
A History of Efficiency Problems in Maple

Michael Monagan

November 22, 2025

Abstract

The Maple project began in 1980 at the University of Waterloo. The most important design
goal was that Maple be powerful, that is, Maple could solve a wide range of algebraic problems
in a reasonable time. The early releases of Maple were not particularly efficient. This was not
due to poor algebraic algorithms; rather, it had to do with the choice of the data representation
for numbers and polynomials, the use of interpreted code when compiled code was needed, and
other design choices that resulted in a loss of efficiency. This paper presents eight efficiency
problems that were identified in Maple’s history and what was done to fix them.

1 Introduction

Development of Maple began in December 1980 at the University of Waterloo when a group of four
professors, Bruce Char, Keith Geddes, Morven Gentleman and Gaston Gonnet, decided to build
their own computer algebra system. They chose to implement a kernel in the C language rather
than in Lisp. The kernel supported a high level programming language suitable for implementing
algebraic algorithms. The programming language was called Maple. It had to be efficient enough
so that the algebraic algorithms such as factoring polynomials and computing antiderivatives, could
easily be implemented in it.

The first paper on Maple [3] was presented at the EUROCAL ’83 conference in London, England
in March 1983. The title of that first paper was “The Design of Maple: a compact, portable, and
powerful computer algebra system.”

Two conference papers were published and presented in 1984, both in July. The first paper
“GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation” was pre-
sented at the EUROSAM 1984 meeting in Cambridge, England. It addressed what was, at the
time, the most pressing efficiency problem, namely, how to compute a greatest common divisor
of two polynomials in one or more variables. The second paper “On the Design and Performance
of the Maple System” was presented by Keith Geddes at the 1984 Macsyma Users conference in
Schenectady, New York.

I had joined the Maple group as a PhD student in the summer of 1983 having taken the
Symbolic Computation course with Bruce Char in winter 1982 and completing my Masters degree
under Gaston Gonnet in fall 1982. The 1984 Macsyma Users conference was my first conference.
The Maple group drove from Waterloo, Ontario to the conference in Schenectady, New York to
show off what Maple could do. At that time we regarded Macsyma as the system to beat. We
showed that Maple was a lot faster than Macsyma and Reduce, at least on our benchmarks.

The design of Maple was very successful in one aspect. Almost everyone, both students and
faculty, who was working on the Maple project at Waterloo in the 1980s was implementing algo-
rithms in the Maple language. This resulted in a much faster software development than would
be possible if we had to implement algorithms in a systems language like C or Lisp. However, in

1

1984, although some operations in Maple were very efficient, overall, Maple was not that efficient.
In this paper I have identified eight efficiency problems in Maple and what was done to address
them. They are presented in chronological order. I describe them briefly here in the introduction.
The reader can then read them in any order.

Problem 1: The first efficiency problem is the problem of computing the greatest common divisor
(GCD) of two polynomials in Z[x1, x2, . . . , xn], that is, in n variables with integer coefficients. Early
computer algebra systems would often grind to a halt or run out of memory when computing GCDs.
The first major new algorithm contributed by the Maple group was the GCDHEU algorithm of
Char, Geddes and Gonnet [5] from 1984. The idea is both clever and practical; convert a polynomial
GCD computation into an integer GCD computation! This result gave Maple an early advantage
over other computer algebra systems on a critical operation.

Problem 2: The second efficiency problem has to do with the cost of evaluating a formula by
using assignment. The reason I present this problem is that of all the efficiency improvements that
were made to Maple, this one change achieved the greatest overall speedup on Maple’s test suite.
The problem also highlights two competing design goals; efficiency and usability.

Problem 3: Maple is unique among computer algebra systems in that it stores each subexpression
once in memory. This is accomplished using hashing. The third efficiency problem is a horrible
efficiency bug in the hash function. It’s a candidate for the worst efficiency bug in Maple.

Problem 4: The fourth efficiency problem is a general problem in all computer algebra systems.
We have O(n2) algorithms that should be O(n) or O(n log n) in our systems. This leads to very
slow running times for users. Users of computer algebra systems are not computer scientists. They
would not know how to test for a quadratic algorithm. They are unlikely to realize that the
computer algebra system is using a quadratic algorithm and complain about it. So slow quadratic
algorithms remain in our computer algebra systems for decades!

