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Abstract. The old problem of Prouhet, Tarry, Escott and others asks
one to find two distinct sets of integers {ay, ..., a,}, and {f,..., 3, } with

O ek al = B B

form =1,...,k (with the most interesting case being k = n—1). We review
some elementary properties of solutions and examine the fine structure of
‘ideal” and ‘symmetric ideal’ solutions. The relationship of this problem to
the ‘easier’ Waring problem and a problem of Erdos and Szekeres of mini-
mizing the norm of a product of cyclotomic polynomials on the unit disk is
then discussed. We present some new bounds for this problem and for the
Prouhet-Tarry-Escott problem of small size. We also present an algorithm for
calculating symmetric ideal p-adic solutions of the the Prouhet-Tarry-Escott
problem.

Classification Numbers 11-04, 11D41

Key Words Diophantine Equations, Tarry, Escott, Prouhet, Waring
Problem.

1 Introduction

A classic problem in Diophantine Analysis that occurs in many guises is the
Prouhet-Tarry-Escott problem. This is the problem of finding two distinct
sets of integers {ay,...,a,},{f1,-.., 0} such that

Qo = By

At =0 4452

oF gk =R

This we will call the Prouhet-Tarry-Escott Problem. We call n the size of
the solution and k the degree. We abbreviate the above system by writing

{ai} L3 {f;} and reserve «; and f; as integer variables.



This problem has a long history and is, in some form, over 200 years old.
In 1750-51 Euler and Goldbach noted that

{a,b,c,a—l—b—l—c}%{a+b,a—|—c,b—|—c}.

A general solution of the problem for all degrees, but large sizes, came a
century later in 1851 when Prouhet found that there are n*+' numbers sep-
arable into n sets so that each pair of sets forms a solution of degree £ and
size n*. Over the next 60 years some more parametric and specific solutions
of degrees two, three, four and five were found. In the 1910’s Tarry and Es-
cott looked more closely at the problem and subsequently their names were
attached to it. They found many specific solutions and provided a number of
elementary general results. Prouhet’s result, while the first general solution
of the problem, was not properly noticed until 1959 when Wright [23] took
exception to the problem being called the Tarry-Escott problem and drew
attention to Prouhet’s contribution in a paper called Prouhet’s 1851 Solu-
tion of the Tarry-Escott Problem of 1910. More of the early history of the
problem can be found in Dickson [5], where he refers to it as the problem of
‘equal sums of like powers.’

The problem is called the problem of Prouhet and Tarry by Hua in his
text [11], which is a good source of some of the elementary material. It has
also been referred to as the Tarry problem. A good introductory paper [7] by
Dorwart and Brown calls it the Tarry-Escott problem. Solutions are often
called ‘multigrades’ as in Smyth [19].

While the Prouhet-Tarry-Escott problem is old it appears to have re-
ceived only a little serious computational attention. So one particular aim
is to provide some numerical insights and report the results of various com-
putations. We computed extensively on the size 7 and size 11 cases of the
problem. Eleven is of particular interest because it is the first unresolved case
and we found that “no symmetric” solutions exist with all {a;} and {3;} of
relatively small size (< 363). This is discussed in Section 5 and an algorithm
is presented.

We also computed extensively on an old and related problem of Erdos
and Szekeres that concerns the norms of products of cyclotomic polynomials.
This is discussed and many new bounds for small sizes are given in section
4.2.

Section 2 of this paper collects together some of the elementary theory.



Section 3 then focuses on the most interesting minimal case of n = k + 1.
The known solutions are presented and Smyth’s attractive recent treatment
of the largest known case (n = 10) is discussed. In these minimal cases a
solution must have considerable additional structure.

Two related problems are discussed in Section 4. One is due to Erdos
and Szekeres the other due to Wright. Both have been open for decades.

Section 6 presents some of the many open problems directly related to
these matters.

2 Elementary Properties

The problem can be stated in three equivalent ways. This is an old result
as are most of the results of this section in some form or another. (See for
example [7] ,[11].) In various contexts it is easier to use different forms of the
problem.

Proposition 1 The following are equivalent

j af:iﬂf forj=1,...,k (1)
deg([T(x = ) =TI = ) < n = (k +1) 2)

(= 1Y% =Y 2 (3)
=1 =1

Proof. An application of Newton’s symmetric polynomial identities
shows the equivalence of (1) and (2). To prove the equivalence of (1) and (3)
apply xd/dx to equation (3) and evaluate at one k + 1 times. O

A solution of the Prouhet-Tarry-Escott problem generates a family of
solutions by the following lemma. Any solutions that can be derived from
each other in this manner are said to be equivalent.

