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Abstract. Some of the zeros and poles of Padé approximants approximate

zeros and poles of the approximated function. Others, the ”spurious” poles and
zeros are often arranged in quite remarkable patterns. These patterns display

similarity when the ratio of degrees of the numerators to the denominators

is kept constant and with scaling according to the total degree apppear to
converge to a limit curve. We investigate these patterns for the analytic version

of the zeta function,(z− 1)ζ(z), and for the symmetric zeta function ξ(z). We

develop an algorithm for calculating these approximants along a line of any
angle through the Padé table.

1. Padé Approximation

Padé approximation is the extension of polynomial approximation to include ra-

tional functions. A degree [α/β] approximation,
Pαβ
Qαβ

, of total degree α + β, to a

function y in x, where the numerator has degree ≤ α and the denominator ≤ β
satisfies

y − Pαβ
Qαβ

= O(xα+β+1),

which is equivalent to

yQαβ − Pαβ = O(xα+β+1),(1)

if Qαβ(0) 6= 0.

The Padé Table for is an array presentation of the various degree representations
for a function

[0/0] [1/0] [2/0] [3/0] . . .
[0/1] [1/1] [2/1] [3/1] . . .
[0/2] [1/2] [2/2] [3/2] . . .

...
...

...
...

A diagonal approximant is one for which the degrees of the numerator and de-
nominator are equal. These lie on a line running at an angle of 45◦ through the
table starting at [0/0]. An anti-diagonal line is perpendicular to this an contains
approximants with the same total degree.

1.1. Algorithms for calculating Padé approximants.
1
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1.1.1. The Kronecker algorithm. This uses a modified Euclidean algorithm to cal-
culate approximants along an anit-diagonal line through the table. For degree N
approximants, the algorithm starts with the polynomials r0 = xN+1 and r1 =
[N/0] = yN = a0 +a1x+a2x

2 + . . .+xN , Taylor series of degree N for the function
y, and for k ≥ 1 defines

rk+1 = rk−1 − qkrk,
where the degree of rk+1 is less than the degree of rk. With the accompanying
sequences vk and uk defined starting with v0 = 0, v1 = 1 and u0 = 1, u1 = 0 and
continuing

vk+1 = vk−1 − qkvk
uk+1 = uk−1 − qkuk

the identity
rk = ukx

N+1 + yNvk

is maintained. Provided vk(0) 6= 0,
rk
vk

is a degree N approximant for y. With the particular initialization described here,
the polynomials derived are unique. However, we can choose an initialization using
any two adjacent entries on an anti-diagonal

Pαβ
Qαβ

and
Pα+1,β−1

Qα+1,β−1
,

namely, r′0 = Pα+1,β−1, r
′
1 = Pαβ and v′0 = Qα+1,β−1, v

′
1 = Qαβ . Where, for some

k, Pαβ = c1rk and Pα+1,β−1 = c2rk−1,we obtain

c2rk+1 = c2rk−1 −
(
c2qk
c1

)
c1rk = Pα+1,β−1 −

(
c2qk
c1

)
Pαβ = r′2

c2vk+1 = c2vk−1 −
(
c2qk
c1

)
c1vk = Qα+1,β−1 −

(
c2qk
c1

)
Qαβ = v′2

giving
r′2
v′2

=
rk+1

vk+1
.

1.1.2. Solution of linear system and the Frobenius Relations. Following Frobenius
[Fro81], we use the presentation (1) to obtain linear equations for the coefficients
of Padé approximants. Let

y = a0 + a1x+ a2x
2 + . . .

with aj ∈ C be the power series representation a function. Let

T = t0 + t1x+ . . .+ tαx
α, U = uo + u1x+ . . .+ uβx

β

be polynomials of degrees less than or equal to α and β respectively such that

y U − T = V = O
(
xα+β+1

)
.

If U(0) 6= 0, then the Padé approximant of order [α/β] is given by

T

U
.

Note that T and U are unique up to a constant multiple.
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From the first α + β + 1 coefficients vα+β = 0, . . . , v1 = 0, v0 = 0, we obtain
an undetermined system of α + β + 1 equations in the α + β + 2 coefficients of T
and U . For the β coefficients from vα+1 to vα+β give the β equations

0 = aα+1uo + aαu1 + . . .+ aα−β+1uβ

0 = aα+2uo + aα+1u1 + . . .+ aα−β+2uβ

...