Problem 5: The fifth efficiency problem is how to represent integers, in particular small integers,
which appear often in formulas, for example, the exponents in the monomial x2y3z2. Early versions
of Lisp [27] started encoding small integers in pointers to avoid allocating memory when doing
arithmetic with small integers. Because Macsyma and Reduce were implemented in Lisp, they
automatically benefited from this idea. Gaston Gonnet added this to Maple in the 1990s. This
resulted in another significant overall speedup on Maple’s test suite.

Problem 6: Maple’s library for numerical linear algebra was very slow. Partly because of the dom-
inance of Matlab in the engineering market, which is where the money was, Maplesoft redesigned
Maple’s linear algebra library from scratch for Maple 6 to compete with Matlab. The new library
includes compiled codes for hardware floating point precision. The new design also included a new
user interface for vectors and matrices. David Hare of Maplesoft led the design effort.

Problem 7: The seventh problem is an inefficiency in polynomial division. The problem was solved
by Johnson [13] in 1974 who used a heap to efficiently sort monomials when dividing polynomials.
But, since Johnson didn’t benchmark his algorithm against computer algebra systems, I think
everyone who worked on computer algebra systems missed the implication of Johnson’s work. We
were not embarrassed into fixing the problem! Roman Pearce [25] rediscovered Johnson’s algorithm
and integrated heap based polynomial multiplication and division algorithms into Maple 14 in 2010.

2

Problem 8: What is the best way to represent polynomials in n variables on the computer? The
choice matters because it affects the efficiency of polynomial arithmetic and that plays a significant
role in a computer algebra system’s overall efficiency, for example in polynomial factorization.
In 2003, Richard Fateman [8] found that Pari’s recursive dense representation was the fastest
representation, faster than the sparse representations that other computer algebra systems used.
Fateman also found that Maple, Macsyma, and Mathematica were the slowest systems because
they use a very general representation for polynomials. To address this, Monagan and Pearce in
[20, 21] designed a new representation for polynomials for Maple 17 in 2013. I believe this is the
biggest efficiency improvement made to Maple since Maple 6.

I end with a timing benchmark for factoring determinants of matrices of polynomials. Polynomial
factorization is a success story in the history of Computer Algebra. We have good algorithms. But
it’s a huge amount of work to implement them. In a conversation with Tony Hearn, the principal
author of Reduce, Tony told me that when they implemented polynomial factorization for Reduce,
the “number of pages of code for Reduce doubled”! How good are today’s computer algebra systems
at polynomial factorization compared with older systems like Macsyma and Reduce? Fortunately
we still have access to Maxima and Reduce so we can make such a comparison. I compare polynomial
factorization in Maxima [16] with Maple, Magma [1] and Singular [6].

2 Problem 1: Polynomial GCD Computation

The most pressing problem for computer algebra systems in the 1960s and 1970s was how to
compute the greatest common divisor (GCD) of two polynomials, A and B, in n variables with
integer coefficients. For example gcd(x4 − y4, 2x3 − 2y3) = x− y.

If n = 1 we can use use the Euclidean algorithm. If we initialize R0 = A and R1 = B, the
Euclidean algorithm computes R2, the remainder of R0÷R1 and it uses the fact that gcd(R0, R1) =
gcd(R1, R2). Then, if R2 6= 0, we do another division; we compute the remainder R3 of R1 ÷ R2.
If you do this you will notice that a growth occurs in the size of the fractions that appear in
the remainders. We can minimize the growth by clearing fractions from the remainders and then
removing any integer common factor from their coefficients. For example, if R2 = 4

5x
2 − 6

5 we set
R2 = 5R2 = 4x2 − 6 then set R2 = R2/2 = 2x2 − 3. The resulting sequence of remainders is called
the primitive remainder sequence. An example is shown in Table 1.

R0 = A −21x6 + 31x5 − 55x4 − 557x3 − 209x2 + 267x− 280

R1 = B −186x5 − 19x4 + 266x3 − 377x2 − 269x− 415

R2 339879x4 + 1795280x3 + 944895x2 − 1022193x+ 1360595

R3 14378212479x3 + 12070474049x2 − 11263467788x+ 14264257620

R4 101033342348478x2 + 315914813035081x+ 245876515201585

R5 = G 3x+ 5

R6 0

Table 1: A primitive remainder sequence showing the computation of gcd(A,B) in Z[x].

The remainder R6 = 0 means R5 = 3x + 5 is the GCD of A and B. Notice that although the
degree of the remainders decreases at each step, the size of their integer coefficients increased rapidly.
The input polynomials A and B have 3 digit coefficients, their GCD G has 1 digit coefficients but
R4 has 15 digit coefficients! The more division steps there are, the bigger the coefficients get.