Lemma 1 If {aq,...,a,},{P1,...,0u} is a solution of degree k, then so is
{Moay+K,...,Ma, + K}, {Mp + K,...,Mp3, + K} for arbitrary integers
M, K.



Proof. The second form of the problem is clearly preserved when the

polynomials [[" ,(z — a;) and [, (z — 0;) are scaled and translated by in-

teger constants. |

We are particularly interested in the solutions of small size and we define
N(k) to be the least integer n such that there is a solution of size n and
degree k. We immediately get the following proposition.

Proposition 2
N(k) >k + 1.

Proof. This follows from the second form of the problem since monic
polynomials with identical coefficients have identical roots. O

Solutions of degree k and size k + 1 are called ideal. Ideal solutions are
of particular interest since they are minimal solutions to the problem. We
may use the following lemma to obtain an upper bound for N(k), and to
construct solutions of high degree.

Lemma 2 If {a1,..., o0} = {B1.....Bn} then
{ar, .. an, B+ M, Byt MY {ay + M, ... an+M,B1,....0.}
for any integer M.

Proof. This follows upon multiplying (3) by (z™ — 1). O

Corollary 1
N(k) < C2F.

Proof. Simply use Lemma 2 and choose M so large that there are no
common elements in the two sets. O

As will be shown later N(k) = k41 for k =1,..,9 so we can choose C to
be 10/2% for k > 9, but this is unnecessary in light of the next proposition.



Proposition 3
1
N(k) < §k(k +1)+1.

Proof. Let n > sFs! and
A={(al,...,a5): 1 <aq; <n fori=1,...,s.}.

There are n® members of A. Consider the relation ~ defined on A by

(o) ~ () iff (o) := (aq,...,q4) is a permutation of (3;) = (f1,...,[5s).
There are at least n®/s! distinct equivalence classes in A/ ~ since each
(g, ..., ) has at most s! different permutations. Let

sji((ai)) 2@{+"-+a§ forj=1,... k.
Note that
s < s5((ei)) < s’
so there are at most
k k(k+1)
H 5”]—54—1 < s*n o
7=1

distinct sets (s1((a;)), - .., sk((@;))). We may now choose s = Lk(k + 1)+ 1
and we have

k]

p k(kt1) E s— n
s'nTr =t < —
s!
since n > sFsl. So the number of possible (s1((a;)),...,sk((a;))) is less
than the number of distinct (a;) and we may conclude that two distinct sets
{ag,...,as} and {3y, ..., (s} form a solution of degree k. O

Slightly stronger upper bounds are discussed in [22] and [15], but they

are much more difficult to establish and only improve the estimates to
1(k2-3) kodd
7 2\
N(k) < { 12(k* —4) k even.

We can also define M (k) to be the least s such that there is a solution of
size s and degree exactly & and no higher. Hua in [11] shows
log 3(k + 2)
log(1 + %)
This is considerably harder argument than the above bound for N(k).

M(k) < (k+1’)< +1> ~ k?logk.

5t



3 Ideal and Symmetric Ideal Solutions

We explore some of the properties of ideal solutions. On occasion we add still
more structure by requiring symmetric solutions. The notion of symmetry
depends on the parity of the degree of the solution. Only ideal symmetric
solutions are defined below, but one may easily define symmetric solutions
for arbitrary degree.

An even ideal symmetric solution of size k + 1 and odd degree k is of
the form {Zay...., Lapq1)2}, {£01,. .., £Buk+41)/2} and satisfies any of the
following equivalent statements:

(kD)2 (kD)2
> af = > B forj=1,.... 5%
i=1 i=1
(k+1)/2 (k+1)/2
[ (2*=a?)— J[ (#*—pB%) =C for some constant C
i=1 i=1
(k+1)/2 (k+1)/2
A=Y @)= 3 (o o),
i=1 i=1

An odd ideal symmetric solution of size k£ 4+ 1 and even degree k is of
the form {aq, ..., a1}, {—aq, ..., —ags1} and satisfies any of the following
equivalent statements

k1

> al=0 forj=1,3,5....k—1

i=1
k+1 k+1
[[(z—a;) = [[(x+ ;) = C for some constant C
i=1 i=1

k+1 k+1

(L =)t S % =3 a7,
i=1 i—1

For non-ideal symmetric solutions the parity of the solution is named after
the parity of the degree plus one.

Corollary 2 If{ay,..., a0}, {01,..., 0.} is an ideal solution and is ordered
so that
ap<ag <o Sy and Py < P < < Gy

6



then
a1 # B; for any j

and
< <fh<mla<fPFfi<ag--

(where without loss we assume that oy < [1.)

