Decagonal Tilings in Medieval Islamic Architecture
Outline

Introduction
Outline

► Introduction
 ▪ Plane Tilings
 ▪ Regular Tilings
 ▪ Periodic Tilings
Outline

► Introduction
 ▪ Plane Tilings
 ▪ Regular Tilings
 ▪ Periodic Tilings

► Aperiodic Tilings
Outline

► Introduction
 ▪ Plane Tilings
 ▪ Regular Tilings
 ▪ Periodic Tilings

► Aperiodic Tilings
 ▪ Penrose Tilings
 ▪ Girih Tilings
Plane Tilings
Plane Tilings

- Collection of plane figures
Plane Tilings

- Collection of plane figures
- Covers plane entirely
Plane Tilings

- Collection of plane figures
- Covers plane entirely
- No gaps or overlap
Plane Tilings

- Collection of plane figures
- Covers plane entirely
- No gaps or overlap
Regular Tilings
Regular Tilings

- Plane tiling of congruent regular polygons
Regular Tilings

► Plane tiling of congruent regular polygons

► Only three exist
Regular Tilings

- Plane tiling of congruent regular polygons
- Only three exist
Regular Tilings

- Plane tiling of congruent regular polygons
- Only three exist
Regular Tilings

► Plane tiling of congruent regular polygons

► Only three exist
Periodic Tilings
Periodic Tilings

- Tiling of the plane with translational symmetry
Periodic Tilings

- Tiling of the plane with translational symmetry
- Only 2-fold, 3-fold, 4-fold and 6-fold rotational symmetry is allowed
Periodic Tilings

- Tiling of the plane with translational symmetry
- Only 2-fold, 3-fold, 4-fold and 6-fold rotational symmetry is allowed
Periodic Tilings

- Tiling of the plane with translational symmetry
- Only 2-fold, 3-fold, 4-fold and 6-fold rotational symmetry is allowed
Penrose Tiling
Penrose Tiling

Penrose tiling was developed by Roger Penrose in 1973
Penrose Tiling

- Penrose tiling was developed by Roger Penrose in 1973
- Has no translational symmetry and is therefore aperiodic
Penrose Tiling

- Penrose tiling was developed by Roger Penrose in 1973
- Has no translational symmetry and is therefore aperiodic
- Is quasi-periodic (in physics this property is called quasi-crystalline)
Penrose Tiling

- Made up of two rhombi
Penrose Tiling

- Made up of two rhombi
 - $\{72, 108, 72, 108\}$ degrees
Penrose Tiling

Made up of two rhombi

- \{72, 108, 72, 108\} degrees
- \{36, 144, 36, 144\} degrees
Penrose Tiling

- Made up of two rhombi
 - $\{72, 108, 72, 108\}$ degrees
 - $\{36, 144, 36, 144\}$ degrees
- Only one rule: no two adjacent tiles can form a parallelogram
Penrose Tiling

- Made up of two rhombi
 - $\{72, 108, 72, 108\}$ degrees
 - $\{36, 144, 36, 144\}$ degrees

- Only one rule: no two adjacent tiles can form a parallelogram

- Ratio between number of each tiles is golden ratio
Penrose Tiling
Girih Tiling
Girih Tiling
Girih Tiling
Girih Tiling

► Very complex patterns that appear throughout Islamic art and architecture
Girih Tiling

- Very complex patterns that appear throughout Islamic art and architecture
- Locally display 10-fold rotational symmetry, and therefore cannot be periodic
Girih Tiling

- Very complex patterns that appear throughout Islamic art and architecture
- Locally display 10-fold rotational symmetry, and therefore cannot be periodic
- Initially thought to have been created using compass and straight edge method
Girih Tiling

Peter J. Lu at Harvard and Paul J. Steinhardt at Princeton found that Girih Tilings exhibit advanced decagonal quasicrystal geometry like that of Penrose Tilings.
Girih Tiling

- Peter J. Lu at Harvard and Paul J. Steinhardt at Princeton found that Girih Tilings exhibit advanced decagonal quasicrystal geometry like that of Penrose Tilings.
- Girih Tilings used five different tiles.
Girih Tiling

- Peter J. Lu at Harvard and Paul J. Steinhardt at Princeton found that Girih Tilings exhibit advanced decagonal quasicrystal geometry like that of Penrose Tilings.
- Girih Tilings used five different tiles.
- Can be mapped to Penrose Tilings.
Girih Tiling
Girih Tiling
Girih Tiling
Girih Tiling
Girih Tiling
Girih Tiling
Examples

http://www.sciencemag.org/cgi/content/full/315/5815/1106/DC1c
References

