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Abstract

Algorithms on multivariate polynomials represented by straight-line programs are developed. First
it is shown that most algebraic algorithms can be probabilistically applied to data that is given by a
straight-line computation. Testing such rational numeric data for zero, for instance, is facilitated by ran-
dom evaluations modulo random prime numbers. Then auxiliary algorithms are constructed that deter-
mine the coefficients of a multivariate polynomial in a single variable. The first main result is an algo-
rithm that produces the greatest common divisor of the input polynomials, all in straight-line representa-
tion. The second result shows how to find a straight-line program for the reduced numerator and denomi-
nator from one for the corresponding rational function. Both the algorithm for that construction and the
greatest common divisor algorithm are in random polynomial-time for the usual coefficient fields and out-
put a straight-line program, which with controllably high probability correctly determines the requested
answer. The running times are polynomial functions in the binary input size, the input degrees as unary
numbers, and the logarithm of the inverse of the failure probability. The algorithm for straight-line pro-
grams for the numerators and denominators of rational functions implies that every degree bounded ratio-
nal function can be computed fast in parallel, that is in polynomial size and poly-logarithmic depth.
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1. Introduction

This study is concerned with complexity questions about performing operations, such as
greatest common divisor (GCD) computation and factorization, on multivariate polynomials.
Several models for representing multivariate polynomials have been suggested.

. The dense representation writing down all coefficients.

. The sparse representation writing down all non-zero coefficients and the corresponding
monomial exponent vectors.

. Formulas, denoted by expressions similar to those from higher programming languages.

. Straight-line programs such as the Gaussian elimination sequence on a determinant of
polynomials.

We will perceive these representations from a macroscopic point of view which is that
polynomial time or space differences within each class are not as important to us as are the expo-
nential differences between the classes. We remark, however, that the microscopic point of view
is important to consider for pragmatic reasons, see e.g. Stoutemyer’s [41] comparison of different
sparse representations. One easily realizes that the four models form a hierarchy, that is within a
polynomial extent of space we can represent more and more polynomials going from the dense
to the straight-line representation. Therefore, the latter is — from a macroscopic point of view —
the most powerful one. This is nicely illustrated by the famous example of symbolic determi-
nants that have exponentially many terms when converted to “sparse” representation, but that can
be represented by straight-line programs of length proportional to at most the cube of the dimen-
sion.

The question is, of course, whether polynomials given by straight-line programs, a notion
which we will make precise, can be manipulated at all. Arithmetic operations trivially become
additional assignments and the first problem of interest is the GCD. Since for even univariate
sparse polynomials this operation is NP-hard [35], a restriction necessarily has to be made. One
natural additional parameter to bound polynomially, other than representation size, is the total
degree of the input polynomial. Valiant [45] calls such families of polynomials of polynomially
bounded degree and straight-line computation length p-computable. Several important transfor-
mations on p-computable polynomials are already known, Strassen’s elimination of divisions
[43] or the parallelization technique by Valiant et al [46],. for instance. Another such transfor-
mation by Baur and Strassen [3] allows to compute all first partial derivatives with growth in
length by only a constant factor and without even the need of a degree bound. There are also
known negative results in [45] that show, e.g., that general permanents can appear as coefficients
of single monomials and as multiple partial derivatives (see also 85). It should be noticed, how-
ever, that all these algorithms are interpreted as program transformations and not as polynomial
manipulation routines. Von zur Gathen [11] obtained a probabilistic algorithm that determines
the factor degree pattern, i.e. the total degrees and multiplicities of the factors, of polynomials
given by straight-line programs. Schwartz’s [39] evaluation technique at random points and
modulo large random pseudo-primes (see also [18] and 83) plays an important role in that and
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our new results. In the context of representing polynomials by straight-line programs Heintz’s
result [15] also deserves to be mentioned.

The theory for polynomial manipulation on straight-line representation should deal with
the computations of straight-line results whenever possible, e.g. produce a straight-line program
for the GCD of two determinants of polynomial matrices. In Valiant’s language it is the question
of closure properties of p-computable families of polynomials. It is this theory we begin to
develop here. In this paper we will show how a straight-line program for the GCD of many poly-
nomials can be constructed in random polynomial-time from their straight-line representations as
well as a bound for their total degrees (86). This probabilistic result is of the Monte-Carlo kind,
which means that the algorithm always takes polynomial-time but may with controllably small
probability return an incorrect answer. Our algorithm is polynomial-time even for coefficient
domains such as the rational numbers. This is insofar surprising because the coefficients of the
input polynomials can be exponentially large. In general the exponential size growth of the inter-
mediately calculated rational numbers during most algorithms such as Strassen’s elimination of
divisions causes additional complications.

For various reasons we chose to carefully develop the theory of straight-line program
manipulation here (82 — 85) before discussing the concrete applications. For one, the running
time of our algorithms must be estimated. One can consider polynomial-time complexity bounds
as our uniformity requirement for the straight-line program transformations. No such require-
ment is needed or enforced in the lower bound applications of the elimination of divisions trans-
formation or the computation of derivatives. We will use as our model of computation that of a
probabilistic algebraic random access machine (RAM) whose instruction set and binary com-
plexity measures we will define (82). Since we strive to obtain random polynomial-time com-
plexity, the execution of arithmetic operations will cost as many time units as are needed to per-
form these operations in binary. Under this “logarithmic cost criterion” the needed straight-line
program transformations are established to be of polynomial-time complexity by the use of what
we call the simulation principle. This principle shows that the usual RAM programs can be con-
verted into RAMs of polynomially related binary asymptotic complexity which generate the
straight-line programs corresponding to these computations (84).

The GCD problem for dense multivariate polynomials was first made feasible by work of
Collins [8] and Brown [5]. Moses and Yun [34] showed how to apply the Hensel lemma to GCD
computations. Zippel [47] invented an important technique to preserve sparsity of the multivari-
ate GCD during Brown’s interpolation scheme, though it should be noted that Zippel’s approach
is not random polynomial-time. The reason is that the content and primitive part of the inputs
can not be separated because some sparse polynomials have dense primitive parts, cf [13],. 85.
We also mention the heuristic GCD algorithm in [7] which may be practically a faster algorithm
if the inputs have few variables.

Our algorithm for computing the GCD as a straight-line program needs several inno-
vations. For one, we remove the need of the content computation by substituting linear forms of



February 9, 1987

the main variable into minor variables. These substitutions lead with high probability to monic
polynomials in the main variable and thus allow a single Euclidean sequence over the field of
rational functions in the minor variables. We compute the coefficients in the main variable by
determining these coefficients (now rational functions in the minor variables) for each assign-
ment in the straight-line program. Finally we encode a polynomial remainder sequence compu-
tation on the coefficient vectors by determining the degrees of the remainders through probabilis-
tic evaluation of their coefficients. The GCD problem for many polynomials is reduced to that of
two polynomials via a theorem stating that two random linear combinations of the set of input
polynomials yield with high probability the same GCD.

We now turn to the computation of numerator and denominator of rational functions.
Strassen [43] raised the question whether the reduced numerators and therefore also the denomi-
nators of rational functions could be computed by straight-line programs of length polynomial in
the length of straight-line programs for the functions themselves and the degrees of the relatively
prime numerator-denominator pairs. Here we answer this question affirmatively by showing that
such straight-line programs can be also found in random polynomial-time (88). The construction
is closely related to the straight-line GCD algorithm put together with computing Padé approxi-
mants via the extended Euclidean algorithm. Our solution will require an algorithm for finding a
straight-line program for the Taylor series coefficients to a given order of the rational functions
with respect to a single variable. In 87 we present a solution to this problem following the
approach by Strassen [43], and it comes as no surprise that we obtain the result on eliminating
divisions from straight-line programs for polynomials as a consequence (theorem 7.1).

The resolution of the numerator and denominator complexity of rational functions has an
important consequence in the theory of poly-logarithmic parallel computations. First we note
that Hyafil [17] and Valiant et al [46]. established that families of p-computable polynomials can
be evaluated in parallel in polynomial size and poly-logarithmic depth. We now can apply this
result to the straight-line programs for the numerators and denominators of rational functions and
therefore can conclude that every family of rational functions of polynomial complexity and
reduced numerator-denominator degrees can also be computed in parallel in poly-logarithmic
time with polynomially many processing elements (corollary 8.3).

Notation: By Z we denote the integers, by Q the rationals, and by F the finite field with q ele-
ments. By QF(D) we denote the field of quotients of an integral domain D, by num(a) the
numerator and by den(a) the denominator of a [1 QF(D). The coefficient of the highest power of
Xy in f O(D[Xz ,..., Xa])[X1] is referred to as the leading coefficient of f in x,, Idcf, (f).

By M(d) we denote a function dominating the time for multiplying polynomials in D[X]
of maximum degree d. Notice that M(d) depends on the multiplication algorithm used and the
best known asymptotic result is d log d log log d [38].

The cardinality of a set R is denoted by card(R). All logarithms in this paper are to base 2
unless otherwise indicated.
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2. Straight-Line Programs and Algebraic RAMs

We first present the precise definition of what we understand by (algebraic) straight-line
programs.

Definition: Let D be an integral domain. Then P = (X, V, C, S) is an algebraic straight-line
programover D if

(SLP1) X={X;,....%x3+0D,S={s;,....,s30D,V={{vy,....,.vi},Vn D=0. Xiscalled
the set of inputs, V the set of (program) variables, Sthe set of scalars. If S= [J then P
is called scalar-free.

(SLP2) C=(v; « V;0,Vy)=1..  Witho, O{+ = %, =}, v, v, 0SO X O {vy ,..., v, } for
all 2=1,...,1. Ciscalled the computation sequence and | the length of P, | = len(P).
If all o, # + then P is called division-free.

(SLP3) Forall A=1,...,1 there exists sem(v,) [ D, the semantics of v,, such that

sem(a)=aifadSO X,

sem(v,) = sem(v,) £sem(v,) ifo, = *,

sem(v,) = sem(v,) sem(v,) if o, = X,

sem(v,) # 0 and sem(v;) sem(v,) = sem(v,) if o, = +.

The set of elements computed by P is sem(P) = [1',_, {sem(v,)}. O

We observe that the integrality of D guarantees the uniqueness of sem(v,). If D is a field
then the last case in axiom (SLP3) simplifies to sem(v;) # 0 if o, = + since then sem(v,) can be
determined as sem(v,)(sem(v,))*. Our definition is more general than Strassen’s [42] who
always insists on the invertibility of sem(v,) in case o, = +. That our generalization is useful can
be seen from the straight-line programs computing determinants and subresultants over D by
exact division.