Proof. This is all known, and easily deduced in the following fashion.
Consider the second form of the ideal solution in Proposition 1. This gives,
for some constant C

n

So the polynomial p(z) := [T, (x — ;) is just a shift of the polynomial
q(z) :=TII"_,(x — ;). The result is now most easily seen by considering the
graph of p(z) and the graph of ¢(z) = p(x) — C. Note that p and ¢ have the
same critical points and these critical points separate the zeros of both p and
q. Note also that p and ¢ never intersect .

O

Symmetric ideal solutions are only known for sizes n < 10. Throughout
this paper we call an odd symmetric ideal solution perfect if it forms a
complete set of residues modulo n. Listed below are ideal symmetric solutions
for sizes 2 < n < 10, the odd symmetric solutions (with even degrees) are
all perfect. These solutions are listed in abbreviated symmetric form. For
example the solution for size 6 is

{£4,49,£13}, {£1, £11,£12}
and the solution for size 5 is

{-8,-7,1,5,9},{8,7,—1,—5,—9}.



2 {3}, {1}
3 {-2,-1,3}
4 {3,11},{7,9}
5 {-8,-7,1,5,9}
6 {4,9,13},{1,11,12}
7 {—51,-33,-24,7,13,38,50}
8 {2,16,21,25},{5,14,23,24}
9 {—98,—82,—58,—34,13,16,69,75,99} and
{—169, —161,—119, —63,8, 50, 132, 148, 174}
10 {436,11857,20449, 20667, 23750}, {12, 11881,20231,20885,23738} and

{133225698289, 189880696822, 338027122801, 432967471212, 529393533005},
{87647378809, 243086774390, 308520455907, 441746154196, 527907819623 }

Chernick discusses symmetric solutions up to size 8 in [4]. Sinha discusses
some parametric ideal symmetric solutions in [18]. There are two solutions
of sizes 9 and 10 listed, three of which were found in 1940’s by Letac and
Gloden (see [10]). The last solution was found by Smyth who has shown in
[19] that one can generate infinitely many solutions of size 10. There are no
known ideal solutions, symmetric or otherwise, of size 11 or higher. It has
been conjectured for a long time that such solutions exist for all n, although
the only evidence appears to be the existence of solutions up to size 10.

Smyth’s elegant treatment of size ten solutions follows as the next propo-
sition.

Proposition 4 If z,y are rational solutions of x%y*> — 132> — 133>+ 121 =0
then

{x(dz+4y), £(zy+a+y—11), £(2y—r—y—11), £(xy+32—-3y+11), £(xy—32x+3y+11)},

{£(4o—4y), H(xy—x+y+11), £(zy+r—y+11), £(2y—3x—3y—11), £(zy+32+3y—11)}
gives rise to an ideal symmetric solution of size 10.

Proof. This is simply a calculation. After finding the coefficients of the
difference of the polynomials in the second form of the problem, one sees that

all but the constant coefficient are either zero or have x2y? — 1322 — 13y% + 121
as a factor. This is easily done using a symbolic computation package. It is

8



clear that rational solutions give rise to integer solutions on clearing denom-
inators using Lemma 1. O

Smyth shows in [19] that there are infinitely many rational solutions to the
biquadratic 22y? — 1322 — 13y?> 4+ 121 = 0 which give rise to distinct sym-
metric ideal solutions of size 10. The two we have included in the preceding
list correspond to

(r,y) = (153/61,191/79)
and
(z,y) = (—296313/249661, —1264969/424999).

It is interesting to note that any such solution is also a non-symmetric ideal
solution of size 5 with «;, 3; all squares.
There are various results concerning the divisibility of

n n

Co o= 1(x —ai) = [I(x = 5)

=1 i1=1

where {a;}, {0} is an ideal solution.

Lemma 3 If {a;}, {3} is an ideal solution with C,, defined as above, then

|Gl = T1(8; — o)) =TIy — ) =| == = [T =I5
i=1 i=1 i=1 i=1

for all 3.

Proof. This is an easy calculation. O

Proposition 5 Suppose

15 divisible by

Then

k n n
R i | DSk = > B
=1 =1 =1



Proof. Let ‘ N
Y T = Y 2l
(1 —am)
By assumption, the numerator and denominator of the above both have zeros
of order k£ at 1. Thus we compute that

k k
Yim i — i B

G(z) =

lim G(x) =

k! H?:1 n;
by repeated application of Hospital’s rule (applied to 2G(x)). But G(z) is a
polynomial with integer coefficients so the result is proved. O

Corollary 3 Suppose that {ay,..., o, }{01,..., 3.} is an ideal solution, then
(n—=1) C,.

Proof. This follows from the third form of the problem and the above
Proposition, on observing that (1 — )" | f(x). O

This corollary is due to Kleiman [12] and Wright [24].