3

Suppose A and B are polynomials in two variables x and y and we run the Euclidean algorithm
treating x as the main variable. This time there is also a growth in the degree of the coefficients
in y. Table 2 shows an example so that the reader can see this growth. In the example G =
gcd(A,B) = 3x+ 5y − 7 and the input polynomials A and B are given in Appendix A.

deg(Ri, x) deg(Ri, y) #digits #terms Ri

R0 = A 9 9 4 55
R1 = B 8 8 4 45
R2 7 9 7 52
R3 6 12 11 70
R4 5 17 16 93
R5 4 24 21 115
R6 3 33 25 130
R7 2 44 31 132
R8 = G 1 1 1 3

Table 2: A primitive remainder sequence showing the computation of gcd(A,B) in Z[y][x].

Table 2 shows that the degree of the remainders in y increases from 9 to 44, the number of
digits of their integer coefficients increases from 4 to 31, and then we get R8 = G then R9 = 0 and
the algorithm stops. Thus we have a two dimensional growth. If we compute a GCD in n variables
an n dimensional growth occurs and the Euclidean algorithm blows up. What does this mean for
the user? If a computer algebra system uses any variation of the Euclidean algorithm it will grind
to a halt when the remainders explode in size; it will either never come back with an answer or it
will run out of memory. This was a very serious problem for early computer algebra systems in the
1960s. It limited what they could compute.

Brown’s modular GCD algorithm [2] in 1971 was the first algorithm to avoid the blowup. The
GCDHEU algorithm of Char, Geddes and Gonnet [5] from 1984 also avoids the blowup. I want to
show you how GCDHEU works for A and B in Z[x]. GCDHEU chooses a positive integer α and
computes gcd(A(α), B(α), an integer GCD. On the example in Table 1, using α = 1000, we get

a = A(1000) = −20969055557208733280

b = B(1000) = −186018734377269415

g = gcd(a, b) = 3005

The reader can see that g = 3005 is just the GCD 3x+5 evaluated at x = 1000. Converting 3005 to
3x+5 is simply writing 3005 in base α = 1000. GCDHEU reduced a polynomial GCD computation
to computing the GCD of two relatively small integers. The computation is almost trivial! This
idea extends in a natural way to polynomials in more than one variable. I show how to do this in
Appendix A for the example in Table 2. The GCDHEU algorithm gave Maple an advantage on a
critical computation in 1984.

There are difficulties that need to be overcome. One difficulty is how to recover a GCD which
has negative integer coefficients. For α = 1000 one can modify the base conversion algorithm to
recover coefficients in the range [−500, 500) instead of [0, 1000). A second difficulty is how to choose
α. If α is too small then the algorithm will not recover the GCD.

But why didn’t the Maple team at Waterloo use Brown’s algorithm? The Maple professors knew
about Brown’s algorithm. They showed it to us graduate students in the Symbolic Computation
course in 1982. So why didn’t they just code Brown’s algorithm in Maple?

4

Brown’s algorithm reduces a GCD computation in Z[x1, x2, . . . , xn] to many GCD computations
in Zp[x] for many primes p. To implement Brown’s algorithm one needs subroutines for polynomial
multiplication, division, GCD and interpolation for Zp[x]. The Maple kernel in 1984 had no C
code support for these operations thus Brown’s algorithm, when implemented in Maple, was slow.
Kernel support for Zp[x] would not come until Maple 4.3 in 1989 [17]. On the other hand, the
Maple kernel did have C code support for the long integer arithmetic needed by the GCDHEU
algorithm. GCDHEU exploited that.

This is not the end of the story on polynomial GCD computation, however. If G is a sparse poly-
nomial there are algorithms which are much faster than GCDHEU and Brown’s algorithm. Keith
Geddes implemented Paul Wang’s EEZGCD algorithm [30] in Maple in 1984. Keith’s EEZGCD
code is still available today via the Maple command ‘gcd/gcdeh‘(A,B). In 2005 it was superceded
by an implementation of Zippel’s sparse GCD algorithm from [31]. The implementation [14] was
done by my PhD student Allan Wittkopf. More recent research with my PhD student Lucas Hu [11]
and joint work with Qiao-Long Huang [12] has seen new more efficient GCD algorithms developed
that we are integrating into Maple.

