1 ,

with Φ(z) =
∑p−1
i=1 fiz

pki, is transcendental (see Theorem 9 and Proposition 3); it
is interesting to note that when fi = (i/p) for p - i is the Legendre symbol, the
polynomial Φ(z) is the pth degree Fekete polynomial. Patterns in the sequence of
values of such f have been studied by Hudson [14, 15].

Mahler’s results are too numerous to mention, and it seems likely that at least
some of the historical results mentioned here were known to him as early as the
1920s (see [17]). Mahler was one of the first to consider the links between functional
equations and transcendence. The book [18] serves as a testimonial to this.

The methods used in this investigation were inspired by Michel Dekking’s proof
of the transcendence of the Thue–Morse number [7], which is based on a method
of Cobham [6].

1. The Liouville function for primes 2 modulo 3

As a striking example of a power series representation of a generating function
consider the completely multiplicative function tn where

t3 = 1 and tp =

{
−1 if p ≡ 2(mod 3)
1 if p ≡ 1(mod 3).

We have the relations

t3n = tn, t3n+1 = 1, and t3n+2 = −1.
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Denote the generating function of (tn)n∈N as T (z) =
∑∞
n=1 tnz

n. Then

T (z) =
∞∑
n=1

t3nz
3n +

∞∑
n=0

t3n+1z
3n+1 +

∞∑
n=0

t3n+2z
3n+2 = T (z3) + (z − z2)

1
1− z3

,

which gives the following result.

Lemma 1. If T (z) =
∑
n tnz

n, then

T (z3) = T (z)− z

1 + z + z2
.

Using this lemma we have

T (z3m

) = T (z)−
m−1∑
k=0

z3k

1 + z3k + z3k2
.

Denote the sum by Um(z); that is,

Um(z) =
m−1∑
k=0

z3k

1 + z3k + z3k2
.

If |z| < 1, taking the limit as m→∞, gives the desired series expression.

Proposition 1. If |z| < 1, then the generating function of (tn)n∈N has the closed
form

T (z) =
∞∑
k=0

z3k

1 + z3k + z3k2
.

Application of the general results proved in Section 3 gives the following result.

Theorem 5. The function T (z) is transcendental; furthermore, T (α) is transcen-
dental for all nonzero algebraic numbers α with |α| < 1.

2. The Gaussian Liouville Function

As before, the Gaussian Liouville function g is the completely multiplicative
function defined on the primes by

gp =

{
−1 if p ≡ 3(mod 4)
1 otherwise.

Also, denote by G the sequence of values of g, and by

γ :=
∑
n∈N

(
1 + gn

2

)
1
2n

the Gaussian Liouville number.
The first few values of g are

G = (1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1, 1,−1,−1, 1, 1, 1,−1, 1, 1,−1, . . .).

Elementary observations tell us that the occurrence of primes that are 3 modulo
4 in prime factorizations are fairly predictable. One has the following implications:

n ≡ 1(mod 4) ⇒ gn = 1

n ≡ 3(mod 4) ⇒ gn = −1

n ≡ 0(mod 2) ⇒ g2n = gn,
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which give the recurrence relations for the sequence G as

(1) g1 = 1, g2n = gn, g4k+1 = −g4k+3.

This is not so surprising recalling that gn = (−1/n) where (·/n) is the Jacobi
symbol modulo n.

Let G(z) =
∑∞
n=1 gnz

n be the generating function for the sequence G. Note that
G(z) is holomorphic inside the unit disk. The recurrence relations in (1) lead to a
functional equation for G(z).

Lemma 2. If G(z) =
∑
n gnz

n, then

G(z2) = G(z)− z

1 + z2
.

Proof. This is directly given by the recurrences for G. We calculate that

G(z) =
∑
n

gnz
n =

∑
n

g2nz
2n +

∑
n

g4n+1z
4n+1 +

∑
n

g4n+3z
4n+3

=
∑
n

gnz
2n + z

∑
n

g4n+1z
4n + z3

∑
n

g4n+3z
4n

=
∑
n

gnz
2n + z

∑
n

g4n+1z
4n − z3

∑
n

g4n+1z
4n

= G(z2) + (z − z3)
∑
n

z4n

= G(z2) +
z − z3

1− z4
.