Proposition 6 Let {o;}, {3} be an ideal solution of size n. Let

n

Cn = ﬁl(r —ai) = [[(z = 5)

i=1
as before. If p is prime then

n

pICy iff (L—aP)[d 2% = 2
i=1

1=1

Proof. Suppose p*|C,, but p**1 fC,. Then

n

pk|H(,8j—a/;) j=1,....n

and

pk| H(aj —-0) j=1,...,n
=1

10



In particular for each j
a; = (3 mod p

has exactly k solutions (counting multiplicity, in the sense that a; = 5; mod
p* (but not mod p*!) counts as multiplicity s). Likewise, for each j

B; = a; mod p
has exactly k solutions. Now, suppose ( is a primitive p™ root of unity then

i —(Pi=0 if a; = #; mod p°.

Thus since {a;} and {3;} partition, by their congruences mod p, into sets of
multiplicity &, we deduce that ( is a root of

n n 5
1.041' _ P

and hence . .
(1—a?) | > =3
i=1 i=1
This, with Proposition 5, proves the statement. O

Rees and Smyth have proved many results on the divisibility in [17]. We
state a few of their more interesting results and their summary of results in
the form of a table.

Proposition 7 1. If p is prime and pk < n for k > 1 then p**!C,,.
2. If p > 3 is prime and p = n then p|C,.

3. If p is prime and
-3
n+2§p<n+2+nT

then p|C,,.

Proof. See [17]. O

We define
ry = ged{(Cy)/nl}

11



where C,, ranges over all ideal solutions of size n. The following table demon-
strates what is known about 7,,.

n o r,

2 1

3 2

4 2.3

5 2-3-5-7

6 22.3-5r6[2°-3-5

7 3-5-7-11|r722-3-5-7-11-19

8 3-5-7-11-13|rg|24-3-5-7-11-13

9 3-5-7-11-13|ry|22-32.5.7-11-13-17-23-29
10 5-7-13|r[24-32-5-7-11-13-17-23-37-53-61-79-83-103-107- 109 113 - 191
11 5-7-11-13-17ry,

This table is in [17]. We have improved the upper bound for 71y by using
Smyth’s solution in [19].

If we restrict our attention to symmetric solutions we can obtain more
divisors of r,,.

Proposition 8 For symmetric solutions we have
]_9|7“77 19|7‘117 17 ]_9|7“13

Proof. This is a result of performing the calculation mod p and observ-
ing that C,, = 0 mod p. O

It is interesting to observe that an ideal solution in its third form has a
large factor
[](1 = a?).

This follows from Propositions 6 and 7. Hence the degree of this polynomial
grows at least like n?/(2logn).

4 Related Problems

There are several related problems. We mention two.

12



4.1 The ‘Easier’ Waring Problem

In [21] Wright stated, and probably misnamed, the following variation of the
well known Waring problem. The problem is to find the least s so that for
all n there are natural numbers {ay, ..., a5} so that

+of +... £ af =n

for some choice of signs. We denote the least such s by v(k). Recall that
the usual Waring problem requires all positive signs. For arbitrary £ the
best known bounds for v(k) derive from the bounds for the usual Waring
problem. So to date, the “easier” Waring problem is not easier than the
Waring problem. However, the best bounds for small k are derived in an
elementary manner from solutions to the Prouhet-Tarry-Escott problem.

Suppose {ay,...,a,} h=? {B1,-.,Bn}. We see that

Y+ a) = > (x+p5)=Cx+D
i=1 i=1
where . .
C=k(Q oy =3 5"
i=1 i=1
and

D=3 af =3 Ff
i=1 i=1

We define A(k, C') to be the smallest s such that every residue modC is
represented by s positive and negative k' powers. We also define A(k) = maxqc A(k, C).
Wright shows how to calculate A(k,C) and A(k) in [9)].

Lemma 4 If
Yr+a) =>(x+p)=Cer+D
i=1 i=1
then
v(k) <2n+ A(k,C) < 2n+ A(k)
Proof. This follows directly from the above definitions. O

13



Proposition 9

_ loo L(k Ligp
o(k) < 2M(k=2)+A(K) < 2(k=1) (%HH & R oeen
. k—2 )

Proof. This follows from the fact that

which is established in [22], and Lemma 3, and Hua’s bound for M(k) in [11].
Note that we must use M (k) and not N(k) since we require exact solutions

so that C # 0. O

The best bounds for small k are derived from the above lemma using spe-
cific solutions of the Prouhet-Tarry-Escott problem and careful computation
of A(k,C). In the following table we represent solutions as in the third form

of the problem, and we define
k N
[y, ... ng) == (1 = a™)
=1
gi=l a4t a0 — a0 2T T 26 28y 22

h = T+ ‘,1725 + .1,’31 + .1,’84 + .7387 + 1.134 + 1,158 + 1.182 + .’1?198

2 _ I8 A2 66 _ o113 116 _ 169 _ 175 _ 19

14



k bound for v(k) solution

7 14 [1,1,2,3,4,5]