3 Problem 2: Evaluation

Maple, Maxima, Derive and Mathematica use expression trees for representing formulas like x3 −
3x2y − 3y2 + 5 and 3 sin(2x)− 2 cos(3x). To evaluate a formula in Maple and in Maxima one may
use assignment. Here is Maple code to evaluate x+ 2y + x lnx at x = 1 using assignment.

> f := x+2*y+x*ln(x);

f := x + 2 y + x ln(x)

> x := 1;

x := 1

> f;

1 + 2 y

In the above Maple code, the statement x := 1; assigns 1 to x. The statement f; evaluates the
programming variable f . Maple walks through the expression tree for f to pick up any values of
assigned variables to obtain the result 1 + 2y. The cost of this evaluation is linear in the length of
the expression tree for f which is efficient.

In the Maxima code below the statement x : 1; assigns 1 to x. The statement f; also evaluates
the programming variable f . But Maxima evaluates f to x+ 2y+ log(x) and no further. One must
use the ev(...) command in Maxima to do what Maple does.

(%i1) f : x+2*y+x*log(x);

(%o1) 2 y + x log(x) + x

(%i2) x : 1;

(%o2) 1

(%i3) f;

(%o3) 2 y + x log(x) + x

(%i4) ev(f);

(%o4) 2 y + 1

The evaluation model that Maple used was advertised as a very desirable feature. It seemed
natural to the Maple designers. So why doesn’t Maxima do what Maple does? The reason comes
down to a choice between efficiency and usabilty.

5

Consider the following Maple procedure which goes through the terms of a sum f and counts
how many terms have x in them. In the code, g is a local variable, nops(g) is the number of
elements of the list g which is the number of terms of f .

> NumTermsInx := proc(f,x) local g,c,n,i;

> # put the terms of f into a list g for processing

> if type(f,‘+‘) then g := [op(f)]; else g := [f]; end if;

> c := 0;

> n := nops(g);

> for i to n do

> if has(g[i],x) then c := c+1; end if;

> end do;

> c;

> end:

> f := x^3-3*x^2*y-3*y^2+5;

f := x3 − 3x2y − 3y2 + 5

> NumTermsInx(f,y);

2

If f is a polynomial in m variables with n terms (the example has m = 2 and n = 4), because
g is a local variable, the cost of computing g[i] is O(mn) in the full evaluation model that Maple
used in versions 3.3 and earlier. Thus the total evaluation cost of the for loop is O(mn2) which is
quadratic in n. This Maple code will become very slow for large n. The equivalent code in Maxima
would cost O(mn), a factor of n less.

In Maple’s model of evaluation, parameters like f always evaluated one level. I changed the
model of evaluation in Maple version 4.0 in 1986 so that local variables in Maple procedures also
used one level evaluation like Maxima but global variables continued to use full evaluation for
backwards compatibility. This single change reduced the time it took to run Maple’s entire test
suite by over 10% ! This was a surprise for we had been trying for some time to speed up Maple
but were previously unsuccessful.

There was concern that this change would break user’s Maple code. There was no way to know
in advance whether this would be the case. We made the change and waited for complaints from
users. None ensued. This model of evaluation, full evaluation for global variables and one level
evaluation for parameters and local variables, has not changed since Maple 4.0.

4 Problem 3: Maple’s Unique Representation

I was working on Maple’s polynomial factorization code in 1985 and testing Maple on factoring
the determinant of Vn, the n by n Vandermonde matrix in x1, x2, . . . , xn. For example here is V3,
det(V3) and its factorization.

V3 =

 1 x1 x21
1 x2 x22
1 x3 x23

 det(V3) = −x21x2 + x21x3 + x1x
2
2 − x1x23 − x22x3 + x2x

2
3

= (x3 − x2)(x3 − x1)(x2 − x1)

In general det(Vn) has n! terms. At n = 8 I noticed that computing det(V8) in Maple 3.3 seemed
slower than it should be. I tracked it down to a horrible bug in Maple’s primary hash function.

Consider the monomials m1 = xy2z3, m2 = z3y2x and m3 = x3y2z. Notice that m1 = m2 and
m1 6= m3. If we input the three monomials into Maple using

6

> m1 := x*y^2*z^3;

> m2 := z^3*y^2*x;

> m3 := x^3*y^2*z;

Maple creates the monomials in arrays where the first word is used to encode type of the object
and also its length. Maple creates

PROD x 1 y 2 z 3

PROD z 3 y 2 x 1

PROD x 3 y 2 z 1

Next Maple simplifies the monomials. Maple is unique among the computer algebra systems in
that during simplification, Maple automatically identifies repeated common subexpressions so that
each subexpression is stored only once in memory.