A little arithmetic and rearrangement gives the desired result. �

Using the functional equation from Lemma 2, we have

G(z2m

) = G(z)−
m−1∑
k=0

z2k

1 + z2k+1 .

Denote the sum by Wm(z); that is,

Wm(z) =
m−1∑
k=0

z2k

1 + z2k+1 ,

so that

(2) G(z2m

) = G(z)−Wm(z).

Proposition 2. If |z| < 1, then the generating function of G has the closed form

G(z) =
∞∑
k=0

z2k

1 + z2k+1 .

Proof. Take the limit as m→∞ in relation (2). �

Note that

γ = G

(
1
2

)
= lim
m→∞

[
G(2−2m

) +Wm

(
1
2

)]
=
∞∑
k=0

1
22k + 2−2k .
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2.1. Transcendence of G(z).

Theorem 6. The function G(z) is transcendental.

Proof. Towards a contradiction, suppose that G(z) is algebraic in C[z]; that is,
there is an n ≥ 1 and rational functions q0(z), q1(z), . . . , qn−1(z) such that

G(z)n + qn−1(z)G(z)n−1 + · · ·+ q0(z) = 0 (|z| < 1).

Choose n minimally. By the functional equation of Lemma 2 we obtain
n∑
k=0

qk(z2)
[
G(z)− z

1 + z2

]k
= 0 (|z| < 1),

so that for |z| < 1

P (z) : =
n∑
k=0

qk(z2)[(1 + z2)G(z)− z]k[1 + z2]n−k

=
n∑
k=0

qk(z2)[1 + z2]n−k
k∑
j=0

(
k

j

)
(1 + z2)jG(z)j(−z)k−j = 0.

Thus

(3) Q(z) := qn(z)P (z)− (1 + z2)nqn(z2)
n∑
k=0

qk(z)G(z)k = 0.

Inspection of Q(z) gives the k = n term as

qn(z)qn(z2)

 n∑
j=0

(
n

j

)
(1 + z2)jG(z)j(−z)n−j − (1 + z2)nG(z)n

 .

The coefficient of Gn(x) is given when we set j = n in the proceeding line, and is

qn(z)qn(z2)
((

n

n

)
(1 + z2)nG(z)n(−z)n−n − (1 + z2)nG(z)n

)
= 0.

Hence (3) defines polynomials h1(z), . . . , hn−1(z) such that

Q(z) =
n−1∑
k=0

hk(z)G(z)k = 0.

The minimality of n implies that hk(z) = 0 for k = 0, . . . , n− 1.
Let us now determine hk(z) using the definition of Q(z) from (3). We have

Q(z) =
n−1∑
k=0

hk(z)G(z)k

=
n∑
k=0

{
k∑
j=0

(
k

j

)
qn(z)qk(z2)(1 + z2)n−k+jG(z)j(−z)k−j

− (1 + z2)nqn(z2)qk(z)G(z)k.

}
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From here we can read off the coefficient of G(z)m as

hm(z) =
n∑

k=m

(
k

m

)
qk(z2)(1 + z2)n−k+m(−z)k−m − (1 + z2)nqm(z),

recalling that qn(z) = 1. Since hn−1(z) = 0,
n∑

k=n−1

(
k

n− 1

)
qk(z2)(1 + z2)n−k+n−1(−z)k−(n−1) = (1 + z2)nqn−1(z),

which leads to

qn−1(z2)(1 + z2)n − nz(1 + z2)n−1 = (1 + z2)nqn−1(z),

so that we may focus on the equation

(1 + z2)qn−1(z2)− nz = (1 + z2)qn−1(z).

Write qn−1(z) = a(z)
b(z) , where a(z) and b(z) are polynomials with no common factors.

Substituting and clearing denominators, we gain

(4) (1 + z2)a(z2)b(z)− nzb(z)b(z2) = (1 + z2)a(z)b(z2).