8 30 3,5,7,11,13,17,19] - ¢

9 29 1,2,3,5,7,8,11,13]

10 30 h

1 28 [1,2,3,4,5,7,9,11,13,17]

12 37 1,2,3,5,7,8,0,11,13,17, 19

13 39 [1.2,3.5,6.7.8.9, 11,13, 17, 19]

14 53 [1.2,3.4,5.6,7.8.9,11,13,17, 19]

15 69 1,2,3,4,5,6,7.8,9,11,13,15,17,19]

16 92 [1,2,3,4,5.6,7,9,10,11,13,15,16,17, 19)

17 72 [1.1,2.3.4.5,6,7,7,8,0.10,11, 13, 17, 19

18 86 [1,2,3,4,5,6,7,9,10,11,13,14,16,17, 19, 23, 29]
19 88 [1,2,3.4,5,6,7,8,9,10,11,13, 14,16,17, 19, 22, 23]
20 120 [1,2,3,4,5,6,7,8,9,10,11,13,15,17,19, 21, 23,25, 29|

This table is from [21] and [24] as are most of the results of this section.
Some of the bounds are improved by using Wright’s calculation of A(k) and
our solutions of smaller size.

4.2 A Problem of Erdos and Szekeres

We call a solution {ay,...,a,}, {f1,...,0,} of the Prouhet-Tarry-Escott
problem a pure product if

n n k
Zz"’ - Z:ﬂi = H(l — 2™
i=1 i=1 i=1
for some nq,...,n,. Note that pure products are obtained from ideal so-

lutions of degree zero by applying Lemma 2 repeatedly. These are a very
restricted class of solutions of the Prouhet-Tarry-Escott Problem.

Proposition 10 If

then {a;},{B:} is equivalent to a symmetric solution of degree k and size n.



Proof. Note that symmetry in the third form of the problem requires

flz)= Xn:zai — zn:zﬂ" = (—1)kf(_1/z)

i=1 =1

The appropriate equivalent solution can be shown to satisfy this condition. O

For f(2) = [T_,(1 — 2™) = ¥" ,a;z', where n = deg f, we define the

norms .
£ = > fes]
i=0

Il = (a2 = (o [ rempan)
2T ‘izoai' 271 o “
17llee = sup 17(2)
We observe that || f||; is twice the size of the solution {a;}, {3} of the

Prouhet-Tarry-Escott problem.

Lemma 5

1£1lx
Vdeg f +

Proof. This is all easily established. It all follows from well known in-
equalities and the fact that the coefficients of f are integers. O

<I£ll: < If e < Al < N£15-

In 1958 [8] Erdés and Szekeres formulated the problem of finding

k

[101—=")

1=1

A(k) = min

n1y--sNk

[ee]

They have conjectured that A(k) > k¢ for any C. There has been very little
progress in this pretty old problem. Though an interesting and possibly
related problem is solved in [2]. See Section 6.

We can use pure product solutions of the Prouhet-Tarry-Escott problem
to find upper bounds for A(k). These are not good general bounds, but we

16



do find good upper bounds for small values of k£ using specific solutions. The
following table was derived using various greedy algorithms to find the {n;}.

[FA I SR Y
2 {1}
4 {1,2
6 {1,2,3}
8 {1,2,3,4}

10 {1,2,3,5,7}
12 {1,1,2,3,4,5}
16 {1,2,3,4,5,7,11}

16 {1,2,3,5,7,8,11,13}

20 {1,2,3,4,5,7,9,11,13}

24 {1,2,3,4,5,7,9,11,13,17}

28 {1,2,3,5,7,8,9,11,13,17,19}
36 {1,...,9,11,13,17}

48 {1,...,9,11,13,17,19}

56 {1,...,7,9,10,11,13,15,16,17}

60 {1,...,7.9,10,11,13,15,16,17,19}

60 {1,...,11,13,15,17,19,23}

68 {1,...,7.9,10,11,13,14,16,17,19,23,29}
84 {1,...,11,13,14,16,17,19,22,23}

100 {1,...,11,13,15,17,19,21,23,25,29}

I N T = S Sy SO Sy S
B0 > e oo > © 00O U W N

20 116 {1,...,11,13,15,17,19,21,23,25,27,31}

21 130 {1,...,11,13,15,17,19,21,23,25,27,29,31}

22 140 {1,...,9,11,13,15,17,19,21,23,25,27,29, 31, 33,37}

23 156 {1,...,11,13,15,17,19,21,23,25,27,29,31, 33,37}

24 204 {1,...,7,9,10,11,13,15,16,17,19,21,23,25,27,29,31, 33,35, 37}
25 188 {1,...,11,13,15,17,19,21,23,25,27,29,31,33, 35,37, 41}