Our main application will be for programs P = ({X; ,..., X,}, V, C, S) over D = F(Xx, ,...,
X,) Where S0 F, F afield, and which determine certain polynomials f O F[X, ,..., X,] with f
[0sem(P). In such a case we say f is given by the straight-line program P. Notice that we will
use the notation f [ sem(P) with the implied understanding that we also know the v, 0OV with
f =sem(v,). However, sometimes our more general formulation is needed. One example would
be to find the shortest straight-line program that computes the Newton polynomials 3, x|, i =
2 ,..., n, from the symmetric functions in the indeterminates. For lower bound considerations
one usually adds the condition in (SLP1) that {x; ,..., X,} is algebraically independent over the
field generated by S. For polynomials given by straight-line programs this restriction is satisfied,
but for ease in the formulation of later definitions and theorems we shall not adopt it in our main
definition.
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Algebraic computations over abstract domains D are usually formulated in terms of pro-
grams to be executed on an algebraic RAM over D. Let us more precisely describe this model of
computation. An algebraic RAM over D has a CPU which is controlled by a finite sequence of
labelled instructions and which has access to an infinite address and data memory (see fig. 1).

3 V2-1

Input Medium Address Data
! Memory Memory

CPU 1: READADDR 2 -115 1 ?
2:  READ -2 2 |3 2 ?
3:  CONSTADDR 1,2 3|7 3| V2-1
4. ADDADDR 1,2 4 | ? 4 ?
5:  CONST -1,V2 51| 7? -5 | 2+V2
6: DIV 5, -2 6 | ? 6 ?
7:  PRINT -1
8: HALT
!

2+V2 | EOT

Output Medium
Fig. 1: Algebraic RAM over Z[V2].

The split into two memories, one that facilitates pointer manipulation for array processing as
well as maintaining a stack for recursive procedures, and another memory in which the algebraic
arithmetic is carried out, is also reflected in other models for algebraic computations such as the
parallel arithmetic networks in [12] or by the omnipresence of the built-in type Integer for index-
ing in the Scratchpad Il language [20]. Each word in address memory can hold an integral
address and each word in data memory can store an element in D. The CPU also has access to
an input and an output medium. The instructions in the CPU may have one or two operands
which typically are integers. The operands refer to words in address or data memory depending
whether the instruction is an address or a data instruction. Indirect addressing is indicated by a
negative operand. For completeness the micro-code for a full instruction set is given in fig. 2.

The arithmetic time and space complexity of an algebraic RAM for a given input are
defined as the number of instructions executed and the highest memory address referenced,
respectively. It is not always realistic to charge for each arithmetic operation in D one time unit.
We will consider encoding data in binary and define as size(a), a O D, where D is a concrete
domain such as Z or F, the number of bits needed to represent a. Then the cost and space of an
arithmetic instruction depends on the size of its operands. The binary time and space complexity
of an algebraic RAM over D is derived by charging for each arithmetic step in D as many units
as are needed to carry out the computation on a multitape Turing machine. Notice that we
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Instruction Description
ADD{ADDR} 0] Op; ~ Op; + Op; (see below).
SUB{ADDR} I, ] Op; < Op; — Op;.
MULT{ADDR} ] Op; « Op; x Op;.
DIVADDR 0] Op; — Op;/Op; U
DIV I, ] Op; — Op;/Op;. The division over D must be exact, other-
wise an interrupt occurs.
CONST{ADDR} i,C Op;, — c.
MOVE{ADDR} i ] Op; ~ Op;.
JMP I Execution continues at program label I.
JMPZ{ADDR} il If Op; = 0 then execution continues at program label |.
JMPGZADDR il If Op; > 0 then execution continues at program label |.
READ{ADDR} i The input medium is advanced and the next item is read into
Op;.
PRINT{ADDR} i The output medium is advanced and Op; is written onto the
medium.
HALT An EOT marker is written onto the output tape and execution
terminates.
AM[!] ifi >0 and address instruction
Op, = DM[i] | data
| AMIAML=] ifi <0and address instruction
DM[AM[-i]] data

AM = address memory, DM = data memory
AM][-i] must be positive, otherwise an interrupt occurs.

Fig. 2: Summary of algebraic RAM instructions

generally assume that the domain arithmetic can be carried out in polynomial binary complexity
with respect to the size of the operands. What that implies in particular is that elements in F,
say, always require O(log(q)) representation size, whether or not they are residues of small inte-
gral value. For READ, PRINT, CONST, MOVE, or JMPZ instructions we charge as many units
as is the size of the transferred or tested element.

We also apply this “logarithmic cost criterion” to the address computations and assume
that every address is represented as a binary integer. The binary cost for performing address
arithmetic is again the Turing machine cost. For indirect addressing we add the size of the final
address to the binary time and space cost of the corresponding instruction. We note that in most
circumstances the binary cost for performing address arithmetic is largely dominated by the
binary cost of the algebraic operations and that for all practical purposes the largest storage loca-
tion is of constant size. But our more precise measure has its advantages. First, all binary
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polynomial-time algorithms on algebraic RAMSs are also polynomial-time in the Turing machine
model. Second, the true binary complexity is measured if we can use the address memory for
more than address computations, e.g. for hashing with sophisticated signatures. Another such
example is that of selecting random domain elements.

A probabilistic algebraic RAM is endowed with the additional instruction
RANDOM{ADDR} i, j

with the following meaning. Into Op; an element [J D (or address) is stored that was uniformly
and randomly polled from a set R of elements (or integers) with card(R) equal to the address
operand Op; (see fig. 2 for the definition of Op). The selection of R is unknown except all its
elements a [0 R have size(a) = O(log Op;). This model of randomized algebraic computation
overcomes the problem of how to actually generate a “random” rational number, say, and, as we
will show later, the failure probabilities can in our circumstances be fully analyzed.

Most of our algorithms will read as input, produce as intermediate results, and print as out-
put straight-line programs. Here we will not describe a concrete data structure that can be used
to represent straight-line programs on an algebraic RAM. It is fairly easy to conceive of suitable
ones, e.g. labeled directed acyclic graphs (DAG) could be used. A more intricate data structure
was used for the first implementation of our algorithms and is described in [10].

At this point it is convenient to define the element size of a straight-line program as

el-size(P) = S size(V)).
v, OX0OS % 0{,"}

Notice that the actual size of P is in bits
O(len(P) log len(P) + el-size(P)),

since it takes size(v;) = O(log(A)) bits to represent v, in address memory.
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3. Evaluation and Size Growth

Classically, the inputs to a straight-line program are indeterminates which during execution
of the program are evaluated at concrete values. Two problems arising with the evaluation pro-
cess need to be discussed. The first is that evaluation may lead to a division by zero which we
must declare illegal. The second problem is that the binary complexity of evaluation can turn out
to be exponential in the length of the program. In this section, we address both problems. Let us
formally define evaluation.

Definition: Let P = (X, V, C, S) be a straight-line program of length | over D, D be another
integral domain and ¢(a) = a be a mapping from X O S into D. Weextend g toV ={v, ,..., V;},
V n D=0, by setting ¢(v;) =V,, 1 < A <1, and define

X ={o(x)| xOX}, S ={g(5) |08}, C = (V, « ¢(v;) 01 $(V1))s=1,....1-
We call P defined at ¢ if ¢(P) = (X, V, C, S) is a straight- line program over D. O

It is clear that only condition (SLP3) of the straight-line program definition for ¢(P) must
be verified. If ¢ can be extended to a ring homomorphism from D into D, it suffices to require
¢(sem(v,)) # 0 for o, =+, 1 < A < |, because then exact division is guaranteed. But more general
evaluations do occur such as in the following example:

Example: Let D = Q(x), D = GF(2), ¢(x) = ¢(1/3) = 1, ¢(2) = 0 and P = ({x}, {v1, Vo },
(vy « x+1/3, v, « 2+Vvy), {2, 1/3}). P is not defined at ¢ since sem(v;) =0 mod 2. Notice also
that ¢ cannot be extended to a ring homomorphism from Q(x) into GF(2).

It is easy to see that given the encoding of a straight-line program P = (X, V, C, S) over D
we can compute sem(v,) in O(l) steps on an algebraic RAM over D. If we assume that D is a
field or that ¢ is a ring homomorphism, we can also decide in O(l) steps on an algebraic RAM
over D whether the encoding of ¢(P) represents a straight-line program. All we need to do is
test whether sem(g(v;)) # 0, o, = +, before performing the division. Controlling the binary com-
plexity of evaluation is, however, a much more difficult matter. The reason is that the straight-
line programs may generate exponentially sized elements.

Example: Let P = ({x}, V, C, O0) over Q(x) where

C = (Vy « XXX, Vy « XXV,
Vg « ViXVq, Vg « VyXVg,

V5 « V3XV3, Vg — VyXVg,

Vo1 « Vo 1-3XVp3, Vo1 « V12XV,
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Vare1 « Vo1 XVai_1, Vorup « Vo FVy)).

We remark that sem(Vy,_y) = X2, sem(Vy,) = X2 L, 1< A < 1, sem(Vypeg) = X2, 5eM(Voyap) = X
The test whether P is defined at ¢(x) = 2 would require on an arithmetic RAM over Q exponen-
tial binary running time. Notice also that the last element computed by P is again small in size.

In what follows we combat the size blow-up by a modular technique, an idea first sug-
gested in Schwartz [39] and Ibarra and Moran [18]. A generalization of what follows to alge-
braic extensions of Q can be found in [11]. For completeness we shall give the proof of the next
lemma.

Lemma 3.1: Let P = ({X; ,..., X}, V, C, {S; ,..., Sn}) be a straight-line program of length |
over Q(Xy ,..., Xp), &, UQ, ¢(x,)=a,,1<v<nb, 0Q, ¢(s,) =b,, 1 < u<m. Assume that
P is defined at ¢, and that n + m < 2I, which is satisfied if all inputs and scalars actually occur in
the computation sequence. Let B, > 2 be an integer bound such that

Inum(a, )|, |[den(a,)|, [num(b,)|, |[den(b,)| < B,, 1<v<n,1<u<m.

Then there exists an integer Nyp) < Bﬁ'+3 such that for all prime integers p that do not divide
N, the following is true:

i)  den(a,), den(b,)¥0mod pforalll<sv<n1<us<m

i) Ifwe define y: {x,} O {s,} - Fy by w(x,)=a, mod p, y(s,) =b, mod p,1<sv<n,1
< u < m, then P is defined at .