Using simple divisibility rules, (4) gives the following two conditions:

(i)
b(z)
G(x)

∣∣∣∣ (1 + z2)
b(z2)
G(x)

and (ii)
b(z2)
G(x)

∣∣∣∣ (1 + z2)
b(z)
G(x)

,

where G(x) = gcd(b(z), b(z2)). Recall that (1 + z2) = (1 + iz)(1− iz).
A side note on determining properties of b(z): condition (ii) indicates the de-

gree relationship, 2 deg b(z) ≤ 2 + deg b(z), and equation (4) implies that (z2 +
1)|b(z)b(z2) which gives 2 ≤ 3 deg b(z). Together this yields a degree condition on
b(z) of 1 ≤ deg b(z) ≤ 2, since the degree must be a positive integer. In light of
conditions (i) and (ii), we have deg b(z) = 2.

Now conditions (i) and (ii) imply that either

(5) (1 + iz) |b(z) and (1− iz)
∣∣b(z2),

or

(6) (1− iz) |b(z) and (1 + iz)
∣∣b(z2).

Given the above conditions, we have two options for b(z):

condition (5) =⇒ b(z) = (z + 1)(z − i),
or

condition (6) =⇒ b(z) = (z + 1)(z + i).
Let us assume that condition (5) holds, that b(z) = (z + 1)(z − i). Then (4)

becomes

(1+z2)(z+1)(z−i)a(z2)−nz(z+1)(z−i)(z2+1)(z2−i) = (1+z2)(z2+1)(z2−i)a(z).

Removing common factors, the last equation becomes

(7) (z + 1)a(z2)− nz(z + 1)(z2 − i) = (z + i)(z2 − i)a(z).

Equation (7) implies that (z + 1)|a(z), and so (z2 + 1)|a(z2). Thus there exist
k(z), l(z) such that

a(z) = k(z)(z + 1) and a(z2) = l(z)(z2 + 1) = l(z)(z + i)(z − i).
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Equation (7) becomes

(z + 1)l(z)(z + i)(z − i)− nz(z + 1)(z2 − i) = (z + i)(z2 − i)k(z)(z + 1),

implying that
(z + i)|nz(z + 1)(z2 − 1),

which is not possible. Hence it must be the case that b(z) 6= (z + 1)(z − i), and so
condition (5) is not possible.

It must now be the case that condition (6) holds, that b(z) = (z + 1)(z + i).
Then (4) becomes

(1+z2)(z+1)(z+i)a(z2)−nz(z+1)(z+i)(z2+1)(z2+i) = (1+z2)(z2+1)(z2+i)a(z).

Removal of common factors yields

(8) (z + 1)a(z2)− nz(z + 1)(z2 + i) = (z − i)(z2 + i)a(z).

Similar to the previous case, (8) implies that (z + 1)|a(z), and so (z2 + 1)|a(z2).
Thus there exist k(z), l(z) such that

a(z) = k(z)(z + 1) and a(z2) = l(z)(z2 + 1) = l(z)(z + i)(z − i).
Equation (8) becomes

(z + 1)l(z)(z + i)(z − i)− nz(z + 1)(z2 + i) = (z − i)(z2 + i)k(z)(z + 1),

implying that
(z + i)|nz(z + 1)(z2 + i),

which is impossible. Since one of conditions (5) or (6) must hold, we arrive at our
final contradiction, and the theorem is proved. �

2.2. Transcendence of the Gaussian Liouville number γ. We proceed to
show that γ is transcendental. We use a theorem of Mahler [16], as taken from
Nishioka’s book [18]. For the sake of completeness the proof of Mahler’s theorem,
taken again from [18], is given (both the statement of Theorem 7 and its proof are
taken verbatim from Nishioka’s book). Here I is the set of algebraic integers over
Q, K is an algebraic number field, IK = K ∩ I, and f(z) ∈ K[[z]] with radius of
convergence R > 0 satisfying the functional equation for an integer d > 1,

f(zd) =
∑m
i=0 ai(z)f(z)i∑m
i=0 bi(z)f(z)i

, m < d, ai(z), bi(z) ∈ IK [z],

and ∆(z) := Res(A,B) is the resultant of A(u) =
∑m
i=0 ai(z)u

i and B(u) =∑m
i=0 bi(z)u

i as polynomials in u. Also,

|α| := max{|ασ| : σ ∈ Aut(Q/Q)} and den(α) := min{d ∈ Z : d > 0, dα ∈ I}.