26 228 {1,...,11,13,15,17,19,21,23,25,27,29,31, 33,35, 37,39, 41}
27 276 {1,...,13,15,17,19,21,23,25,27,29, 31, 33, 35,37, 39, 41}

28 336 {1,...,13,15,17,18,19,21,23,25,27,29, 31, 33,35, 37, 39, 41}
29 392 {1,1,2,2,...,27}

30 432 {1,1,1,2,...,28}



k
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
95
56
o7
o8
99
60
80

I1/1h
1900

1348
1936
2396
2492
2684
2336
3196
4080
4086
o088
2480
5296
6000

7352
5044
7536
7156
6268
7572
10848

{ny,...,ng}

{1,2,2,...,17,10,...,29,31,...,37,43,47, 49,49}
{1,2,2,...,17,19,...,29,31,...,38,40, 43,49, 53}
{1,2,2,...,17,19,...,29,31,...,38,40,43,47,52, 53}
(1,2,2,...,17,19,...,29,31,...,38,40,43,46,52,53, 60}
{1,2,2,...,20,31,...,38,40,43, 46,52, 53,60}
(1,2,2,...,29,31,...,38,40, 43, 44, 46, 52, 53, 60}
{1,2,2,...,29,31,...,38,40,43, 44,46, 48,52, 53,60}
{1,2,2,...,29,31,...,38,40,40, 43,44, 46, 48, 52, 53,60}
{1,2,2,...,29,31,...,38,40, 40, 43, 44, 46, 48, 50, 52, 53, 60}
{1,2,2,...,29,31,...,38,40, 40, 43, 44, 46, 48, 50, 52, 53, 55, 60}
{1,2,2,...,29,31,...,38,40, 40, 43, 44, 46, 48, 49, 50, 52, 53, 55, 60}
{1,2,2,...,29,31,...,38,40, 40, 43, 44, 46, 48, 49, 50, 52, 53, 55, 56, 60}
{1,...,11,13,16,17,24,52,....56,...,58,80,82, 83,84, 86, 88,89, 92,95, 100}
{1,...,11,13,16,17,24, 52, 53,54, 56,58, . . ., 80, 82,83, 84, 86, 88, 89, 90,
92,95,100, 142}
(1,1,2,2,...,29,31,...,38,40,42, 43, 44,46, 48. . .., 53,55, 56,60}
{1,1,2,2,...,20,31,...,38,40,42,43,44, 46, ..., 56,60}
{1,1,...,11,13,16,17,24,52, 53, 54,56, 58, . .., 80,82, ..., 92,95, 100}
{1,1,...,11,13,16,17,24,52,...,56,58,...,80,82,...,92,95,100}
{1,1,2,2,...,20,31,...,38,41,....44,46,...,60}
{(1,1,...,11,13,...,17,24,52, ... 52,58, ....80,82,...,92,95,100}
{(1,1,...,11,13,...,17,24,52, ... 56,58,....80,82, ...,92.95,100,100}

1629900 {1,...,73,90,...,95,97}
100 41947220 {1,...,89,107,...,117}

For k =1,2,3,4,5,6, and 8 these products are ideal solutions and therefore
also optimal. These may well be the only &k for which pure products give ideal
solutions. We computed extensively on degree 6 (k = 7) and could not find
a degree 6 product with || f||; = 14. Since || f]|: is always an even integer we
therefore conjecture that the minimum attainable is 16 (as above). For larger
k there is no reason to believe that we have found minimal examples This
table also provides some good bounds for N (k). For example N(29) < 216
which is much better than the bound of 419 that derives from the discussion
following Proposition 3. There are many partial results on the Erdos-Szekeres
problem to be found in [8], [1], [6],[14] [3], [20], [2], [16] and [13]. We give
one such new result here.
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We now construct an easy example to show that we cannot in general ex-
pect exponential growth of the norms of the partial products of [[32,(1 — 2%)
on the unit disk. From this point on, ||f|| without a subscript will denote

[[flse-
Lemma 6 Let1 < 31 < (o < ... and let
W,(2)= T[] (1-2"7)
1<i<j<n
then
W2 < .
Proof. We can explicitly evaluate the Vandermonde determinant

1 28 ... »(=1B

D, = H (zﬂj — zﬂi) =

1<i<j<n 1 2P

. A
~ ~

(n=1)Bn

and by Hadamard’s inequality, since each entry of the matrix has modulus
at most one in the unit disk,

|Dy|| < "/,
Thus

= < a2,

H (]_ _ Zﬂj*/ai)

1<i<j<n

H (Zﬂ]‘ o Z"Bi)

1<i<j<n

O

Observe, as Dobrowolski did in [6], that if we take f; = i, we deduce that

n

H(l o Zi)n—i—l

=1

< "2,

A result originally obtained by Atkinson in [1].