Proof: Let ¢(P) = ({a,}, {v,}, C, {b,}). We must estimate
u, = num(sem(v,)), t, =den(sem(v,)), 1<i<l.

By induction, we can prove that

2B,)* .
i< E2 < 1<as 0

Consider v, — ¢(V,) o, ¢(v,). By induction hypothesis

N 1= 3 G o % o
Uzl [t < ———— up =num(g(v,)), t; =den(p(v;)), *=".""
In case o, = + we thus get
A-1 -1
o (2B,)¥ *?
Uzl < Juyty + Uty | < Jugfft] +uglft,] <2 —_—
The treatment of t;, and the cases o, = —, x and + are similar. Thus () is established.

Now we observe that
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M, = [ Iden(a,)| [ [den(b,)| < B3

1<v=n 1<usm

We set
|
_ | 1+2 1+3
Nyp) = My Dl il < By By <Bj .

Clearly, if a prime p does not divide Ny, i) and ii) are satisfied. O

Although our bound for N, in the above lemma is of exponential size, we can pick a
suitable prime probabilistically quite efficiently. Let

k =2 log(B,) = 4 10g(N,r))

and consider the first k primes p, ,..., px. Since for each subset K of {1 ,..., k} of cardinality >
k/4,

Ki4 < olog(Nye)) —
EIK P> 27 2 2100w = Nyp),
K

we conclude that fewer than k/4 of the primes p, ,..., py can be divisors of N,p). Now
Pk < k(log, k+log, log. K) < k logk, k=6,
(c.f. Rosser-Schoenfeld [36], (3.13)). Therefore, if we randomly pick a prime p,
p<klogk < Cyp = (I +5+loglog(B,)) 2'*° log(B,), (1)

with probability > 3/4 this prime will certify that P is defined at ¢. We have the following algo-
rithm.

Algorithm Zero-Division Test

Input: A straight-line program P = ({Xy,..., Xo}, V, C, {s1,..., Sm}) of length | over Q(Xy,..., X,),
a, b, 0Q,1<sv<n,1<u<m, anda failure probability ¢ < 1.

Output: An integer p such that P is defined at w(x,) = a, mod p, w(s,) = b, mod p, or “fail-
ure”. In case P is defined at ¢ failure occurs with probability < ¢.

Step L (Loop on trials): Repeat step P and E [log 1/ [times. Then return “failure”.
Step P (Pick a prime): Let B, be as defined in lemma 3.1 and set C, ) according to ().

FORi « 1,..., j=[R21/10 log C,p) ODO
Select a random positive integer p < C,. Perform a probabilistic primality test on p, e.g.
Solovay’s and Strassen’s [40], such that either p is certified composite or p is probably
prime with chance =1 - 1/(8]). In the latter case goto step E.

At this point no prime was found, so go back to step L.
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Step E (Evaluation): Evaluate y(P) on an algebraic RAM over F. If a division by zero or a
zero-divisor occurs, go back to step L. Otherwise return p. O

We note that the bound C, ) is only of theoretical interest. In practice already word-sized
primes are likely to certify that P is defined at ¢. Clearly, the Zero-Division Test algorithm runs
in binary polynomial-time and requires polynomially many random bit choices. We will not
state explicit polynomial upper bounds for this or any of the subsequent algorithms, although the
original version of this paper [21] contained several of them. Instead we now refer to [10] for the
actual performance of our algorithms, which would not be captured by those crude upper bounds.
However, the theoretical failure probability of the Zero-Division Test algorithm shall be analyzed
in the following theorem.

Theorem 3.1: Algorithm Zero-Division Test requires (I log(B,) log(1/£))°® binary steps on a
probabilistic algebraic RAM over Z. In case P is defined at ¢ it returns “failure” with probability
<eE.

Proof: There are three circumstances under which step P and E do not find the prime p even if P
is defined at ¢. First, a prime may never be picked in step P. There are

7 Cyp
7(Cyp) > — —2B__C. =17,
#(P) 10 log (C¢(P)) #(P)
primes < C,p), cf [36],. (3.5). Thus the probability that we select a composite p in all iterations
of step P is no more than

1 ﬁ%"’gcm 1 1
- < —< —,

51 10/7 log Cypy U e 8
Second, the chance that all composite p selected in step P are recognized as such is certainly not
less than (1 - 1/(8j))! > 7/8, because (1 —1/8)Y} < 1 - 1/(8]). Thus we pass a composite p on to
step E with chance < 1/8. Third, by the previous discussion we have selected a prime with p |
N,y With chance < 1/4. Therefore, the total probability of things going wrong is < 1/4 + 1/8 +
1/8 = 1/2. Now, step P and E are repeated at least log 1/¢ times, therefore the probability of fail-

ing at all these trials is < (1/2)'9Y¢ = ¢. O

We can use the algorithm Zero-Division Test to determine whether an element in
sem(¢(P)) is zero. Let us briefly write down the algorithm,

Algorithm Zero Test
Input: As in algorithm Zero-Division Test. Furthermore, anindex 2,1< A <1,

Output: Denote by e, = sem(¢(v;)). We return either “e; is definitely # zero” or “e, is probably

0”. The latter happens if P is defined at ¢ and e, # 0 with probability < «.
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Step Z (Zero-Test): Run algorithm Zero-Division Test on P’ = ({X; ,..., X,}, V O {v;1}, C con-
catenated with (vi,; < 1+Vv,), S) and ¢. If no failure occurs return “e, is definitely # 0”, other-
wise return “e; is probably 0”. O

Another application of the algorithm Zero-Division Test is to, in fact, compute e, =
sem(¢(v,)), 1 < A <. Since e, can be of exponential size in |, polynomial-time complexity can
only be expected if we know an a-priori bound B, = |num(e;)|, |den(e,)|. We again shall explic-
itly present the algorithm.

Algorithm Evaluation
Input: As in algorithm Zero-Division Test. Furthermore anindex A, 1< A4 <, and a bound B,.

Output: Either “failure” (that with probability < £ in case P is defined at ¢) or e, = sem(¢(V;))
provided that

Inum(e;,)|, |den(e;)| < B,.

Step T (Zero-Division Test): Call algorithm Zero-Division Test. If it fails, return “failure”.

Step M (Modular Image Evaluation): Let p be the integer returned by the call to the Zero-Divi-
sion Test algorithm. Compute &, = sem(¢(v,)) mod p* where p = 2B2, 0 < &, < p*. This is
possible because p must be relatively prime to all denominators computed.

Step C (Continued Fraction Recovery): Find the continued fraction approximation to &,/p,
ﬂ U Uy

b

gy ) y t|<Bl, t|+1ZBﬂ.

tiv
Return e, = (&,t; — pu)/t;. O

For B = max(B,, B,) the algorithm takes (I log(B) log(1/¢))°® binary steps. The correct-
ness of step C follows from the theory of continued fractions [14], Chapter X. The idea of work-
ing modulo p* is sometimes referred to as Hensel-code arithmetic [29]. If individual bounds for
|[num(e;)| and |den(e;)| are known, as they often are, then the approach is subject to
improvement, cf [26],. Theorem 4.1.
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4. Probabilistic Simulation

We now turn to our uniformity considerations, that is the complexity of performing the
needed straight-line program manipulations on algebraic RAMs. We shall demonstrate the issue
on an example. Let

f(X) = yox" + 00k yo, 9(X) = X" + Zpyy X™ + [0 25, N> m,

and let D = E[Y,,..-, Yo, Zm1 s---» Zp] Where E is an abstract integral domain of characteristic #
2. We want to design an algebraic RAM over D which on input n, m, Yo ,..., Y Zo »-+s Zme
outputs (the encoding of) a straight-line program

P=({y, |v=0,...,n}y0{z,|x«=0,...,m-1},V, C, {2})
such that ¢, [O0sem(P), 0 < x < n—m, for the polynomial quotient of f(x) and g(x),
q(X) = Cpmx™ " + [0y O Dx], deg(f(x) —a(x) g(x)) <m,

and len(P) = O(n log mlog(log m)). The existence of such a program follows from several
sophisticated results on polynomial multiplication [38] and power series inversion [30]. Our
question is what is the binary complexity of the algorithm that generates such a straight-line pro-
gram.

Fortunately, the answer is not difficult. An algebraic RAM over D that actually computes
the c,. by the asymptotically fast polynomial division algorithm performs only arithmetic on ele-
ments in D and tests only addresses. The problem is that such an algebraic RAM has high binary
complexity due to the fact that the calculated elements in D are dense multivariate polynomials.
However, if we represent all calculated elements implicitly as the semantics of the variables of a
certain straight-line program, this exponential growth does not occur. The algebraic RAM over
D that generates the straight-line answer now “simulates” the arithmetic operations in D in the
following way. Assume the elements

a=sem(v,), b=sem(v,) OD,

need to be multiplied in the course of the polynomial division algorithm. At this point we
already have a straight-line program

Q={y,lv=0,...,n}0{z, | #=0,..., m—1}, V,, C,, {2})

such that v,., v, OV,. We now merely need to append the assignment v;,; « v, X v, to C, and
obtain a program Q,,; with ab [0 sem(Q,,;). The binary cost of such a simulated division is
O(log(l) + size(v,) + size(v,)). It is this cheapness for arithmetic that makes the straight-line
representation for multivariate polynomials so efficient. For later reference we formulate our
observations as a theorem.

Theorem 4.1 (Smulation Principle): Assume an algebraic RAM M over D on input n > 1, x;
...+, Xp O D computes y; ,..., Y O D in T(n) steps without testing an element in D for zero.
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Then we can construct an algebraic RAM M' over D that on the same input computes the encod-
ing of a straight-line program P over D with

len(P)<T(n) and {yi,..., Ym} U sem(P)

such that M’ has binary complexity

O(T(n) log T(n) + 3 size(x,).
v=1l

Proof: By simulating arithmetic instructions as above. The additional factor of log T(n) in the
binary complexity arises from the binary cost of each individual simulation step. The cost
>, size(x,) enters because we must initialize certain program variables to x,. Other program
variables will be initialized to constants from the program, but since the number of such con-
stants is fixed the binary cost of those initializations takes constant time. [

The polynomial division algorithm was special because no elements in D needed to be
tested for zero. This is also true for polynomial or matrix multiplication, but for other important
algebraic algorithms, such as computing the rank of a matrix polynomial, such tests cannot be
entirely avoided. However, algorithm Zero-Test together with choosing the evaluation points
randomly allows us to extend the simulation principle to certain algebraic RAM programs on
data represented by straight-line programs even in the case those RAMs also test domain ele-
ments for zero. We first justify the failure probabilities by the following two lemmas.