0 = aα+βuo + aα+β−1u1 + . . .+ aαuβ

involving the β + 1 coefficients of U . For this system we choose as a solution

Uαβ =

∣∣∣∣∣∣∣∣
aα−β+1 aα−β+2 . . . aα xβ

aα−β+2 aα−β+3 . . . aα+1 xβ−1

. . . . . . .
aα+1 aα+2 . . . aα+β 1

∣∣∣∣∣∣∣∣
which has Uαβ(0) = cαβ where we define

cαβ =

∣∣∣∣∣∣∣∣∣
aα−β+1 aα−β+2 . . . aα
aα−β+2 aα−β+3 . . . aα+1

...
...

. . .
...

aα aα+1 . . . aα+β−1

∣∣∣∣∣∣∣∣∣ .
From this the α+ 1 coefficients v0 = 0, . . . , vα = 0 we now obtain

t0 = a0u0

t1 = a1u0 + a0u1

...

tα = aαu0 + aα−1u1 + . . .+ aα−βuβ

which we may write in the form

Tαβ =

∣∣∣∣∣∣∣∣
aα−β+1 aα−β+2 . . . aα aα−β x

α + aα−β−1 x
α−1 + . . .

aα−β+2 aα−β+3 . . . aα+1 aα−β+1 x
α + aα−β x

α−1 + . . .
. . . . . . .

aα+1 aα+2 . . . aα+β aα x
α + aα−1 x

α−1 + . . .

∣∣∣∣∣∣∣∣ .
For V , we then have

Vαβ =

∣∣∣∣∣∣∣∣
aα−β+1 aα−β+2 . . . aα aα+1 x

α+β+1 + aα+2 x
α+β+2 + . . .

aα−β+2 aα−β+3 . . . aα+1 aα+2 x
α+β+1 + aα+3 x

α+β+2 + . . .
. . . . . . .

aα+1 aα+2 . . . aα+β aα+β+1 x
α+β+1 + aα+β+2 x

α+β+2 + . . .

∣∣∣∣∣∣∣∣ .
Then Tαβ , Uαβ , Vαβ represent solutions to the above equation, namely,

y Uαβ − Tαβ = Vαβ = O
(
xα+β+1

)
.

From these presentations of T,U, V as determinants we derive the following theo-
rem:

Theorem 1.1. (Frobenius) The constant coefficient of

Uαβ is cαβ ,(2)
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and the coefficient of

xα in Tαβ is (−1)βcα,β+1,(3)

xβ in Uαβ is (−1)βcα+1,β ,(4)

xα+β+1 in Vαβ is cα+1,β+1.(5)

Further, where in the equations below , each S may be stand for in one case for
T , in another for U , or in another for V , we have the following theorem:

Theorem 1.2. (Frobenius)

cα+1,βSα−1,β − cα,β+1Sα,β−1 = cαβSαβ(6)

cα,β+1Sα+1,β − cα+1,βSα,β+1 = cα+1,β+1xSα,β(7)

cα+1,βSαβ − cαβSα+1,β = cα+1,β+1xSα,β−1(8)

cα,β+1Sαβ − cαβSα,β+1 = cα+1,β+1xSα−1,β(9)

Proof. For the first equation, we start with the representations

yUα−1,β − Tα−1,β = Vα−1,β = cα,β+1x
α+β +O(xα+β+1)

yUα,β−1 − Tα,β−1 = Vα,β−1 = cα+1,βx
α+β +O(xα+β+1)

using (5). Where U = cα+1,βUα−1,β − cα,β+1Uα,β−1 and T = cα+1,βTα−1,β −
cα,β+1Tα,β−1 we obtain

ycα+1,βU − cα,β+1T = V = O(xα+β+1).

Since T and U have degrees α and β we have T = hTαβ , U = hUαβ , V = hVαβ for
some constant h. Equating the cofficients for xα in the equation for T allows us to
calculate h = cαβ .