After simplification, only one of xy2z3 and z3y2x is kept, namely, the first one. Maple does
this for several reasons. Firstly, to save space. Secondly to speed up simplification. Thirdly so
that we can test for equality of two expressions by comparing pointers, that is, using one machine
instruction. How is this done?

Maple maintains an internal hash table of pointers to all live expressions in the Maple session.
This hash table is called the simpl table. It is an array of buckets where each bucket is an array
of hash values and pointers to objects. Maple uses hashing to test equality of formulas. If two
products are equal up to ordering of their factors, for example, z3y2x and xy2z3, they must have
the same hash value. Thus the hash function must be commutative on the factors x, y2, z3 of a
product. If they are not equal, the hash function should be different. The horrible bug is that
Maple’s hash function was commutative on x, 1, y, 2, z, 3 so that x1y2z3 and x3y2z1 had the same
hash value! Okay, so it’s a bug. Why am I calling it a horrible bug?

Consider V4 the 4 by 4 Vandermonde matrix and its determinant D4. In Table 4 I’ve grouped
the 24 terms of D4 into four groups, those which don’t have x1, x2, x3 and x4.

Group 1: missing x1 −x32x23x4, x32x3x24, x22x33x4, − x22x3x34, − x2x33x24, x2x23x34
Group 2: missing x2 x31x

2
3x4, − x31x3x24, − x21x33x4, x21x3x34, x1x33x24, − x1x23x34

Group 3: missing x3 −x31x22x4, x31x2x24, x21x32x4, − x21x2x34, − x1x32x24, x1x22x34
Group 4: missing x4 x31x

2
2x3, − x31x2x23, − x21x32x3, x21x2x33, x1x32x23, − x1x22x33

Table 3: Terms in det(V4), the 4× 4 Vandermonde matrix

Observe that each group has n!/n = (n− 1)! terms and in each group each monomial is in the
same variables and the exponents are a permutation of 1, 2, 3. Thus every monomial in each group
in Table 4 has the same hash value! This means searching Maple’s simpl table for one of these
monomials is O((n− 1)!) instead of O(1)!!

It was not difficult to fix the problem once I’d located it. The fix was included in Maple 4.0.
What I learned from this is that even though one may be an expert in algorithms, as the author of
Maple’s hash function was, it is easy to have blind spot and miss something. After implementing
an idea, and getting the tests to pass, it is tempting to just move on to the next programming task.
Instead, one should take time to stare at one’s code, and ask oneself, am I missing something?
Have I done something stupid?

7

Another lesson I learned is the following. Maple 3.1 was supposed to be “the efficiency version”.
The Maple developers generated tables of counts for each function in the Maple kernel for the Maple
test suite. The idea was to determine which kernel functions were used most often and try to speed
them up. Seems reasonable. But this search for efficiency was a flop. No significant improvement in
efficiency was made. One reason for this is that test suites test primarily for algorithm correctness
and not algorithm efficiency. The Maple test suite no large tests because large tests take a long
time to run and the Maple test suite was run daily.

5 Problem 4: Quadratic Algorithms

I have coined a phrase. I say a programmer of an algorithm which is supposed to be O(n) or
O(n log n) commits an asymptotic blunder if their implementation is O(n2) or worse.1

Here is an example. I ask the students who take my Computer Algebra course at Simon Fraser
University to program an FFT based multiplication algorithm that multiplies two polynomials a×b
to get the product c of degree d. The FFT multiplication algorithm has complexity O(d log d). The
whole point of using the FFT is to reduce the cost from O(d2) to O(d log d). If the student’s
implementation is O(d2) then the student has committed an asymptotic blunder; they have ruined
the implementation! How could they do that? Here is one way. Suppose after applying the FFT
algorithm, the coefficients of the product c are stored in an array C, that is Ci is the coefficient of
xi in c. To convert from the array C to the polynomial c my students would code

> c := 0;

> for i from 0 to d do

> c := c + C[i]*x^i;

> od;

> c;

This code is O(d2) because it constructs and simplifies all intermediate polynomials, namely

C0

C0 + C1x
C0 + C1x+ C2x

2

. . .
C0 + C1x+ C2x

2 + · · ·+ Cd−1x
d−1.