Lemma 4.1 (Schwartz [39], Lemma 1): Let0# f OE[X, ,..., X,], E an integral domain, R [
E. Then for randomly selected a, ,..., a, O R the probability

< deg(f)

Prob(f(as,...,a,) =0) < card(R)

(We also refer to [16] for an interesting characterization of a suitable set of n-tuples that distin-
guishes all non-zero polynomials given by short straight-line programs from the zero polyno-
mial.) O

Lemmad4.2: Let P = ({X;,..., X, }, V, C, S) be a straight-line program of length | over F(x, ,...,
Xn), F a field, SO F. Furthermore, assume that a, ,..., a, 0 R O F were randomly selected.
Then the probability that P is defined at ¢(x,) = a,, 1 < v < n, is not less than 1 - 2'*}/card(R).

Proof: It follows by induction on A that
deg(num(sem v,)), deg(den(sem v,)) < 2%, 1<i<l.
Thus
O O_ <
deg [ den(sem(v,))-< 5 2% < 2",
Ui=1 0 =

and the lemma follows from the previous one. O
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We now can demonstrate our probabilistic simulation principle on the example of comput-
ing a determinant with sparse polynomial entries in F[X; ,..., X,]. If we perform Gaussian elim-
ination or the asymptically faster algorithm by Bunch and Hopcroft [6], certain elements in F[x;
..., X,] need to be tested for non-zero before one can divide by them. At that point, these ele-
ments are computed by a straight-line program and we can probabilistically test them by picking
a random evaluation and applying the Zero-Test algorithm. The latter only needs to be called if
size-growth over F = Q is to be controlled. If we choose our evaluation points from a suffi-
ciently large set, then by lemma 4.2 and the Zero Test algorithm the chance that we miss a non-
zero element can be made arbitrarily small. We point out that it is here where we can make full
use of our RANDOM instruction introduced in 82. If F = F,, we may have to evaluate over an
algebraic extension F« in order to poll from a large enough set. The produced straight-line pro-
gram is always correct, provided we know in advance that the determinant is non-zero. Other-
wise, we might with controllably small probability output a program computing 0 even if the
determinant is not, instead of returning “failure.”

The probabilistic computation of a straight-line program of an m by m determinant over
F[X; ,..., Xp] takes binary polynomial-time in m, n, the coefficient size of the sparse polynomial
entries, and log 1/e, where the resulting program is guaranteed to be correct with probability > 1
— &. This is true even if we miss a non-zero “pivot” element. The reason is that the Gaussian
elimination or the Bunch and Hopcroft algorithms always terminate in O(m®) steps, no matter
whether the zero-tests are decided correctly or not. General algebraic RAMSs can be programmed
in such a way that an impossible branch of the computation leads to an infinite loop. A section
of a program with that property is shown in fig. 3.

1: CONST 1,7 Comment: Store 7 into data register 1

2.  JMPZ 1,4  Comment: If data register 1 contains 0, goto label 4
3:  HALT

4:  JMP 4 Comment: Infinite loop

Fig. 3: RAM with unbounded computation tree

In order to formulate the next theorem we therefore need to introduce the computation tree com-
plexity of an algebraic RAM, which is the maximum depth of any path in the computation,
ignoring whether the decisions along the path can actually be taken. We then have the following
theorem.

Theorem 4.2 (Probabilistic Smulation Principle): Assume an algebraic RAM M over D = F(x;
ey Xp)Oninput n =1, X ,..., X, cOMputes vy, ,..., Y 1 D in T(n) computation tree steps.
Then we can construct a probabilistic algebraic RAM M' over D that on the same input com-
putes the encoding of a straight-line program P over D with len(P) < T(n) such that with proba-
bility >1 - &, {y; ,..., Ym} U sem(P). Furthermore, M’ requests random elements from a set R
O F with
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D-I-(n) 2T(n)+2 ]
card(R) =3—03
o ¢ O
and has arithmetic complexity T(n)°®. For F = Q and F = Fq: M’ has binary complexity
(T(n) log(1/£))°®.

Proof: All instructions of M except JMPZ instructions are treated as for theorem 4.1. In order to
decide which branch to select on simulation of a zero-test, we randomly select elements in R and
perform the Zero-Test algorithm on the current straight-line program defining the element to be
tested. The length of that intermediate program is no more than T(n), and by lemma 4.2 an
incorrect answer is returned with probability < 2"™*2/card(R), because the program in step Z of
the Zero-Test algorithm is one instruction longer. Clearly, at most T (n) such tests arise, and we
do not decide any of them wrongly, even using one and the same evaluation for sake of effi-
ciency, with probability less than

T(n) 2T(n)+2
7 < O
card(R)

For special problems such as the symbolic determinant computation the randomizations
introduced in the above theorem are not essential. If we remove the divisions from the generic
determinant computation by Strassen’s method (see Theorem 7.1) we can deterministically in
polynomial-time produce a straight-line program for a symbolic determinant. However, the
length of this program is O(M(m) m*), where m is the dimension of the input matrix. It is an
open question whether an improvement to O(m®) is possible. We remark also that Ibarra, Moran,
and Rosier [19] observed a similar trade-off for removing decisions in the matrix rank problem.
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5. Polynomial Coefficients

We now describe an important utility algorithm for our theory. Assume f OOF[X;,..., X,],
F afield, is given by a straight-line program P over F(X, ,..., X,) and assume we know a bound
d such that
d 0
f =§0cé(x2,..., Xn) X7, Cs(Xo,..y Xp) O F[Xg,..., X,]- ()

We want to produce a straight-line program Q over F(x, ,..., X,,) such that ¢, ,..., ¢4 Osem(Q).
The solution we present in this section is based on the idea to compute the ¢z by interpolating at
different points. In 87 we will give our original solution to this problem [21], which is based on
the then needed Taylor Series algorithm and which is not only more complicated but which also
leads to an asymptotically longer result. Here is now the algorithm.

Algorithm Polynomial Coefficients 1

Input: f OF[Xy,..., X,] given by a straight-line program P = ({X; ,..., X,}, V, C, S) over F(x;
,---, Xp) Of length [, a failure probability ¢ << 1, and a bound d = deg, (f).

Output: Either “failure”, this with probability < &, or a straight-line program Q = ({X, ,..., X, },
Vo, Cq, Sq) over F(X;,..., X,) such that

{co,..., Cg} Osem(Q) and len(Q)=0(ld + M(d)logd),
where c; is defined in ().
Step E (Good Evaluation Points): From a set R [0 F with

8 max((d +1)%, 2'*1)
£

card(R) >

randomly select elements a, ,..., a,. If F =F, and q is too small we can work over an algebraic
extension Fg; with j sufficiently large.

Test whether P is defined at ¢(x,) = a,, 1 <v <n. For F = Q we call algorithm Zero-Division
Test of 83 such that the probability of “failure” even if P were defined at ¢ is less than £/4. If P
turns out to be (probably) undefined at ¢ we return “failure”. Otherwise, P is (definitely) defined
at .

Step P (Interpolation Points): B — {a;}.

REPEAT the following at most (d + 1) times UNTIL card(B) = d + 1.
From the set R select a random point b. If b was chosen in previous iterations or is equal
to a;, we continue with the next repetition. Otherwise, test whether P is defined at w(X;)
=bh, w(x;) =a;,2<i<n. If Pisdefined at y, adjoin the element b to B. For F = Q we
make the probability that we do not recognize this fact properly by calling the Zero-Divi-
sion Test algorithm of 83 less than ¢/(4d + 4).
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If at this point card(B) < d + 1 we return “failure”.

Step | (Interpolation Construction): At this point we have B = {b, ,..., by} such that P is
defined at all x;(x;) = b;. We first build programs Q; over F(X, ,..., X,,) such that

f(b;, Xp,..., X,) Osem(Q;), 1<i<d+1.

This is done simply by replacing each occurrence of x; on the right side of an assignment in the
computation sequence of P by b,. Then we build a program Q, that from the symbolic values w,
of a d degree polynomial evaluated at b, finds the coefficients of that polynomial. This is the
interpolation problem, which can be solved classically in len(Q,) = O(d?), or asymptotically
faster in len(Q,) = O(M(d) log d) [1]. Notice that the algebraic RAM performing interpolation
does not require zero-tests of field elements. Finally, we link the programs Q; ,..., Qqg+1, Qo
properly together making sure that there is no naming conflict and that the w; are the correspond-
ing variables in Q;. O

The following theorem summarizes the complexity of our algorithm.

Theorem 5.1: Algorithm Polynomial Coefficients 1 does not fail with probability > 1 — £. It
requires polynomially many arithmetic steps in d and | on a probabilistic algebraic RAM over F.
For F = Q and F = F its binary complexity is also polynomial in el-size(P) and log(1/¢).

Proof: The algorithm can fail under four different circumstances. First in step E, P may be
undefined at ¢, that by lemma 4.2 with probability < 2'*!/card(R) < /4. Second, for F = Q we
might fail to recognize that P is defined at ¢, but we make this possibility happen with probabil-
ity < /4. Third, the loop in step P may not generate d + 1 distinct b such that P is defined at the
corresponding . Since we try (d + 1) points, we can estimate this particular failure possibility
as follows. A newly selected b was not chosen earlier with probability = 1 - (d + 1)?/card(R) > 1
— £/8. Then again by lemma 4.2 P is not defined at y for that individual point with probability <
2" /card(R) < £/8. Therefore a suitable evaluation point can be found in a block of d + 1 points
with probability >

8*

1 - *\d+1 >1 - * — f

(%) a1 £ 7
because (1/¢*) > 29 > d + 1 for * < 1/2. Now the probability that a good point occurs in all of
the d + 1 blocks of points is >

% d+1
gﬂ>

_d+1D 1-e

and hence failure happens for the third case with probability < /4. Fourth and last, for F = Q
we again may not recognize that P is defined at y, even if there were sufficiently many points. A
good point is not missed with probability > 1 — £/(4d +4) and hence the first d + 1 such points
are recognized with probability
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sl £
-— >1--—.
4(d+1)0 4
This concludes the argument for the failure probability. The statements on the arithmetic and
binary running times are a direct consequence of theorem 3.1 and theorem 4.1. O

The Polynomial Coefficients 1 algorithm required the knowledge of a bound d = deg, (f).
If no such bound is given, we can probabilistically guess the degree by running our algorithm for

d=1,24,..., 2% 00

Let f.(X; ,..., X,) be the interpolation polynomial that is produced for the k-th run. We then
choose a, ,..., a, 0 Rrandomly and probabilistically test whether

f(ay,..., a5) — f(a,..., a,) =0.