Theorem 7 (Mahler, [16]). Assume that f(z) is not algebraic over K(z). If α is
an algebraic number with 0 < |α| < min{1, R} and ∆(αd

k

) 6= 0 (k ≥ 0), then f(α)
is transcendental.

Proof. Suppose that f(α) is algebraic. We may assume α, f(α) ∈ K. Let n be
a positive integer. Then there are n + 1 polynomials P0, P1, . . . , Pn ∈ IK [z] with
degrees at most n such that the auxiliary function

En(z) =
n∑
j=0

Pj(z)f(z)j =
∞∑
h=0

bhz
h
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is not identically zero and all the coefficients bh, with h < n2, vanish. Since f(z) is
not algebraic over K(z), En(z) is not identically zero. Let H be the least integer
such that bH 6= 0. Then H > n2. Since

lim
z→0

En(z)z−H = bH ,

we have for any k ≥ c1(n),

(9) 0 6= |En(αd
k

)| ≤ c2(n)|α|d
kH ≤ c2|α|d

kn2
.

There are polynomials S(z, u), T (z, u) ∈ IK [z, u] such that

∆(z) = S(z, u)
m∑
i=0

ai(z)ui + T (z, u)
m∑
i=0

bi(z)ui.

Hence

∆(α) = S(α, f(α))
m∑
i=0

ai(α)f(α)i + T (α, f(α))
m∑
i=0

bi(α)f(α)i.

Suppose that
∑m
i=0 bi(α)f(α)i = 0. Since(

m∑
i=0

bi(α)f(α)i
)
f(αd) =

m∑
i=0

ai(α)f(α)i,

we get
∑m
i=0 ai(α)f(α)i = 0 and so ∆(α) = 0. This contradicts the assumption.

Therefore
∑m
i=0 bi(α)f(α)i 6= 0 and f(αd) ∈ K. Proceeding in this way, we see that

f(αd
k

) ∈ K and therefore En(αd
k

) ∈ K (k ≥ 0). Define Yk (k ≥ 0) inductively as
follows,

Y1 =
m∑
i=0

bi(α)f(α)i,

Yk+1 = Y mk

m∑
i=0

bi(αd
k

)f(αd
k

)i, k ≥ 1.

Then Yk ∈ K and Yk 6= 0 (k ≥ 0). We estimate |Y nk En(αdk)| and den(Y nk En(αd
k

)).
Let degz(b)i(z) ≤ l, |α|, |f(α)| ≤ c3 (c3 > 1) and D a positive integer such that
Dα,Df(α) ∈ I. Then we have

|Y1| =

∣∣∣∣∣
m∑
i=0

bi(α)f(α)i
∣∣∣∣∣ =

m∑
i=0

|bi(α)| |f(α)|
i
≤ c4cl3cm3 ,

|Y1f(αd)| =

∣∣∣∣∣
m∑
i=0

ai(α)f(α)i
∣∣∣∣∣ =

m∑
i=0

|ai(α)| |f(α)|
i
≤ c4cl3cm3

and
Dl+mY1, D

l+mY1f(αd) ∈ I.

Since Y2 = Y m1
∑m
i=0 bi(α

d)f(αd)i and Y2f(αd
k

) = Y m1
∑m
i=0 ai(α

d)f(αd)i, we have

|Y2|, |Y2f(αd2)| ≤ (c4cdl3 )(c4cl+m3 )m

and
Ddl(Dl+m)mY2, D

dl(Dl+m)mY2f(αd
2
) ∈ I.
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Proceeding in this way, we obtain

|Yk|, |Ykf(αdk)| ≤ c1+m+···+mk−1

4 (cl3)d
k−1+dk−2m+···+mk−1

cm
k

3

and

(Dl)d
k−1+dk−2m+···+mk−1

Dmk

Yk ∈ I,

(Dl)d
k−1+dk−2m+···+mk−1

Dmk

Ykf(αd
k

) ∈ I.