This complexity problem is not unique to Maple. This code block if implemented in Magma,
Mathematica, Maxima or Singular will also be quadratic in d. We can forgive the students for not
realizing what they do; the cost of this for loop depends on how the sum is computed which is
hidden from view. Note, the Maple programmer can construct c(x) from C in O(d) by using the
Maple command c := add(C[i]*x^i, i=0..d) .

A question. Do todays computer algebra systems have O(n2) algorithms which should be O(n) or
O(n log n)? They do! Here is one instance. Suppose we want to read a polynomial from a text file
into the computer algebra system. For example, the text file may contain

f := 3*x^3-2*w*y*z-5*x*y^2*z+w^3-2*x*y*z-5*y*z^2*x+z^3-2*w*x*y;

1A more general definition would replace O(n), O(n logn) and O(n2) with O(nc), Õ(nc) and O(nc+1) respectively.

8

If the polynomial is in m variables and has t terms, including the cost for sorting terms, I think
reading should take O(mt log t) but in Maxima and Magma it is O(mt2), that is, quadratic in t.

Maple and Singular used to have the same problem! I noticed the problem in Maple 3.3 and
fixed it for Maple 4.0. I noticed the problem in Singular 3.1. I wanted to time Singular’s polynomial
factorization code for factoring determinants of matrices of polynomials but Singular’s determinant
algorithm took too long. So I computed the determinants in Maple but then reading them in to
Singular also took too long! Table 5 gives the time it takes for Maxima 5.45.0, Magma V2.28-19,
Maple 2024, and Singular 3.4.1 to read in a polynomial f with t terms in 8 variables with 2 digit
integer coefficients and deg(f) ≤ 20.

t Maxima (space) Magma Maple (.m format) Singular

1000 0.27 0.03 0.005 0.003
2000 0.77 0.06 0.010 0.006
4000 2.93 0.12 0.019 0.012
8000 11.92 (10.8gb) 0.43 0.038 (0.003) 0.024

16000 47.72 (43.4gb) 1.47 0.075 (0.009) 0.049
32000 199.27 (171gb) Seg fault 0.149 (0.012) 0.099
64000 NA NA Seg fault 0.319 (0.019) 0.200

128000 NA NA 0.770 (0.034) 0.455
256000 NA NA 1.799 (0.070) 0.924

Table 4: Time (in CPU seconds) for reading in a polynomial f from a file in text format with t
terms. NA = Not Attempted.

The timings in Table 5 show that Maxima and Magma take quadratic time to read a polynomial
with t terms but Maple and Singular appear to take linear time. In Table 5 column (.m format)
is the time to load the polynomial in Maple’s internal format which is linear time as the terms are
already sorted. As the reader can see, reading a polynomial with 256,000 terms is not a difficult
problem! It takes Singular 3.4.1 under one second.

6 Problem 3: Representation of Small Integers

Computer algebra systems support integers of arbitrary length. Before GMP (the Gnu Multipreci-
sion Package) existed, each computer algebra system had its own representation for long integers
and its own set of arithmetic routines for them. Long integers were stored in arrays. For example
the array a0 a1 a2 a3 stores the integer a0 + a1B + a2B

2 + a3B
3 where B is the base of

the integer and 0 ≤ ai < B. Maple used the decimal base B = 104 on a 32 bit computer but most
computer algebra systems used B = 232. But how are small integers stored? Prior to Maple 6,
Maple used the same representation for small and large integers. For example, Maple’s 4.0’s repre-
sentation for the integers 123456789 and −6 was INTPOS 6789 2345 1 and INTNEG 6 .
The first word, the header word, encodes the type and length of the object.

Suppose we want to multiply the monomials x2y3 and x2y4 to get x4y7. Prior to Maple 6,
Maple stored the monomials like this.

PROD ↑ x ↑ 2 ↑ y ↑ 3 and PROD ↑ x ↑ 3 ↑ y ↑ 4 .

Here ↑ 3 means what is stored is a pointer to the INTPOS object 3. To add two exponents
Maple created an INTPOS object for their sum. After creating the INTPOS object Maple searches

9

the simpl table to see if it already exists. This makes monomial multiplication very slow, and as
a consequence, polynomial multiplication and division are slow.

The solution is “immediate integers”. Gaston Gonnet added immediate integers to Maple in
the 1990s. This lead to a significant speedup of Maple. But what are immediate integers?

On a 64 bit computer, words have 8 bytes so if a pointer is word aligned, it’s least significant
3 bits are zero bits. If an integer x satisfies −262 < x < 262 Maple 2024 encodes it as 2x + 1 so
that it is odd. Otherwise Maple 2024 stores a pointer (which is even) to an INTPOS or INTNEG
object. In the two PROD objects above, what is now stored in the exponent fields is 5, 7 and 9 for
the exponents 2, 3, and 4, respectively, like this.