If the Zero-Test algorithm called with a failure chance /2 returns “probably 0,” then by lemma
4.1 with probability > 1 - ¢, f, = f and 2X > deg, (f). Of course, by further testing cs(x; ,...,
x,,) for zero, § = 2%, 2X-1, MOwe can get a probabilistic estimate for the actual degree
deg, (f). This procedure has expected polynomial running time in deg, (f), and can be made
quite efficient by computing the f.(x;, a,, ,..., @,) incrementally without even constructing a
straight-line program for f, [10]. The total degree of f can be similarly estimated using the
translations that we will introduce in 86, or by computing the degree of f(y,z,..., y,2) inz. A
more general degree test is discussed in 88 (cf. corollary 8.1).

One may question whether it is possible to find a program of length polynomial in | only
for a selected C5(X, ,..., X,), 1 <& < 2. This is most likely not the case, as an example due to
Valiant [45] exhibits. Consider

g(yla-'-’yn’ Zl,l""!zn,n):!_l Zyj IJD (i)

Then the coefficient of the monomial y, [Ty, in g is the permanent of the matrix [z ;] j<n-

Performing a Kronecker substitution XD for y; this permanent appears as the coefficient
Cs(Z11 -y Znp) OF X° for

=1+ (n+1)+(n+1)?+00CF (n+1)"?,

n+1 n+1)"1
g(x, XM, XM 7 Zon)

Therefore the degree-unrestricted coefficients problem is #P-hard [44].
The just mentioned example also shows that certain operations on straight-line programs

most likely cannot be iterated without increasing the length of the output program exponentially.
Take, for example, computing partial derivatives. Clearly, by our algorithm Polynomial
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Coefficients 1 we can find a program Q with

o« f _ )
— Osem(Q) and len(Q) =O(l d).

axk
In order to obtain multiple partial derivatives in different variables we could iterate this process
on the distinct variables. However, every iteration increases the length of the previous program
by at least a constant factor and the final program turns out to be of exponential length in the
number of different variables. This blow-up also appears to be inherent, because from (3) we get

n

09
oy, 0O0oy,

It came as a surprise to us that certain iterations causing a similar exponential growth, such as the
variable by variable Hensel lifting [22], do not constitute inherent complexity and can be avoided
[23].

= perm([z, ;]i<i j<n)-
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6. Polynomial Greatest Common Divisors

We now come to the first application of our theory, that of computing polynomial GCDs.
Our goal is to produce for r polynomials f, O F[x, ,..., X,], 1 < p <, given by a straight-line
program P, a straight-line program Q with GCD,.,(f,) O sem(Q). For simplicity we are
assuming that all f, are computed by a single program P. Clearly, this can be enforced by merg-
ing any possibly different input programs. We also assume that we know an a-priori bound d >
deg(f,), 1 < p <r. Our algorithm is a probabilistic one and the returned Q may not determine
the correct GCD, this with probability < . The difficulty is, of course, to accomplish the con-
struction in binary polynomial-time in

len(P), el-size(P), d, Iog(%).
Notice that the parameters n and r are dominated by len(P). We do not know how the approach
of repeated GCD computations
GCD(fy, f;), GCD(GCD(fy, f,), f3), O]
or that of extracting cont, (f,), 1< p <r, (cf. Brown [5]) can lead to a polynomial-time solution.

We first restrict ourselves to r = 2, that is the GCD problem for two polynomials. We will
later show that the GCD problem for many polynomials can be probabilistically reduced to that
for two. In order to avoid the content computation we will work with the translated polynomials

.Fp = fp(Xl’ Y2 +b2X11"'1 Yn +an1) 0 I:[Xl! Yo,..0s Yn], P = 1’ 21

where b, O F are randomly selected elements, 2 < v < n. Since the mapping f — f is a ring
isomorphism from F[x; ,..., X,] into F[Xq, Y5 ,..., ¥,], we must have § = GCD(fl, 1?2) where ¢
= GCD(f,, f,). The reason for performing this translation is that with high probability Idcfxl(fp)
OF, p=1or2. The following easy lemma can be formulated.

Lemma 6.1: Let f OF[Xy,..., X,], by ,..., b, OF. Then there exists a non-zero polynomial
(By ..., Bn) OF[Bs,..., Ba], deg(z) < deg(f), such that z(b, ,..., b,) # 0 implies

Idcfy (f(Xq, Y2 +boXq,...,¥n +0pXq)) OF over F[Xq, Yo,..., Yol

Proof: Let
O#£z= |dCfX1(f(X1, Yo + ﬁ2X1!""yn + /anl)) O F[ﬂz""’ :Bn]
over F[X1, Y2 ,---» Yn» B2 ,--+, Bn] @and apply lemma 4.1to z. O

The trick is now to perform the Euclidean algorithm, that is compute a polynomial remain-
der sequence, on the translated polynomials over the coefficient field F(y, ,..., y,) in the vari-
able x;. Let

§ = GCD(f,, ,) over F(ya,..., yn)[x.], ldcf, (G) = 1.
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The point is that if lemma 6.1 applies to f; or f,, that is
ldcf,, (f,) or ldcf, (f,) OF, ()

then § will actually be the GCD of fl and fz over F[y, ,..., Yn, X1]. This is a consequence of
Gauss’s lemma [28], 8§4.6.1, Lemma G, stating that products of primitive polynomials must be
primitive. The claim about § can be shown from this as follows. Assume that (1) is true for f,,
and let §* = ﬂ/g. Furthermore, let c and ¢c* O F[y, ,..., y,] be the least common denominators
of § and §*, respectively. Now

(c §) (c* §*) =(cc) fi,
where ¢ § and c* §* are primitive in F[Xy, Y, ,..., ¥,] with respect to x,. Therefore, cc* OF
and hence § O F[X4, Y5 ,..., Y,]. Since § is monic with respect to x;, § also divides fz over

F[X1, Y2 ,..., Yal, irrespective whether Idcfxl(fz) [0 F. Since § is computed in a larger domain,
our claim is immediate.

Our algorithm will construct the polynomial remainder sequence for fl and 1?2. We will
work on the coefficient vectors with respect to x;, which we can obtain initially in straight-line
representation by the polynomial coefficients algorithm. During this process we must, however,
compute the degrees of the remainders in x,. We do this probabilistically by evaluating y, ran-
domly at a,, as was done also for the probabilistic simulation principle. The algorithm now fol-
lows in detail.

Algorithm Polynomial GCD

Input: fo, f; OF[Xy,..., X,] of degree < d given by the straight-line program P = ({X; ,..., Xp},
V, C, S) of length I, and a failure allowance £ < 1.

Output: Either “failure”, this with probability < &, or a straight-line program Qg = ({X; ,..., X, },
Vo, Co, So) over F(Xy ,..., X,) of length O(l d + d?) such that with probability =1 — ¢

GCD(fy, f;) Osem(Qy).
Step R (Random Points Selection): From a subset R [J F with

max(2'**, 8d°
card(R) > ¥
€
select randomly a, ,..., a,, b, ,..., b,. Incase F = F, where ¢ is too small we can work in F;
instead. Since the GCD can be computed by coefficient arithmetic alone it remains invariant
under field extensions.

Step T (Translation): Set € = (Uy « X; X by, Ko « Yo + Uy .oy Uy « Xy X by, Ky < Yy + Up)
concatenated with the modified computation sequence of P in which all occurrences of x, are
replaced by X,. Thus
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ﬁ = ({Xl! yZI"'v yn}! v O D {uw )zv}l év St {b2""! bn})!

2<v<n

is a straight-line program over F(x4, Y, ,..., ¥,) that computes

5 d
= 2 coalVarr ¥a) 6 OF Xy, Yoo Yol p=0,1

Step C (Coefficient Determination): Test whether P is defined at ¢(x,) = a;, ¢(y,) = a,, 2 < v <
n. If not return “failure”. For F = Q we call algorithm Zero-Division Test with failure probabil-
ity £/3.

Call algorithm Polynomial Coefficients 1 with input program P, degree bound d, failure proba-
bility £/3 and the indices 4, such that fp =sem(v, ) for p=0and 1. We obtain

Q1 =({Y2--+s Ya}, Wy, Cy Ty)

such that all c,; O sem(Q,). Notice that in the algorithm Polynomial Coefficients 1 we only
need to evaluate on one set of points, even though Q, encodes the calculation of two interpola-
tion polynomials. This shortens len(Q,) considerably. We also share a, ,..., a, with that algo-
rithm rather than selecting new points in step E there. This guarantees that Q, is defined at ¢
restricted to y, ,..., y,. We could have tested for this condition after constructing Q,, but the
error analysis would be a little more involved.

Step D (Degree Determination): In this step we probabilistically find d, = degxl(fo) and d; =
deg,, (,).

FORS§ ~d,d-1,...,0D0
Call algorithm Zero Test with Q,, ¢(y,) = a,, 4 such that ¢, s = sem(wy ;), wy , OWy, and
failure probability £/(4d). If “definitely # 0 is returned, exit the loop with dy = §. Notice
that then

~ £
Prob(d, = deg, (f;)) =1 - i

Here we dropped through the loop, that is with high probability fo = 0. By convention we set d,
=-1.

Similarly, compute d;. Without loss of generality we now assume that d, = d;.
Step E (Euclidean Loop): FOR Kk < 1, 2,... DO step R.
Step R (Polynomial Remaindering): At this point we have a straight-line program

Qk = ({y21"'! yn}! Wk’ Ck! Tl)

such that for any i-th polynomial remainder in the Euclidean remainder sequence of fo and fl
over F(yy ..., Yn)[X1]
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~ di
fi=2 cis X{, Cis OF[Ya...,yn], 1<i<k,
5=0

with high probability
Cjs Usem(Q;) forall0<ss<dj,1<j<i.

Now we update Q, to the straight-line program Q,., which also simulates the polynomial divi-
sion of f,_, and f, over F(y, ,..., y,)[X1]. Provided Q, was correct the program exactly deter-
mines the next remainder f,,,, whose degree d,.; < d, we guess like in step D.