Proposition 11 Let 3; be the sequence formed by taking the set {2" — 2™ : n > m > 0}
i increasing order. Then for all n

ITI0 — %) < (32m) V"
=1
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Proof. Note that 2" — 2™ > 2™ if n > m and that 2™ — 2™ = 272 —2™2

if and only if (ny, my) = (n2, ma). So whenever n = @ for some k we have

H (2,21'—1 _ E,Qi_l‘) < K2 < /—2n\/”/2‘

1<i<j<k

While if 2520 < < BEDE ghen

H(]_ _ Zﬂz‘) < H (:ZQJ'*I _ 221'—1,) H (1 _ Zﬂi )
=1 1<i<j<k i:k§k2—1)+1
< VoVt o oV g

< VanV'"Paven — (37)V/8

O

This is not as good an estimate as Odlyzko’s in [16] (see also [13]) which
has exponent roughly n'/3. What distinguishes it is that it holds for all the
partial products of a single infinite product (with distinct increasing expo-

nents). Also, clearly any a > 2 could play the role of 2 in the construction
of the [3; with the exact same conclusion.

Theorem 1 Let {6;} be any sequence of integers and let {3;} be the sequence
of differences in the following order

{61 — 60,85 — 80,02 — 81 s 6 — S0y sy B — pty. )

then

n

I - =)

=1

< (32n)V"/E,

5 Perfect Solutions of Prime Size

The first unresolved case of the Prouhet-Tarry-Escott problem is the eleven
case. The previous ideal solutions were all found without computer assis-
tance; indeed the cases 1,...,10 were all resolved prior to 1950. It therefore
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seems appropriate to discuss an algorithm for searching for such solutions.
We wish to perform a computer search for perfect symmetric ideal solution
of size 11. To this end we produce a method of finding all such solutions
mod 11" for any n. As this method applies to any odd prime p we present
it in the general situation. (A similar method for solving the ideal Prouhet-
Tarry-Escott problem mod p" is suggested in [17] for all primes p greater or
equal to the size.) We will be using symmetric residues throughout, as they
facilitate checking for solutions in ranges of the form [—1,1].

Lemma 7 If {fo,...,B,-1} is a perfect solution mod p"*' then
Bi=mp" +a; fori=0,...,p—1
and {ag,...,a,_1} is a perfect solution mod p™.
Proof. This is done by expanding {3, ..., -1} to the base p. O

This simple lemma allows us to create solutions mod p” for any n induc-
tively. We only need to find the {my,...,m,_1} given {ay,...,ap_1}. This
is provided by the theorem below.

Now suppose that {ay, ..., a,_1} is a perfect solution mod p". We define
p—1 2k—1
Sp = Sz fork:zl,...,%l.
p’I’L
We also suppose without loss of generality that «; = ¢ (mod p) for
1=0,...,p— 1.

Theorem 2 Given{ao,...,a,_1}, a perfect solution mod p™, allppﬂi perfect
solutions mod p™*' of the form {mop™ + g, ..., my_1p" + a,_1} are given by
(mo, C ,'mp_l) = <a0, . ,(lp_l) + (ho, c. 7h’p—1)7

where
ag = 0
p—1l_ ;2-25
ai =y — s; (mod p) forz’zl,...,%l
PR
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a; = A, forizf%l,...jp—l
and (hg, ..., hp=1) are arbitrary residues mod p and
| 2
1
hi = 2ho = i fori = }%,...,p—L
p+1

So there are exactly p" = perfect solutions mod p"*+1.

Proof. Suppose {m;p" + «;} is a perfect solution mod p"™' and {«a;} is

a perfect solution mod p". For k =1,..., 22t

2
p—1
S (mip" +a@)* ' =0 (mod p"th).
=0
On expanding we get
p—1
ST((2k = D" Pmp" + ¥ 1) =0 (mod p*t)
=0
p—1 p—1 7
S22k = D)a* Pmpt = =" o' (mod p*th.
Division by p" gives us
p—1 p=1 2k—1
> (2k — 1)ai*?m; = Y (mod p),
i=0 P
and since a; = ¢ (mod p) we have
p-1 p—1 2%k—1
S(2k — 1) 2m; = _ Zi=0 ;11 (mod p).
i=0 p

So we define A, a (1%1 X p) matrix, by
Api =2k = 1)(i = D)*7?  (mod p).
We now have, with s := (sq,...,5p-1)/2) and m = (mg,...,m-1)),

Am=s (mod p).
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For example with p = 7 we get

mo
11 1 1 1 1 1 my >
0 3 -2 -1 -1 -2 3 = za?
0 -2 3 -1 -1 3 =2 ‘ Y al
Mg

In general the rank of A is always p—;l
so there are ppzi solutions of this underdetermined linear system.