PROD ↑ x 5 ↑ y 7 and PROD ↑ x 7 ↑ y 9

Maple 2024’s representation for the monomials x2y3 and y3z4.

Maple 2024 can distinguish between a small integer, and a pointer to a large integer, by inspecting
the least significant bit. To add the encodings X = 2x+ 1 and Y = 2y + 1 of two integers x and y
we just compute X + Y − 1 and check for overflow. This change means that no space is allocated
when adding exponents in monomial multiplication, and all integers in the range −262 < x < 262

are no longer stored in Maple’s simpl table.
Immediate integers are first mentioned in the release notes for Maple 6 which was released in

late 1999. See ?updates,Maple6,language. In [27], Juho Snellman traces the immediate integer
idea back to early versions of Lisp. He concludes and I quote him here.

By 1964, the M 460 LISP implementation had arrived at the general solution of using
pointers to invalid parts of the address [odd word pointers for example] space for stor-
ing immediate data, but user-accessible integers were still boxed; the only use for the
unboxed integers was as an internal building block. In 1966 PDP-6 LISP applied the
idea of tagged immediate data to tiny positive integers [12 bits only], and the PDP-1
based BBN LISP took the idea to the logical conclusion, and allowed immediate storage
of integers of almost the full machine word.

So immediate integers predate Maple by 15 years. Why didn’t we put them into Maple earlier?
We were C programmers. We had little knowledge of Lisp.

Immediate floats were added to Maple 2025 by Paul Demarco. Maple 2025 stores a 61 bit signed
integer x as 4x + 3 so the least significant two bits are 11. Maple 2025 stores a double precision
float x with −2256 < x < 2254 with 01 as the least significant two bits.

7 Problem 6: Numerical Linear Algebra

Maple, like all early computer algebra systems, was neither designed nor intended to be an engine
for large numerical linear algebra computations. Prior to Maple 6, Maple was very slow at numerical
linear algebra. There are three reasons for this.

1 Maple used a software representation for floating point numbers so that it could support high
precision floating point computations. But software floating point arithmetic is 100 times
slower than hardware floating point arithmetic.

2 Maple used a hash table to store arrays, vectors and matrices. This representation is space
expensive for small vectors and matrices. It is also cache unfriendly for large matrices.

10

3 The numerical linear algebra routines in Maple’s linalg package were written in the Maple
programming language which is interpreted, like Python.

Maplesoft wanted to get into the engineering market. To do that Maple had to be competi-
tive with Matlab for numerical linear algebra. So for Maple 6, Maplesoft ditched the hash table
representation for arrays, vectors, and matrices and replaced it with the standard dense array rep-
resentation, and replaced the slow interpreted codes with the compiled C codes from the NAG
numerial library. The new array type rtable can store 8 byte signed integers and 8 byte floating
point numbers (which are IEEE double precision floats), as well as (pointers to) other types of
objects. For two dimensional arrays and matrices, both column major and row major orderings are
supported. Here is an example

> x := evalf(Pi);

x := 3.141592654

> dismantle(x);

FLOAT(3): 3.141592654

INTPOS(2): 3141592654

INTNEG(2): -9

> A := Matrix([[3,x],[2/3,Pi]], datatype=float[8]);

A :=

[
3. 3.14159265400000

0.666666666666667 3.14159265358979

]
> op(3,A); # storage options

datatype = float[8], storage = rectangular, order = Fortran_order, shape = []

> y := A[1,2];

y := 3.14159265400000

> dismantle(y);

HFLOAT(2): 3.141592654

> z := 2*x+y;

z := 9.42477796200000

> dismantle(z);

HFLOAT(2): 9.424777962

The example shows that x is a software float and y is a hardware float. Hardware floats were also
new in Maple 6. Thus Maple 6 has two representations for floats, hardware floats and software
floats. Notice that hardware floats are contagious, that is, z, a result of arithmetic between exact
rationals, software floats and hardware floats is a hardware float.

Table 7 shows timings comparing the old linear algebra package linalg that uses software floats
and is coded in Maple verses the new linear algebra package LinearAlgebra that uses hardware
floats and compiled code from the NAG numerical library. In the benchmark, A and B are n by n
matrices and b is a vector of dimension n for n = 100 and n = 200. The entries of A,B and b are
randomly generated 10 digit floats on [0, 1).