IF dy,y = -1 (thatis f,,, = 0) THEN proceed to step G.

Step G (GCD Generation): Q, now determines, with high probability, the coefficients of a
remainder f, = 39, ¢, s X{, which corresponds to the GCD of f, and f; over F(y, ,..., ya)[X.].
Append assignments to C, that compute

f dz Cs .
Idcf, (fk) 5=0 Ck dy

This makes the computed GCD monic in x; and by the discussion previous to the algorithm we
have, with high probability, the GCD of f, and f, over F[y, ,..., yn, X;]. Finally, put the assign-
ments computing the back-translation y, « X, — x;b, ,..., ¥y, < X, — X;b, in front of C, and
output Qg = ({Xy ,..., Xo }, Wy, C,, T1) where W, and C, are the updated W, and C,. O

The following theorem summarizes the complexity of the Polynomial GCD algorithm.

Theorem 6.1: Algorithm Polynomial GCD does not fail with probability > 1 — £. In that case its
output correctly determines the GCD of its inputs with probability > 1 — . It requires polynomi-
ally many arithmetic steps in d and | on a probabilistic algebraic RAM over F. For F =Q and F
= F, its binary complexity is also polynomial in el-size(P) and log(1/e).

Proof: Polynomial running time follows from the theorems 3.1, 4.1, and 5.1. “Failure” can only
be returned in step C. There are three possibilities that can cause such an event. First, the pro-
gram P may not be defined at ¢. By lemma 4.2 this happens with probability < 2'*‘/card(R) <
1/(3¢). Second, for F = Q we might fail to recognize that P is defined at ¢, but we make this
possibility happen with probability < /3. Third, the Polynomial Coefficients 1 algorithm may
fail, that with probability < £/3.

We now establish the estimates for the probability that Q, determines the GCD. Let 7; be the
polynomial from lemma 6.1 corresponding to f;. The degree deg(z;) < d and by lemma 4.1

Prob(ldcf, (f,) OF >1——>1——. A
ob(ldef,,(f,) OF)21- o >1- 4 Q
If this is the case step G is justified. Now we consider under which circumstances we obtain the
correct degrees d,. In order to obtain a sharp estimate we will appeal to the theory of
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subresultants (cf [28],. 84.6.1 and the references there). A reader unfamiliar with that theory can
refer back to the probabilistic simulation principle, but then card(R) would be much larger than
what we can prove. By ¢; O Fl[y, ,..., y,] we denote the leading coefficient of the d;-degree
subresultant of fo and f~1 with respect to x;, 0 <i < k. Then deg(c;) < 2d? and for each Ci g, there
exist integers e; j such that

cia =16, 0sisk #)
J:

Furthermore, let o = [1:, ¢ OF[Y, ..., Ya] Since deg(c) < 2d?,
Prob(o(ay,...,a,) # 0| ay..., &, DR)zl—%. (B)

Assume now that this is the case, which means by () that no leading coefficient of ﬂ evaluates
to zero. We test overall at most 2d coefficients of f,, f, ,..., f, for zero. For F = Q none of
these tests misses a non-zero evaluation with probability >

d
£ ﬁ £
Notice that all programs Q; remain defined at ¢(y,) = a,, 2 < v < n. Therefore, all events (A),
(B), and (C) occur with probability > 1 — (/4 + /4 + £/2) > 1 — ¢. In that case Q, is a straight-
line program for the GCD. O

We used the theory of subresultants only in our proof, but we could as well have used the
more involved subresultant pseudo-divisions in step R of our algorithm. Then the evaluations
over Q would stay better bounded in size and we would be even less likely to miss a non-zero
leading coefficient of a remainder. Instead of the classical Euclidean algorithm we could also
have used the asymptotically faster Knuth-Schonhage algorithm [33]. This would shorten the
length of Q, asymptotically to O(l d + M(d) log(d)) with a different bound for the cardinality of
R, see algorithm Rational Numerator and Denominator in 88 for more details.

We now consider the case of more than two input polynomials. For this case we use a
probabilistic trick that reduces the problem of computing g = GCDyi(f;), fi O F[Xq,..., X,],
to that of computing the GCD of two polynomials. All one has to do is take two random linear
combinations ¥, a; f;, i, b; fi, &, b O R O F, and with high probability their GCD coin-
cides with g. Following is the relevant theorem.

Theorem 6.2: Let f; O F[x,,..., X,], F afield, deg(f;) <d for1<i<r, ROF. Then for ran-
domly chosen a;, b; OR,1<i<r,

2d
card(R)

r r
Prob G:CDcize(f)) = GCD(T. & fi, X by f)) > 1 -
i=1 i=1
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Proof: We first show this theorem for n=1. Let
~ r ~ r
fl=_zlai fi! fZ:-zlﬂi fi DE[X],E:F[Cll,...,(lr,ﬂl,...,ﬂr],
1= 1=

g = GCD,., (f;). Clearly, g| f,, g| f,. The first claim is that g = § where § = GCD(f,, f,).
We observe that § [0 F[x] since the sets of the other indeterminates in fl and fz are disjoint.
Now write f, = g f; where f; O E[x]. If we evaluate this equation at o, = L and &; = 0, j #1,
thenwe get §| fi;, 1L <i <r. Therefore §g | g which proves the claim. Now let o U E be the lead-
ing coefficient of the subresultant of fl and fz with respect to x that corresponds to §. If o(a,
oy &, 0y ,..., 0) £0then

GCD(fl(al,...,ar,pl,;..,br, x), fo(a4,..., 2, bi,..., by, X))
=GCD(f,, f,)(@,...,a, by,..., b, X),

which implies the asserted event. Since deg(c) < 2d, lemma 4.1 establishes the stated probabil-
ity.

We now reduce the multivariate to the univariate case by using the translation of lemma 6.1
generically. Consider for f OF[X; ,..., X,]

f=f(X, Yo+ ZX0,ee, Yo + ZoX1) OF (2,000 Z)[X1s Yoo Yol
Now g = GCD,i (f;) where the latter can be computed over F(z, ,..., Zn, Y2 ..., Ya)[X1] since
dcf,, (f) OF(z,..., Z,).
From the univariate case it follows then that

; o _ 0 2d
— f - f . ) >1-
Prob GCD(.; q f|a igl by f|) | a, b O RD_ ! card(R) .

However, the mapping @ defined by ®(x;) = X;, ®(y;) = X — z X, is a ring-isomorphism from
F(z,,..., z)[X1, Y2 »...» Y] INtO F(Z; ..., Z)[X; ,-.., X,]. Applying this mapping to the above
event we therefore obtain the theorem. O
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7. Taylor Series Coefficients

We now present a different approach to finding the coefficients of a polynomial. The idea
is similar to Strassen’s elimination of divisions [43] and has also been mentioned by Valiant [45],
end of 84. Its essence is to compute the Taylor series coefficients over F(X, ,..., X,)[[X1]] to a
given order for the functions computed in all program variables. For a particular variable, these
coefficients are computed from the coefficients of previous variables by Taylor series arithmetic.
As we will note later, Strassen’s results can be reduced to our algorithm by an appropriate substi-
tution. We first formulate the general procedure under the assumption that the rational functions
computed in the variables can be expanded into Taylor series at the point x; = 0. Then we will
apply this procedure to the coefficients problem as well as to eliminating divisions.

Algorithm Taylor Series Coefficients
Input: f OF(xy,..., X,) given by a straight-line program P = ({Xy ,..., X,}, V, C, S) of length |
that is defined at ¢(x;) = 0. From this it follows that f can be expanded as a Taylor series

f(Xgsee0 Xn) =SZOCa(Xz,---, Xn)X1, Cs(Xa.y Xn) O F(Xg.., Xp)-

Furthermore, the desired order d is given.
Output: A straight-line program Q = ({X; ,..., Xp}, Vq, Cq, S) over F(X; ,..., X,) such that

{Co,..., 4} O sem(Q) and len(Q) = O(l M(d)).

Step L (Loop through instruction sequence): Cq 0.

FORZ1 ~1,...,1DOStepT.

Finally, set Vg = {w, s} O {u | u is any of the intermediate variables}. Return Q = ({x;,..., Xp},
Vo, Cq, S).

Step T (Taylor series arithmetic): Let v, — Vv, o0,V, be the A-th assignment in C. Instead of
computing sem(v,) we compute the first d + 1 coefficients of x; in its power series expansion

over F(X, ..., Xp)[[X1]], which we store inw ¢ ,..., W, 4.
Caseo, =+ FORS « 0,...,d append W, 5 « W, ;+W, ;10 Co. IfV; =V, then W, ; =W,
for*="". va: O X O S we use
« ¢ Vv, if6=0 « lifo =1 .
w,s =1 0 50 }and v, O(XOS)\{x,} { 0ifs %1 }and v) = x;.
Case o, = x: Construct a straight-line program which, on input W o ,..., W, 4, W, ,..., W, g,

computes in the variable w; 5, 0 < § < d, the convolution

2 Wi Wy,
i+]j=0
0<i, j<d
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making sure that all temporary variables are new. Now append this straight-line program to Cy,.
Notice that the increase in length depends on which multiplication algorithm is used.

Case o, =+: We first append to Cq, assignments for u, 5, 0 < 6 < d, such that

1 1 S

= _ = sem(u X7, sem(u OF(Xy,..., Xp).

sem(v,) > sem(w, 5) Xf 5; (Uzs) X1 (Uzs) (X3 n)
520

The fastest method uses Newton iteration. \We shall briefly present the algorithm for an algebraic
RAM over F(X5 ,..., X,).

ay — Llsem(w o).
FORi ~ 1,...,dog(d +1) DO
At this point e;_; is the 2'™* — 1st order approximation of 1/sem(v}).
o — 2014 = oy (Zgog sem(W) ;) x7) mod x 2,
Two points should be made. First, sem(w, o) # 0 since P is defined at ¢. Secondly, the total
number of steps is O(3;<joqa+1) M(2")), or again O(M(d)).

Once the u, s are introduced we proceed as in the previous case to obtain the convolutions
2ivjzs Wailyj. O

The binary complexity of this algorithm follows from theorem 4.1, and is on an algebraic
RAM over F of order O(1 M(d) log(l M(d)) + el-size(P)). We wish to point out that in case
many divisions occur in the computation sequence of P we can reduce the number of power
series divisions to just a single one by the following idea. Instead of computing the power series
approximations to order d of all sem(v;) we compute the approximations of num(sem(v,)) and
den(sem(v,)) separately by polynomial multiplication. Thus the only power series division nec-
essary is that for num(sem(v,)) / den(sem(v,)).