By the assumption m < d, we have

dk−1 + dk−2m+ · · ·+mk−1 = dk−1

(
1 +

m

d
+ · · ·+

(m
d

)k−1
)
≤ c5dk−1,

where we take a positive integer as c5. Hence

|Yk|, |Ykf(αdk)| ≤ cc5d
k−1

4 (cl3)c5d
k−1

cd
k

3 ≤ cd
k

6

and
Ddk

0 Yk, D
dk

0 Ykf(αd
k

) ∈ I, D0 = Dlc5+1.

Since

Y nk En(αd
k

) =
n∑
j=0

Pj(αd
k

)Y n−jk

(
Ykf(αd

k

)
)j
,

we obtain

(10) |Y nk En(αdk)| ≤ c7(n)cd
kn

3 cd
kn

6 , D2dk

0 Y nk En(αd
k

) ∈ I.

By (9), (10) and the fundamental inequality,

dkn log c6 + log c2(n) + dkn2 log |α| ≥ log |Y nk En(αd
k

)|

≥ −2[K : Q](log c7(n) + dkn log c3c6 + 2dkn logD0),

for k > c1(n). Dividing both sides above by dk and letting k tend to infinity, we
have

n log c6 + n2 log |α| ≥ −2[K : Q](n log c3c6 + 2n logD0).
Dividing both sides above by n2 and letting n tend to infinity, we have log |α| ≥ 0,
a contradiction. �

Lemma 2, Theorem 6, and Theorem 7 give our next theorem.

Theorem 8. The Gaussian Liouville number

γ = G

(
1
2

)
=
∞∑
k=0

1
22k + 2−2k

is transcendental.

Proof. Lemma 2 gives the functional equation

G(z2) =
(1 + z2)G(z)− z

1 + z2
,

so that, in the language of Theorem 7, we have

A(u) = (1 + z2)u− z and B(u) = 1 + z2,

m = 1 < 2 = d, and ai(z), bi(z) ∈ IK [z]. Since B(u) is a constant polynomial in u,

∆(z) := Res(A,B) = 1 + z2.
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Set α = 1
2 ; it is immediate that α = 1

2 is algebraic, 0 < |α| = 1
2 < min{1, R}

(R = 1), and

∆(α2k

) = ∆(2−2k

) = 1 + 2−2k+1
6= 0 (k ≥ 0).

Since G(z) is not algebraic over C[z] (as supplied by Theorem 6), applying Theorem
7, we have that γ is transcendental. �

3. Transcendence related to character–like functions

A character–like function f associated to p is a completely multiplicative function
from N to {−1, 1} defined by f1 = 1, fp = ±1 (your choice), and fkp+i = fi. As an
example, the completely multiplicative function defined by

fn =

{
±1 if n = p(
n
p

)
if p - n,

where
(
n
p

)
is the Legendre symbol modulo p, is a character–like function.

If we let f be a character–like function associated to p, then for F (z) =
∑
n fnz

n

the generating function of the sequence F := (fn) we have a lemma similar to the
previous sections.

Lemma 3. The generating function F (z) of the sequence F satisfies the functional
equation

F (z) = fpF (zp) +
Φ(z)

1− zp
,

where Φ(z) =
∑p−1
i=1 fiz

i.

Proof. We have

F (z) =
∞∑
k=0

p−1∑
i=1

fpk+iz
pk+i +

∞∑
k=1

fpkz
pk

=
p−1∑
i=1

fiz
i
∞∑
k=0

zpk + fp

∞∑
k=1

fkz
pk

=
∑p−1
i=1 fiz

i

1− zp
+ fpF (zp). �

Theorem 9. The function F (z) is transcendental.

Proof. We proceed as in the proof of Theorem 6. Towards a contradiction, suppose
that F (z) is algebraic in C[z]; that is, there is an n ≥ 1 and rational functions
q0(z), q1(z), . . . , qn−1(z) such that

F (z)n + qn−1(z)F (z)n−1 + · · ·+ q0(z) = 0 (|z| < 1).