We obtain (7), (8), and (9) in similar fashion. �

Corollary 1.1. (Frobenius)

cαβcα,β+1Sα+1,β − (cα,β+1 + cαβcα+1,β+1x)Sαβ + cα+1,βcα+1,β+1xSα−1,β = 0

(10)

cαβcα+1,βSα,β+1 − (cα,β+1 − cαβcα+1,β+1x)Sαβ + cα,β+1cα+1,β+1xSα,β−1 = 0

(11)

These are recursion formulas which enable the calculation of the values of the
polynomials T and U stepwise along any path starting from the constant entry
[0/0]. If the polynomials Tαβ and Uαβ are known, then we may calculate the four
constants

cαβ = [Uαβ ]0 ,

cα+1,β = (−1)β [Uαβ ]β ,

cα,β+1 = (−1)β [Tαβ ]α ,

cα+1,β+1 =

β∑
j=0

aα+β+1−j [Uαβ ]j .

Knowing another adjacent set of polynomials T and U for one of the recursion
formulas above, we are able to calculate the third set of adjacent polynomials.
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Algorithm to calculate Padé approximants stepwise along a line through
the table starting from [0/0] :
Let 0 < q < 1. We follow a stepwise path through entries in the Padé Table where
the ratio of the degrees of the numerators to the total degree is kept very close to
q. Initialize U00 = 1, T00 = a0, U01 = a0−a1x, T01 = a2

0, indicating an initial step
downwards, with αβ = 01 for the next step. We calculate c01, c11, c02, c12 and set
the current ratio r = q.

Each step starts with updating r = r + q.

If r > 1:
This signifies a step to the right and we reset r = r − 1.
If the previous step was downward, we use known Tα,β−1, Uα,β−1 and Tα,β , Uα,β in
formula 8 to find the new Uα+1,β and Tα+1,β

If the previous step was to the right, we use formula 10 to calculate the new Uα+1,β

and Tα+1,β .
We complete this step by updating α, β to α+1, β and calculating cα+1,β , cα+1,β+1

If r < 1:
This signifies a step downwards.
If the previous step was downward, we use formula 11 to find the new Uα,β+1 and
Tα,β+1

If the previous step was to the right, we use formula 9 to calculate the new Uα,β+1

and Tα,β+1.
We complete this step by updating α, β to α, β+1 and calculating cα,β+1, cα+1,β+1.
�

Since these relations are homogeneous in S and the c-constants, they are not re-
strictive to the exact formulations T,U . It is sufficient that for adjacent Padé

approximants
Pα1β1

Qα1β1

and
Pα2β2

Qα2β2

be normalized, i.e., that Pα1β1
= kTα1β1

and

Pα2β2
= kTα2β2

for some fixed value k.

Corollary 1.2. If
Pα1β1

Qα1β1

and
Pα2β2

Qα2β2

are two adjacent entries entries in the Padé

Table, with Pα1β1
= k1Tα1β1

and Pα2β2
= k2Tα2β2

. Then Theorem allows us to find

find the ratio k1
k2

an so normalize the representations.

Proof. Let Pα1β1
= k1Tα1β1

and Pα2β2
= k2Tα2β2

. There are four cases depending
upon the adjacency.

• Horizontal adjacency: α1, β1 = α, β; α2, β2 = α+ 1, β.
Using (2) and (4) establishes that

cα+1,β =
(−1)β

k1
[Qαβ ]β =

[Qα+1,β ]0
k2

.

so

[Qα+1,β ]0 Pαβ and (−1)β [Qαβ ]β Pα,β+1(12)

are normalized.
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• Vertical adjacency: α1, β1 = α, β; α2, β2 = α, β + 1.
Using (2) and (3) establishes that

cα,β+1 =
(−1)β

k1
[Pαβ ]α =

[Qα,β+1]0
k2

.

so

[Qα,β+1]0 Pαβ and (−1)β [Pαβ ]α Pα,β+1(13)

are normalized.
• Diagonal adjacency 1: α1, β1 = α, β; α2, β2 = α+ 1, β + 1.

Using (2) and (5) establishes that

cα+1,β+1 = [Vαβ ]α+β+1

=
1

k1

β∑
j=0

aα+β+1−j [Qαβ ]j

=
[Qα+1,β+1]0

k2
.

so

[Qα+1,β+1]0 Pαβ and

 β∑
j=0

aα+β+1−j [Qαβ ]j

Pα+1,β+1(14)

are normalized.
• Diagonal adjacency 2: α1, β1 = αβ; α2β2 = α+ 1, β − 1.

Using (3) and (4) establishes that

cα+1,β =
(−1)β

k1
[Qαβ ]β =

(−1)β−1

k2
[Pα+1,β−1]α

so

[Pα+1,β−1]α Pαβ and − [Qαβ ]β Pα+1,β−1(15)

are normalized.