We now apply the Taylor Series Coefficients algorithm to the coefficients problem. The
trick is to translate x, = y; + a, for a randomly chosen a; such that P is defined at ¢(y;) = 0,
which is the same as ¢(x;) = a;. To unravel this translation, however, will require a bit of work.

Algorithm Polynomial Coefficients 2
Input: The same as in the algorithm Polynomial Coefficients 1.

Output: Again the same as in the algorithm Polynomial Coefficients 1, except that len(Q) =
O(I M(d)).

Step FT (Forward Translation): From a set R O F with card(R) > 2'*2/¢ randomly select ele-
ments a, ,..., a,. If F =F; and q is too small we can work over an algebraic extension Fy; with
j sufficiently large.
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Test whether P is defined at ¢(x,) = a,, 1 <v <n. For F = Q we call algorithm Zero-Division
Test of 83 such that the probability of “failure” even if P were defined at ¢ is less than £/2. If P
turns out to be (probably) undefined at ¢ we return “failure”. Otherwise, P is (definitely) defined
at ¢.

Set € = (X, ~ y, +a,) concatenated with C in which all occurrences of x, are replaced by ;.
Now P = (X, V, C, S) with X = {yy, X, ,..., X, }, V. =V O{,}, and S = SO {a,} is a straight-
line program that computes f(y; +a;, X5 ,..., X,) over F(y;, X5 ,..., X,), and which is defined at
#(y1) = 0.

Step C: Call algorithm Taylor Series Coefficients with program P and order d. A program Q is
returned that computes €5 [ F[X, ,..., X,], 0 < & < d, such that

d

d
;Oﬁsy‘f = f(yitag X Xn), OF F(Xq,.00, %) = (SZOE(S(Xl_al)&-

Step BT (Back-Transformation): We compute c; O F[X, ,..., X,], 0 <6 <d, from a, and the €
such that

d
F(Xg1e0 Xn) =(SZOCa Xy

by a fast “radix conversion” method [28], 84.4, Exercise 14, which we shall briefly present as an
algebraic RAM algorithm.

Split f = fy + (x; —a,) ™2 f, with

/201 5 /20 5
fo = Zo Cs(xy—ay)°, f1 = Zo Corrap (X1 —a1)°.
o= o=l

Convert fy and f; by recursive application of the algorithm.
Compute f, = (x; —a;)™"2 by repeated squaring.
Compute f; f, + f, by polynomial multiplication and addition.

The complexity T(d) of this algorithm satisfies T(d) < 2T(d/2) + yM(d), ¥ a constant, and
hence is T(d) = O(log(d) M(d)). We note that for coefficient fields F of characteristic O this
conversion can be accomplished in even O(M(d)) arithmetic steps [2]. The program Q to be
returned is built from Q by appending instructions for the conversion. Therefore len(Q) =
O(I M(d) + log(d)M(d)), but since log(d) = O(l) the first term already dominates the asymptotic
output length. O

It should be clear that theorem 5.1 applies to the algorithm Polynomial Coefficients 2 as
well. It is somewhat surprising that we are not able to remove the restriction in the Taylor Series
Coefficients algorithm that P be defined at ¢(x;) = 0 by a translation similar to the above. In
fact, we know of no strategy of polynomial length in | that would compute Idcf, (), f O F[x;
,--+» Xp], but that does not depend polynomially on deg, (f). Note that Idcf, (f) is the constant
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Taylor series coefficient of

! X Xn)
Xl, Dyerny nl:

d f
Xlegxl( ) f(

Although the algorithm Polynomial Coefficients 2 produces a program of asymptotically
longer length than the algorithm Polynomial Coefficients 1, there exist circumstances under
which the second algorithm is better in practice. One such situation arises when there are many
input and scalar operands in the straight-line assignments. In our implementation of the coeffi-
cients algorithm [10] we therefore first estimate the length of the output program for either
method and then perform the one that led to the smaller estimate. Length estimates for both
algorithms can be computed quickly and fairly accurately, that is within 1% of the actual lengths.

We finally remark how the algorithm Polynomial Coefficients 2 can be used to remove
divisions from a program P; of length | for a polynomial f 0 F[x, ,..., X,,] of degree d. First
we need a, ,..., a, [ F such that P, is defined at ¢(X;) = a;, 1 <i < n, as they are found in Step
FT of the above algorithm. Then we apply the Taylor Series Coefficient algorithm to a straight-
line program P, for the polynomial

g(Z, yl!"'! yn) = f(y12+al!"'1 ynZ+an)

with respect to the variable z and to the order d. The point is now that the only divisions neces-
sary are those to compute a 1/sem(w'ﬂ',0) in the Newton reciprocal procedure. It is easy to see
that the constant terms in the Taylor expansions at z = 0 for the rational functions computed by
the program variables in P, are in fact elements in F, that is &, can be encoded as a new scalar.
Our division-free resulting program Q; now computes cs; O F[y; ,..., Y,] such that

d
g(Z! yl!"" yn) = (gocé(yli"'!yn)za'

Putting the proper translations for y; = x; —a;, 1 <i < n, in front of Q; we obtain the division-
free program Q, for f as

d
f(X1,eeny Xp) :%05()(1_611""’ Xn = @p)-

The length of Q, is O(I M(d)). It should be noted that this particular transformation cannot be
carried out in binary random polynomial time since the new scalars «, might be of exponential
size, but other formulations without that drawback are of course possible. We also note that the
coefficient of Z° in f(x,z ,..., X,2) is the homogeneous part of degree & in f(X; ,..., X,).
Strassen [43] describes this method with the homogeneous parts taking the place of coefficients,
but then the computation of the reciprocal by Newton iteration needs some extra thought. For
the record, let us state the following theorem.

Theorem 7.1: Let f OF[X, ,..., X,] be given by a straight-line program P of length | over F(x;
..., X,), F a field with card(F) = 2'**. There exists a universal constant ¥ and a division-free
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straight-line program Q = ({ Xy ,..., Xp}, Vq, Cq, &) such that
f Osem(Q), S OF, andlen(Q) <y | M(deg(f)). O
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8. Numerator s and Denominator s of Rational Functions

In this section we describe an algorithm that transforms a straight-line computation for a
rational function of known degree to one for its (reduced) numerator and denominator. A major
application of this algorithm will be to parallelize computations for rational functions (cf. corol-
lary 8.3). But first we shall review some needed properties of Padé approximants. However, we
will not prove any of these properties and instead refer to [4] for an in depth discussion and the
references into the literature. Let

f(X) =Cy+C X+ Cx2 + MOOF[[X]], ¢ %20, d,e=0,

be given. Going back to Frobenius 1881 a rational function p(x)/q(x) is called a (d, €)-Padé
approximant to f if

deg(p) < d, deg(q) <e, +
f(x)q(x) = p(x) =0 mod x9*e™, (M

It turns out that for any pair (d, €) there always exists a solution to (1) and that furthermore the
ratio p/q is unique. This ratio forms the entry in row d and column e of an infinite matrix
referred to as Padé table. Already Kronecker 1881 realized that the entries in the d + e anti-diag-
onal of the Padé table are closely related to the Euclidean remainder sequence of

f_(X) = X3 f,(X) = ¢ + ¢ X + [ BFC X"
Consider the extended Euclidean scheme [28], 84.6.1, Exercise 3,

s (%) f1 (%) +1(x) fo(x) = fi(x),

f.(X) = fip(x) mod (), i=1.

Then for the smallest index i with deg(f;) < d we have deg(t;) < e and f;/t; is the (d, €)-Padé
approximant to f. Furthermore, GCD(f;, t;) = x* for some k = 0. Thus any algorithm for com-
puting the extended Euclidean scheme results in one for the (d, €)-Padé approximant. Note that
the assumption c, # 0 is unessential by changing the lower bound for d.

The classical Euclidean algorithm gives a O((d +e€)?) method for computing the
(d, e)-Padé approximant. The ingenious algorithm by Knuth [27] that was improved by
Schonhage [37] and applied to polynomial GCDs by Moenck [33] allows to compute the triple
(f;, s, t;) with deg(f;) <d, deg(f,_;) >d, in O(M(d + e) log(d + €)) operations in F.

We now are prepared to describe the algorithm. The key idea is that by substituting x, +
b,x; for x,, 2 < v < n, we can make the problem a univariate problem in x; over the field F(x,
...+, Xp), @ was already done in the Polynomial GCD algorithm. We then recover the fraction
from its Taylor series approximation by computing the Padé approximant in F(X, ,..., X,)[[X1]]-
Since that approximant is unique it must be the reduced numerator and denominator.
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Algorithm Rational Numerator and Denominator

Input: A straight-line program P over F(x, ,..., X,) of length | that computes f/g, f, g O F[x;
..., X,] relatively prime, and d > deg(f), e = deg(g), and a failure allowance ¢ < 1. We shall
make the assumption that d, e < 2' since the latter is always a bound.

Output: Either “failure” (that with probability < ¢) or a straight-line program Q over F(x, ,...,
X,) of length O(I M(d + €)) such that Q computes f and g correctly with probability > 1 — ¢.

Step FT (Forward Translation): From a set R 0 F with
2(273+2)1 M(d+e)
card(R) >

select random elements &, ,..., a,, b, ,..., b,. Here the absolute constant y; depends on the
polynomial multiplication algorithm used, and can be computed once an algorithm is selected. If
F is a finite field with too small a cardinality, we can work in an algebraic extension of F instead.
Since the results can be computed by rational operations in F, they remain invariant with respect
to field extensions.

Test whether P is defined at ¢(x,) = a,, 1 <v <n. For F = Q we call the algorithm Zero-Divi-
sion Test in 83, such that the probability of “failure” occurring even if P is defined at ¢ is less
than . If in this test P turns out to be (probably) undefined at ¢ we return “failure”.

Now we translate the inputs of P as x; « y; +a;, X, < Yy, + b,y;, 2<v <n. Let P be the
straight-line program computing f/g where

ﬁ(yl""’ yn) = h(yl + a11 y2 + bzyla'-', yn + bnyl) for hDF[Xli"-! Xn]-
Now P is defined at ¢(y;) = 0. Also with high probability

deg,, (f) = deg(f), or Idcf,, (f) OF. *)

Step S (Power Series Approximation): Compute a straight-line program Q; over F(y, ,..., ¥,)
such that for the coefficients of the power series
f
g

c; are computed by Q, for all 0 <i < d+e. This can be done by directly applying the Taylor
Series Coefficients algorithm in §87. Notice that len(Q,) < 1 | M(d + €), where y; is a constant
solely depending on the multiplication algorithm used.