Choose n minimally. The functional equation for F (z) gives

n∑
k=0

qk(z2)
[
fpF (z) + fp

Φ(z)
zp − 1

]k
= 0 (|z| < 1),
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where as before Φ(z) =
∑p−1
i=1 fiz

i. For |z| < 1, we have

P (z) : =
n∑
k=0

qk(zp)fkp [(zp − 1)F (z) + Φ(z)]k[1− zp]n−k

=
n∑
k=0

qk(zp)fkp [zp − 1]n−k
k∑
j=0

(
k

j

)
(zp − 1)jF (z)j(Φ(z))k−j = 0.

Thus

(11) Q(z) := qn(z)P (z)− fnp (zp − 1)nqn(zp)
n∑
k=0

qk(z)F (z)k = 0.

Inspection of Q(z) gives the k = n term as

qn(z)qn(zp)fnp

 n∑
j=0

(
n

j

)
(zp − 1)jF (z)j(Φ(z))n−j − (zp − 1)nF (z)n

 .

The coefficient of Fn(x) is given setting j = n in the proceeding line, and is

qn(z)qn(zp)fnp

((
n

n

)
(zp − 1)nF (z)n(Φ(z))n−n − (zp − 1)nF (z)n

)
= 0.

Hence (11) defines polynomials h1(z), . . . , hn−1(z) such that

Q(z) =
n−1∑
k=0

hk(z)F (z)k = 0.

The minimality of n gives that hk(z) = 0 for k = 0, . . . , n− 1.
Let us now determine hk(z) using the definition of Q(z) from (11). We have

Q(z) =
n−1∑
k=0

hk(z)F (z)k

=
n∑
k=0

{
k∑
j=0

(
k

j

)
qn(z)qk(zp)fkp (zp − 1)n−k+jF (z)j(Φ(z))k−j

− fnp (zp − 1)nqn(zp)qk(z)F (z)k.

}
From here we can read off the coefficient of F (z)m as

hm(z) =
n∑

k=m

(
k

m

)
qk(zp)fkp (zp − 1)n−k+m(Φ(z))k−m − fnp (zp − 1)nqm(z),

recalling that qn(z) = 1.
Since hn−1(z) = 0, we have
n∑

k=n−1

(
k

n− 1

)
qk(zp)fkp (zp − 1)n−k+n−1(Φ(z))k−(n−1) = fnp (zp − 1)nqn−1(z),

which yields

qn−1(zp)fn−1
p (zp − 1)n + nfnp Φ(z)(zp − 1)n−1 = fnp (zp − 1)nqn−1(z),
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so that we may focus on the equation

fp(zp − 1)qn−1(zp) + nΦ(z) = (zp − 1)qn−1(z).

Write qn−1(z) = a(z)
b(z) , where a(z) and b(z) are polynomials with no common

factors. Substituting and clearing denominators, we gain

(12) fp(zp − 1)a(zp)b(z) + nΦ(z)b(z)b(zp) = (zp − 1)a(z)b(zp).

Again, using divisibility rules, (4) gives the following two conditions:

(i) b(z)| (zp − 1)b(zp) and (ii) b(zp)| (zp − 1)b(z).

Condition (ii) indicates the degree relationship, that p deg b(z) ≤ p + deg b(z),
which gives (since p > 2)

deg b(z) ≤ p

p− 1
< 2.

We have two choices, either deg b(z) = 0 or deg b(z) = 1.
If deg b(z) = 0, then b(z) ∈ C, say b(z) = b (which also gives b(z2) = b). Equation

(12) becomes
fp(zp − 1)a(zp)b+ nΦ(z)b2 = (zp − 1)a(z)b.

This equation gives (zp− 1)|Φ(z) which implies that deg Φ(z) ≥ p, an impossibility
since the definition of Φ(z) gives deg Φ(z) = p − 1. Thus it must be the case that
deg b(z) = 1.

If deg b(z) = 1, then b(z) = z − β (the constant can be given to a(z)). In this
case, (12) becomes

(13) fp(zp − 1)a(zp)(z − β) + nΦ(z)(z − β)(zp − β) = (zp − 1)a(z)(zp − β).

Since gcd(a(z), b(z)) = 1, equation (13) gives that

(zp − β)|(zp − 1)(z − β).

This implies that β = 1. Thus (13) becomes

fp(zp − 1)a(zp)(z − 1) + nΦ(z)(z − 1)(zp − 1) = a(z)(zp − 1)2.

