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Abstract

We prove that the series
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are irrational and not Liouville whenever ¢ is an integer (¢ + 0, 1) and r is a non-
zero rational (r & —q™).

1. Introduction
In 1948, Erdos|5] proved the irrationality of the series
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{here d(n) is the divisor function) and some years later Erdos and Graham|7]
speculated on the irrationality of 27, (1/(2”—3)). The author resolved this in [2] by
proving X*_, (1/(g" +7)) irrational for ¢ a positive integer (= 2) and r a non-zero
rational. The proof is a moderately complicated application of Padé approximation
methods. (See also [3].) It relies on detailed considerations of the Padé approximants
in x to
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This approach has been widely exploited and many, maybe most, irrationality proofs
and estimates depend in one way or another on Padé approximants. See for example
Chudnovsky and Chudnovsky [4], Mahler[9], Matala-Aho[10] and Walliser[11]. A
further discussion of irrationality results for certain series is to be found in Erdos[6].

Our main results, Theorem 1 and Theorem 2, show that, for ¢ an integer and r a
non-zero rational, the following series are irrational:
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{provided that the series converge, so ¢ + 0, +1,r + —¢™). Theorem 1 extends the
main theorem of [2] where we only handle the case when ¢ > 0, and Theorem 2 is new.
The proofs are both simpler and much more self-contained, needing only some
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elementary complex analysis. The proofs in both cases rely on conjuring up the right
contour integrals from which the results then naturally flow. While it is not logically
necessary to sce where these integrals come from, they are suggested by orthogonality
considerations [8].

2. g-trrationalities
QOur first theorem is

TuEOREM 1. Let q be an integer with lg| > 1 and let ¢ be a non-zero rational number.

Then
© 1
n=1 qn + ¢

is vrrational. (We assume that ¢ + —q" for all n.)
The proof proceeds by considering the following contour integral:
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Note that the integrand is meromorphic in ¢ provided |g| > 1. We derive a number of
lemmas. The first shows why we expect F, to be an approximation to
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Lemyma 1. Suppose that |q| > 1 and |c| > 1/lq|. Then
n—1
n H (l—ch-Hn) © i m 1
Fg) = % & (z =5 )
" m=1 (1—gk—™ poy L—cq" o 1—cq"
k=1
k+m

1 dnfz n—1 t—qu _1 o 1
* (n'_2)! dtn2[k1;[1 (1 _qk t) (1 _q" t) hzzll t’—cqh]t—o

Proof. This is just the residue theorem. Note that the integrand in (1) has inside
the circle {|t| = 1} simple poles at t = ¢ 1, ¢ 2, ..., ¢ " These give risc to the first terms
above, on noting that

1 &1
_('q q" 11_th h=11_cqh.
The only other pole in || < 1 is a pole of order n—1 at ¢t = 0 which accounts for the
last term.
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From (2) we see that, for rational ¢ and g, the irrationality of
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is equivalent to the irrationality of
1
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So by replacing ¢ by ¢¢™ we may assume |¢| > 2 (whenever |g| > 1). This we now do
throughout the remainder of the paper.
The denominator polynomials p,(c,¢) have the following explicit form.

LEMMA 2.
n—1
" H (l_chﬂn) -
Pl q)= 3 £} = 21(—c>’“q’“’“3“2["_1] ["’Lk_l]
m=1 H (1_qk—m) k=0 k q n_l q
k=1
k+m

s a polynomial in ¢ and q with integer coefficients and of degree n—1 in c.

Proof. That p,, is a polynomial of degree n—1 in ¢ is obvious. The integrality in ¢
follows from the second identity whose proofs relies on the Cauchy binomial theorem
(we do not actually need this for the proof of irrationality, but with it we have better
irrationality bounds). Here we have used the notation for the ¢-binomial coefficient

n

[n] — i=ngn+1 (=0
e =g

The Cauchy binomial theorem then asserts that

n n n
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(See [1, p. 76]) 1
Lemma 3 (Integrality of the form).

n

(=2 TI (1—cq®) 11 (1—¢")F.(q)

k=1 k=[n/2]
n n o
=(n—2)!(H(1—cq") Il (l—q")pn(c,q))Zl_ 7t 8a(C,9)
k=1 k=[n/2] h=1

where s,(c,q) is a polynomial in ¢ and q, with integer coefficients, of degree at most 2n
in c.

Proof. This follows easily from Lemma 1. One must consider evaluating the last
term by repeated applications of the chain rule, and then one notes that

dmfl o« 1

One should also note that if 0 < m < n then
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The error estimate we need 1s

LeMMa 4. For |g| 2 2 and |c| = 2, one has |F,(9)] < 2n+1 (g3,
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Proof. Let 8, = {|t| = 1} and 0, = {|t| = leg™|+1}. Then

1 nl i —eg®/t\ (— 1/t 1 ol gk —1
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gince there is a single simple pole at ¢ = cg™. In particular, for |g| = 2, le| > 2 and
mz=n,

roo2
< f e
2 < 2,20
So |Im| < W and Z llml <L ——

|3nﬂz'

e lg

Since we can evaluate (1) by changing the contour to an arbitrarily large circle and
evaluating at the intervening poles we have

IFal = | 2 I
m=n
and the proof is complete. (Note that the possible poles at eg', ..., cg"™" multiply out.

Note also that the integral (1) vanishes at oo in the sense that the integrand in (1)
tends to zero at least like |eg™|? on the circles &, of radius lcg™|+ 1, provided that
n > n,. This, coupled with convergence of the above series allows for the above
evaluation.)

Next we prove the non-vanishing of the form:
LEMMA 5. For |gl = 2 and || = 1 one has F,(q) # 0 for all n = n,.
Proof. As in Lemma 4,

n-=1 k—m
(1—¢*™) !
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Now for ¢ > 1 and m > » the above quantity is negative if ¢ < —1, and alternates if
¢ > 1. In cach case

Fn(Q) h Z [m + 0,

m=n
because |, ,| < |[,,] at least for n large. Similar congiderations treat the case when
g<-—1.
Proof of the Theorem. From Lemmas 3, 4, and 5 with

7 13

w,(e,q)=m—2) 11 (1 —eg®) T (1—¢")pulc.q)
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) S | n1d3%e|"
we have 0 < |w,le,q) Elm—h—}—ﬁnc,q) < prCE

But if ¢ is integral and ¢ = a/f then S, (e, q) and #3275, (c. q) are integers, and the
above error estimate when multiplied by f°" still tends to zero. so that
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ig irrational. i
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Our second result is similar and we comment only on the details that differ.

TurOREM 2. Let q be an integer with |q| > 1 and ¢ a non-zero rational with ¢ + —q"
Jor all n. Then
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Proof. The contour integral to consider is now
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We now must multiply FX(g) by
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to derive a form
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where «, and f, have integer coefficients in ¢ and ¢. The final term

I (1+¢")

k=13l

|3

comes from the terms that arise from the pole at zero. Here we must evaluate
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from which the terms (1 +¢%), come. In fact
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where yale,q) = X (—1)mEd
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The error estimate now becomes

D"
0 <Gl < T
for some D=D, . while the non-vanishing of the form is essentially as in
Lemma 5. |

The estimates implicit in Theorems 1 and 2 are good enough to prove that the
series In question are not Liouville, essentially because we can derive an asymptotic
for the error in Lemma 4, and then all the estimated terms grow like ¢, The
estimates of the proof of Theorems 1 and 2, now by standard methods (| 1], chapter
11), give that the numbers in question satisfy inequalitics of the form

1
a—p‘ > forallp,ge”Z
91 9

for some n and hence are not Liouville.
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