We first derive a particular solution a := (ay, ..., a, 1) of the system. We
set ag = 0 and A to be A without its first column. We also define @ to be a

without ag. We solve the reduced system

, as the next argument makes clear,

Aa=s (mod p)
by the standard method. So
a=A (AA )'s (mod p)

A4 is a particularly simple symmetric matrix given by

Yi0 £32 Yt - Y(p—2)ir
LYt Y15 - T 3(p—2)ir!

Y2508 -0 X 5(p— 2)irt!

S(p— 2%

where each sum ranges over i = 1,...,p — 1. Since Y21 i* = 0 (mod p)
when k # 0 (mod p—1) almost all the elements of the matrix vanish and we
are left with a very simple matrix. In fact we get the product of a diagonal
and a permutation matrix. Note that this shows that A has full rank modulo
p. For example when p = 11 we get

1 0 0 0 0
0 0 0 0 —5
AA =] 0o 0o 0 -2 0
0 0 -2 0 0
0 =5 0 0 0
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So it is a simple matter to find B = ZT(Z ZT)_l. Fori=1,...,p—1 j5=
1,..., 21

422
B;; = 51 (mod p).
For example B, when p =17, is
-1 2 -3
-1 -3
-1 1 1
-1 1 1
-1 -3
-1 2 -3

So our particular solution a is given by aqg = 0 and @ = Bs.
To find the solution A of the homogeneous system

Ah =0 (mod p)

consider the reduced system

—hyg
0
Ah= 0 (mod p)
0
Note that if h; + h,—i = 2hg fori =1, ..., %1 we have a solution since
p—1
> i*=0 (modp) if k#0 (modp—1).
=1
Finally setting (hg, b1, ..., hy—1) arbitrary we get the solution as in the state-
. 2
ment of the theorem. O

This theorem allows one to calculate all p("_l)pzi perfect solutions mod
p" for any odd prime p and any n. This is essentially calculating solutions in
the ring of p-adic integers. We were hoping to find a perfect solution of size
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11 using this method, but we were only able to show that there is no such
solution with coefficients in the range [—363,363]. This is because there are
119 solutions mod 112, and 11'2 solutions mod 113. So checking for solutions
in the relatively small range [—665,665], would require checking more than
a billion cases. Even checking in the range [—363,363] was a substantial
computation. We were able to compute all 7% solutions mod 72 to find the
that all perfect solutions of size 7 with coefficients in the range [—171,171]
are

{-51,-33,—-24,7,13,38,50}

{-90, —86,—39,—5,48,77,95}

{-116,-104,-36,—19,75,77,123}

{-120,-110,—-23,—13, 38,105,123}

{-134,-75,-66,8,47,87,133}

We hope that this technique in combination with others may yield a viable
computer search for a perfect solution of size 11.

6 Open Problems

There are many open questions and unproven conjectures about the Prouhet-
Tarry-Escott problem. We conclude by listing a few.

1. Find an ideal solution for any size higher than 10 or find some degree
for which an ideal solution does not exist. (Even a heuristic argument
would be of interest.)

2. Find another class of solutions of size 9 or 10.

3. Prove N(k) < o(k?).

4. Prove M(k) < O(k?).

5. Show that there is no 7 factor (degree 6) pure product of norm 14.

6. Find a non-trivial lower bound for A(k). Almost equivalently prove

k
> 2k
1

for some k. (Problem 5 is the k = 7 case of this.)




7. Find a true algorithm, even an impractical one, that determines if there

is an ideal solution of size 11.

Find a true algorithm, even an impractical one, that determines if there
is a degree 6 (k = 7) pure product of norm 14.

. Solve the ideal problem mod p" for all primes p smaller than the size

of the solution and all n.

The big prize is to find ideal solutions of all degrees, if indeed they
exist. Question 1 above is, of course, the first step. No progress on
questions 3 and 4 has been made for many years. Questions 5, 6, and
8 all relate to the Erdos-Szekeres Problem. The issue in Questions 7
and 8 is that it is not known how to bound solutions so as to make the
problems finite. Question 9 is raised in [17] and would show that no
local obstructions exist to solutions.
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