With repeated factors deleted this is

fpa(zp)(z − 1)− nΦ(z)(z − 1) = a(z)(zp − 1);

that is,

(14) (z − 1)(fpa(zp) + nΦ(z)) = a(z)(zp − 1).

Comparing the degrees of each side gives

p deg a(z) + 1 = deg a(z) + p,

so that deg a(z) = 1. Write a(z) = δ(z − α). Substituting this into (14) yields

(z − 1)(fpδ(zp − α) + nΦ(z)) = δ(z − α)(zp − 1).

Since deg Φ(z) = p − 1 comparing lead coefficients gives fpδ = δ, so that fp = 1.
(In the case that fp is defined as −1 this gives a contradiction.)

Removing the (z − 1) factor gives

(15) δ(zp − α) + nΦ(z) = δ(z − α)
p−1∑
m=0

zm.
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Note that the right–hand side and left–hand side of (15) are equal as polynomials;
that is, term by term. If we expand out (15) we have

δzp + n

p−1∑
m=1

fmz
m − δα = δzp − δ(1 + α)

p−1∑
m=1

zm − δα.

Hence for every m = 1, 2, . . . , p− 1, we have that

(16) nfm = −δ(1 + α),

and specifically when m = 1 this tells us that n = −δ(1 + α) since f1 = 1. Thus
(16), with the substitution n = −δ(1+α), gives fm = 1 for each m = 1, 2, . . . , p−1.
This is impossible for an odd prime p, and the theorem is proven. �

Using the functional equation, we yield

F (zp) = fpF (z)− fp
Φ(z)

1− zp
.

We can build a series for the number as before. The functional equation gives

F (zp
m

) = fpF (zp
m−1

)− fp
Φ(zp

m−1
)

1− zpm

= f2
pF (zp

m−2
)− f2

p

Φ(zp
m−2

)
1− zpm−1 − fp

Φ(zp
m−1

)
1− zpm

= fmp F (z)−
m∑
k=1

fkp
Φ(zp

m−k

)
1− zpm−k+1 ,

which when rearranged leads to

F (z) = fmp F (zp
m

) +
m∑
k=1

fm−kp

Φ(zp
m−k

)
1− zpm−k+1 .

We change the index and set

Vm(z) :=
m−1∑
k=0

fkp
Φ(zp

k

)
1− zpk+1

to give
F (z) = fmp F (zp

m

) + Vm(z).

Proposition 3. If |z| < 1, then the generating function has the closed form

F (z) =
∞∑
k=0

fkp
Φ(zp

k

)
1− zpk+1 .

Proof. Take the limit as m→∞ in the equation F (z) = fmp F (zp
m

) + Vm(z). �

At z = 1/2 we have

F

(
1
2

)
= lim
m→∞

[
fmp F (2−p

m

) + Vm

(
1
2

)]
=
∞∑
k=0

fkpΦ(2−p
k

)
1− 2−pk+1 .

Theorem 10. For each odd prime p, the number ϕp := F
(

1
2

)
is transcendental.
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Proof. Lemma 3 gives

F (zp) =
fp(1− zp)F (z)− fpΦ(z)

1− zp
,

where Φ(z) =
∑p−1
i=1 fiz

i. Similar to the specific case of the previous section, using
the language of Mahler’s theorem, we have

A(u) = fp(1− zp)u− fpΦ(z) and B(u) = 1− zp,
m = 1 < p = d, and ai(z), bi(z) ∈ IC[z]. Again, B(u) is a constant polynomial in
u, so that

∆(z) := Res(A,B) = 1− zp.
Set α = 1

2 ; α = 1
2 is algebraic, 0 < |α| = 1

2 < min{1, R} (R = 1), and

∆(αp
k

) = ∆(2−p
k

) = 1− 2−p
k+1
6= 0 (k ≥ 0).

Theorem 9 gives that F (z) is not algebraic over C[z] and we may apply Theorem 7
to give the desired result. �

Remark 1. Mahler’s theorem tells us that the values of the functions G(z) and
F (z) are transcendental for any algebraic value of z within their radii of convergence.
The special value of z = 1

2 is focused on only for its relation to the sequences G
and F.
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