�

An alternative is to adapt the recursion formulas to other standard representa-
tions of the Padé components. As an example Baker uses the definition

Aαβ
Bαβ

to denote the [α/β] representative with Bαβ(0) = 1.
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Theorem 1.3. Using the Baker definition the Frobenius recursion formulas may
be rewritten as

−

( ∑β−1
0 aα+β−j [Bα,β−1]j

[Aα−1,β ]α−1 [Bα,β−1]β−1

)
S′α−1,β +

( ∑β
0 aα+β−j [Bα−1,β ]j

[Aα,β−1]α−1 [Bα−1,β ]β

)
S′α,β−1 = S′αβ

(16)

S′α+1,β − S′α,β+1 = −
[Aα,β+1]α
[Aα,β ]α

xS′αβ(17)

=
[Bα+1,β ]β
[Bα,β ]β

xS′αβ(18)

S′αβ − S′α+1,β =

∑β
0 aα+β+1−j [Bαβ ]j∑β−1

0 aα+β−j [Bα,β−1]j
xS′α,β−1(19)

S′αβ − S′α,β+1 =

∑β
0 aα+β+1−j [Bαβ ]j∑β
0 aα+β−j [Bα−1,β ]j

xS′α−1,β(20)

S′α+1,β −

(
1 +

∑β
j=0 aα+β+1−j [Bαβ ]j

[Aαβ ]α [Bαβ ]β
x

)
S′αβ +

∑β
j=0 aα+β+1−j [Bαβ ]j∑β
j=0 aα+β−j [Bα−1,β ]j

xS′α−1,β = 0

(21)

S′α,β+1 −

(
1−

∑β
j=0 aα+β+1−j [Bαβ ]j

[Aαβ ]α [Bαβ ]β
x

)
S′αβ +

∑β
j=0 aα+β+1−j [Bαβ ]j∑β
j=0 aα+β−j [Bα,β−1]j

xS′α,β−1 = 0

(22)

where S′ holds the position for either A or B.

2. Padé approximants to the symmetric zeta function

2.1. Zeros of partial sums.
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Szegő in his paper of 1924 [Sze24] showed that the zeros of the Taylor series of
degree n of the function enz converge to the section of the curve

∣∣ze1−z
∣∣ = 1 lying

inside the unit circle.

Figure 1. Scaled zeros of partial sums for (z − 1)ζ(z)

Since the exponential function has no zeros, these are the so-called “spurious”
zeros, and without the scaling, radiate to infinity.

This study was extended to Padé approximates to the exponential function by
Saff and Varga in a series of three papers [SV76] [SV77] [SV78] , where they showed
that where the ratio of the degrees of the numerators and denominators are kept
constant, the similarly scaled zeros converge to a curved left-side section of the Szeő
curve while the poles converge to a curved right-side section of the reflected Szeő
curve.

Figure 2. Zeros (circles) and poles (crosses) of Padé approxima-
tion to e100z, numerator degree 34, denominator degree 64.

Unscaled, these zeros and poles radiate to infinity as well.
Varga and Carpenter [VC00] [VC01] [VC10] extended this again to Taylor series

approximations of cos(z) and sin(z), which correspond to the real and imaginary
parts of the exponential function. In these cases, as the degrees advance, an in-
creasing number of zeros converge to actual zeros of the functions. For the scaled
spurious zeros the limit curves are sections of the Szegő curve composed of the pos-
itive real component joined with its reflection and rotated by 90◦. In this paper we
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Figure 3. Sections of rotated Szegő curves

present computational results on the distributions of zeros for Taylot approximates
for the symmetric Riemann zeta function and distributions of zeros and poles of
Padé approximates.

3. The Riemann zeta function and the symmetric Riemann zeta
function

The Riemann zeta function ζ(s) is defined in the complex plane for <(s) > 1
2 by

the formula

ζ(s) =
∑
n≥1

1

ns
=

∏
p prime

(
1− 1

p

)−1

.

The product formula shows that ζ(s) has no zeros in this region.
It has an analytic continuation to a meromorphic function with a simple pole at

s = 1 and satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

This also shows that ζ(s) has simple zeros at the negative even integers on the real
line corresponding to the simple poles of the Gamma function, the so-called trivial
zeros. All other zeros must be in the critical strip 0 ≤ <(s) ≤ 1.