- CO(yZ""' yn) + Cl(yZI'--; yn)yl + D]B'I'Cd+e(y2,..., yn)y1d+e+ D:]] (i)

Step P (Padé Approximation): Construct a straight-line program Q, over F(y, ,..., y,) that with
high probability computes the (d, €)-Padé approximation p/q to (1), p, 9 O F(Y, ,..., Yo)lYi]:
From the preceding remarks we know that this can be accomplished by an extended Euclidean
algorithm. Essentially, we perform such an algorithm on the coefficient vectors (C;)o<i<g+e and
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that of y,9*®"1. In order to test elements in F(y, ,..., y,) for zero we evaluate the program com-

puting these elements at w(y,) = a,, 2 < v < n, similarly to theorem 4.2 or Step D in the Polyno-
mial GCD algorithm. If we use the asymptotically faster Knuth-Schonhage procedure (see also
[9] for a full description of the algorithm) then

len(Q;) < 7.1 M(d +€) + y, M(d +€) log(d + €) < 31 M(d +e), (8)

where y, and y; are again constants solely depending on the polynomial multiplication procedure
used. Notice that the produced straight-line program may be incorrect (that with small probabil-
ity) since we may have incorrectly certified an element to be zero.

Once we have a straight-line program for polynomials f; and t; O F(Y, ,..., Yn)[Y1] in the
extended Euclidean scheme we must find k = 0 such that GCD(f;, t;) = y,* over F(y, ,...,
ya)lY1]- This we can again accomplish probabilistically by evaluating the coefficients in y; of f;
and t;.

If we make ldcf,, (p) = 1, then with high probability p is an associate of finFly,,..., y,]. This
is because of (*) and because Padé approximants are unique.

Step BT (Back-translate): The program Q is obtained by putting assignments for the back-trans-
lations

Y1 < X1~ ay, Y, < XV—bV(Xl—al),ZSVSn,
infrontof Q,. O

We shall now analyze the overall failure probability of the Rational Numerator and
Denominator algorithm. “Failure” is only returned if P is not defined or is not recognized to be
defined at ¢. However, several events must take place in order that the correct answer is returned.
First, Idcfyl(f) O F that justifies the normalization of p in step P. By lemma 6.1 this happens
with probability >

1- d >1- £ :
card(R) 4
Second, all zero-tests performed by evaluating at w(y,) = a,, 2 < v < n, must give the correct
answer. This is true if the Knuth-Schonhage algorithm performed over F(y, ,..., y,) takes the

same course as the algorithm performed over F on the elements obtained by evaluating at . In
other words, no non-zero element that is tested or by which is divided must evaluate to 0. Since
the algorithm takes no more than

7, M(d +€)log(d + e)

steps, the degree of any unreduced numerator and denominator of these elements is by (8) no
more than

o731 M(d+e)
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A (pessimistic) estimate for the number of elements to be tested and by which is divided, includ-
ing the determination of k, is

y3I M(d+e€)+(d+e)<(r+1)I M(d+e).

Therefore the probability that all tests lead to the same result at y and that all division are possi-
ble at y is no less than

L (mrl)IMd+e) o3l M(d+e)

1 —
card(R) g

N ™

Hence a correct program Q is output with probability > 1 — 3/4¢.

In case F = Q one more additional possibility of returning an incorrect result must be
accounted for, namely that the Zero Test algorithm in 83 might not recognize a non-zero evalua-
tion at w properly. However, the probability of such an event can be controlled, say we allow it
to happen only with probability no more than

E
4(ps+1)M(d+e)log(d +e)

Then all tests succeed with probability > 1 — /4 and a correct program is output with probability
> 1 - &. In summary, we have the following theorem.

Theorem 8.1: Algorithm Rational Numerator and Denominator does not fail and outputs a pro-
gram Q that computes f and g with probability > 1 — 2¢. It requires polynomially many arith-
metic steps as a function of len(P), d, and e. For F = Q this is also true for its binary complexity
which also depends on el-size(P). The algorithm needs polynomially many randomly selected
field elements (bits for F = Q). O

We now formulate three corollaries to the theorem. The first corollary deals with distin-
guishing straight-line programs that compute polynomials from those that do not. It is clear that
if we have the bounds d and e we only need to probabilistically inspect the degree of g after we
have a straight-line program for it. But what if we do not have a-priori degree bounds? What we
do then is to run our algorithm for

d=e=2% k=1,2, 3, 1]

Let f, and g, be the numerator and denominator whose computation is produced. For randomly
chosen a, ,..., a, O F we then probabilistically test whether

f fr(ay,..., a,)
—(ag,...,a) = ———m——.
g ( ' ) gk(ali"'! an)

If the test is positive, with high probability f = f, and g = g,. We have the following corollary.

Corollary 8.1: Let f/g be given by a straight-line program P over F(X; ,..., X,). Then we can
in random polynomial-time in len(P) and deg(fg) determine deg(f) and deg(g) such that with
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probability > 1 — £ no failure occurs and the answer is correct. In particular, we can decide
whether f/g OF[X; ,..., X,]. O

For simplicity we state the next corollaries over infinite fields, although this can be avoided
as mentioned in step D. The next one resolves Strassen’s question on computing the numerator
and denominator of a rational function without divisions. By

Lo(rise-osm | StseeesSn), 1y S5 OD,
we denote the non-scalar or total complexity of computing r; from s; over D, see e.g [43]..

Corollary 8.2: Let F be a infinite field. Then

I—F[xl ..... xn](fi g | Xla---ixn) =

where M(d) is the corresponding complexity of multiplying d-degree polynomials. In the non-
scalar case M(d) =0O(d). O

The third corollary concerns the parallelization of a straight-line computation for a rational
function. From [46] we get.

Corollary 8.3: Let P be a straight-line program of length | over F(Xx; ,..., X,), F infinite, that
computes f/g where deg(f), deg(g) < d. Then there exists a straight-line program Q of parallel
depth O(log(d) log(d 1)) and size (I d)°Y that also computes f/g. O

There is an open problem related to this corollary. The question is whether there is a paral-
lel algorithm that takes P as input and evaluates it at given points. For division-free input pro-
grams such an algorithm has been constructed [31]. For formulas as inputs divisions do not
cause additional difficulty [32]. However, the proof of the above corollary is tied to knowing the
evaluation of the input program at a random point, and we do not know how the methods in the
just mentioned papers can be used to solve the problem.

Finally we remark that if instead of degree bounds the exact degrees d = deg(f), e =
deg(qg) are input, the Numerator and Denominator algorithm can be made “Las Vegas,” that is if
it does not fail the returned program Q will be guaranteed to be correct. An obvious condition to
check would be whether deg,, (p) = d and deg,, (q) = €, where p/q is the reduced Padé approxi-
mant to (). However, this check is not sufficient since during the extended Euclidean algorithm
a leading coefficient of a remainder might have been dropped due to incorrect zero testing, with
the resulting incorrect quotient still satisfying the degree requirements. Instead we compute p
and q by setting up a linear system with undetermined coefficients for (1), that is

(Co + O CaeYT )L + A Yy + TIOFGeYS) — (Po + I+ pgyy) = 0 mod yi+et,

If the a, are selected such that c, # 0 in (1), which can be verified by random evaluation, then the
above system has a solution with
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Pa(Y2r--+» ¥n) de(Y2r---y Yn) Z0

if and only if (*) is satisfied. In that case the arising linear system is non-singular, which can be
verified, and a straight-line program for its solution can be deterministically constructed. It then
remains to verify the just mentioned non-zero conditions for py and g. by random evaluation to
make sure that (*) was satisfied.
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9. Conclusion

We have formulated our arithmetic complexities for arbitrary fields and our binary com-
plexities for finite fields and the rational numbers. It is not difficult to extend the polynomial-
time results to algebraic number fields. The main obstacle to binary polynomial-time complexity
is the need for zero and zero division testing. It should be clear that the corresponding algo-
rithms generalize by working modulo a randomly chosen prime ideal. A more straight-forward
approach to evaluating straight-line programs over algebraic number fields can also be found in
[11].

Straight-line results can be useful for further manipulation, but as the final result they are
quite incomprehensible. Fortunately, there is always the possibility to probabilistically convert
them to sparse representation. Zippel’s algorithm [47] can be shown to accomplish this conver-
sion in expected polynomial-time in the input size, degree, and the number of non-zero monomi-
als of the sparse answer [21], 86. In another formulation, given a bound t one can probabilisti-
cally determine in polynomial-time in t either the sparse representation of a polynomial given by
a straight-line program with no more than t monomials, or we know with controllably high prob-
ability that that polynomial has more than t non-zero monomials [23]. Since sparse inputs can
always be represented as straight-line programs of polynomially related size, by the conversion
algorithm all our results apply to sparse polynomials as well. For example, we have a random
polynomial-time algorithm for computing the sparse greatest common divisor of sparse polyno-
mials.

This work is the pilot in a series that currently consists of four papers. Our second paper
[23] shows how to compute in random polynomial-time the full factorization of a polynomial,
again input and outputs in straight-line representation. As referred before, that paper also con-
tains a discussion on the sparse conversion question. We also refer to [24] for a detailed outline
of the main results of the factoring paper. Our third and most recent article [25] discusses an
approach to replacing the input degree bound d in the Polynomial GCD algorithm, for instance,
by a degree bound for the output polynomial. There also a completely different proof for corol-
lary 8.2, based on the factorization results, is given. Although it appears that our results are
already of theoretical significance, we believe that the straight-line representation of multivariate
polynomials is an important tool in computer algebra systems. Therefore we have implemented
our algorithms in LISP with an interface to MACSYMA. The details of this first implementation
and our experience on test cases are reported in the fourth paper of this series [10].

Note added in proof Theorem 6.2 remains valid if we replace Y, b; f; by f;, which is a
slight improvement in the length of the generated straight-line program. In step P of Algorithm
Rational Numerator and Denominator the computation of GCD(f; t;) = yX can be skipped, since
it can be shown that under the given circumstances one always has k = 0. Finally, with B. Trager
we have found a differernt solution to the Numerator and Denominator problem, such that the
length of the produced program is O(ld + M(d) log(d)).
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