Riemann found a symmetric version of this through defining

ξ(s) =
1

2
π−

s
2 s(s− 1)Γ

(s
2

)
ζ(s)

which then satisfies
ξ(s) = ξ(1− s),

In this form, ξ(s) is an analytic function, symmetric about the line s = 1
2 and with

the same zeros as ζ(s) in the critical strip. The Riemann Hypothesis is equivalent
to the statement that all the zeros of ξ(s) are on the line s = 1

2 .

4. Calculation of Taylor and Padé approximates to the symmetric
zeta function

First attempts at evaluating Taylor polynomials:
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• Calculating exact coefficients of the Taylor series. This was very slow.
• Calculate coefficients using floating point arithmetic. Again too slow.
• Use polynomial interpolation at the even integers. This didn’t converge.
• Calculate values for ξ(s) and interpolate to evaluate the coefficients. This

worked.

Calculating the Taylor polynomials:

• Values of ξ(s) were calculated to 6144 digit precision at 4096 points equally
spaced around a circle of radius 1

4 centred at the point s = 1
2 .

• Both the Gamma and Zeta functions use the Euler-MacLaurin summation
formula to compute numerical values. For this the first 10,000 Bernoulli
numbers values were computed once and stored for later use.
• Due to conjugate and even symmetry only 1024 points needed to be eval-

uated. Translation from s = 1
2 to the origin gives a series in even powers

with real coefficients. This was used as a check in the calculation.
• Most of the CPU time was spent in evaluating the function ξ(s) .
• The fastest part of the computation was the polynomial interpolation which

used the FFT (Fast Fourier Transform)

Navigating the Padé Table:

• The Taylor polynomial up to some degree were converted to a continued
fraction.
• The continued fraction was transformed into a numerator polynomial and

a denominator polynomial with the same degree sum.

For Padé approximates Pm

Qn
of fixed total degree m + n, we calculate Pm start-

ing from the Taylor polynomial Tm+n = Pm+n

Q0
and Pm+n+1 = zm+n+1 using the

iterations

Pm−1 = Pm+1 − qmPm

where qm is the quotient obtained by dividing the polynomial Pm+1 by Pm and
Pm+1 is the remainder. For Qn we start from Q−1 = 0 and Q0 = 1 and continue,
using the iterations

Qn+1 = Qn−1 − qmQn.

Defining the associated polynomials Un starting from U−1 = 1 and U0 = 0 and
continuing inductively

Un+1 = Un−1 − qmUn

we obtain the Bézout identity

Pm = Unx
m+n+1 +QnTm+n.

at each step.
Root finding:

• The roots of the above polynomials were obtained using Madsen’s method,
which is based on Newton’s method.
• The polynomial root finding was the second most time-consuming opera-

tion.
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Figure 4. Zeros of dergree 40 Taylor approximation to ξ(z)

Figure 5. Zeros of dergree 1024 Taylor approximation to ξ(z)

5. Presentation of results of the computations

Zeros of Taylor polynomial approximations:

For each degree, zeros of the polynomial approximate the zeros of ξ(s) up to
some branch point. Beyond this, the zeros branching off in opposite directions do
not correspond to zeros of ξ(s). These are the ”spurious” zeros.

Zeros and poles of Padé rational function approximations:

For each degree there are a number of Padé approximates possible, where this is the
sum of the degrees of the numerator and denominator. A diagonal approximation
has degrees of numerator and denominator equal.
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Figure 6. Zeros (left) and poles (right) of mulktiple Padé approx-
imates to ξ(z) of total degree 32 with the ratio of degrees varying

Figure 7. Zeros and poles for diagonal Padé approximations of
degrees 64 and 1024 to ξ(z)

Figure 8. Zeros (circles) and poles (crosses) for diagonal Padé
approximates to ξ(s) for multiple degrees to 256
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6. Comparison with approximations to cos(z)

Figure 9. Comparison of zeros for Taylor approximations for ξ(z)
and cos(z)

Figure 10. Comparison of zeros and poles for diagonal Padé ap-
proximations of degree 512 for ξ(z) and cos(z)
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Figure 11. Zeros (crosses) and poles (circles) for diagonal Padé
approximates to cos(z) for multiple degrees to 200
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