The first row of times is for reducing the augmented matrix [A|b] to reduced row Echelon form.
I don’t know why the LinearAlgebra library is not fast at this operation. The fifth row is for
computing the (complex) eigenvalues of A. As the reader can see, the new design is between 100
and 1000 times faster on this benchmark. Interestingly Macsyma supported both hardware floats
and software floats but Macsyma did not use a compiled numerical linear algebra library.

11

linalg LinearAlgebra
n = 100 n = 200 n = 100 n = 200

rref [A|b] 1.27 12.85 0.746 4.05
solve Ax = b 0.75 8.35 0.0005 0.0042
multiply AB 1.44 15.18 0.0003 0.0142
singularvalues of A 1.62 18.06 0.0043 0.0150
eigenvalues of A 0.86 6.81 0.0182 0.0748

Table 5: CPU timings (in second) for linear algebra operations in Maple

8 Problem 7: Polynomial Division Algorithms

Multiplying and dividing polynomials in more than one variable are core operations in a computer
algebra system. Their speed will have an impact on the overall efficiency of the system. Suppose
we have two polynomials f and q in n variables x1, x2, ..., xn with integer coefficients. Suppose and
we want to compute h = f × q in expanded form.

If n > 1 Maple, Magma, Maxima, and Singular all use the classical (high school) multiplication
algorithm. They multiply all pairs of monomials and coefficients and then sort the terms in the
product to add coefficients of like terms. For example

(x1x2 + 2x1 + x2)(x1 + 2x2) = x21x2 + 2x21 + x1x2 + 2x1x
2
2 + 4x1x2 + 2x22

= x21x2 + 2x21 + 2x1x
2
2 + 5x1x2 + 2x22.

Let #f denote the number of terms of the polynomial f . This multiplication does #f#q monomial
multiplications and #f#q coefficient multiplications. The sorting cost depends on the multipli-
cation algorithm. If we multiply all #f#q terms out and sort them the sorting cost will be
O(#f#q(log #f + log #q)) monomial comparisons. A divide and conquer multiplication yields a
sorting cost of O(#f#q log min(#f,#q)) monomial comparisons.

Now suppose we want to divide h by f to get the quotient q = h/f . The classical division
algorithm for h ÷ f will compute h − fq where q is the quotient. Most of the work is computing
fq. Let q = q1 + q2 + q3 + . . . be the terms of q. The classical division algorithm initializes r = h
then computes q1 then sets r = r− q1f . Then it computes q2 then sets r = r− q2f . It repeats this
until either the division fails or r = 0. So it computes

(((h− q1f)− q2f)− q3f)−

Each subtraction r − qif can be done efficiently using a merge with complexity O(#r + #f)
monomial comparisons. The problem is that if q is large compared with f , each subtraction r− qif
goes through all the terms of r and the sorting cost is O(#f#q2) monomial comparisons. In [13]
Johnson used a binary heap to efficiently sort the terms in the product fq using O(#f#q log #q)
monomial comparisons. In [18], Monagan and Pearce reduced this to O(#f#qmin(log #f, log #q))
monomial comparisons.

Let f = 1 + w2 + x2 + y2 + z2 and p = fn. Tables 6 and 7 time Maxima, Magma, Maple
and Singular on polynomial multiplication r = p(p + 1) and two divisions, for different n. The
division r÷ f2 should be much faster than r÷ p since #f2 � #p. For the Maxima timings I used
ratexpand(p*(p+1)) instead of expand(p*(p+1)) because expand in Maxima is slow; it’s over 10
times slower than ratexpand.

12

Maxima 5.45.0 Magma 2.28-19

n #p #r r = p(p+ 1) r ÷ p r ÷ f2 r = p(p+ 1) r ÷ p r ÷ f2
15 3876 46376 6.562 4.658 0.548 0.46 0.91 1.17
17 5985 73815 13.802 10.628 0.904 1.13 2.27 2.86
19 8855 111930 28.729 32.442 1.759 3.00 5.41 6.83
21 12650 163185 58.847 54.513 2.207 6.98 11.91 14.28
23 17550 230300 166.48 186.15 4.275 14.12 23.97 28.60
25 23751 316251 297.17 373.00 6.407 28.37 44.42 51.84

Table 6: Timings (in CPU seconds) for polynomial arithmetic

Maple 2024 Singular 3.4.1

n r = p(p+ 1) 1 core r ÷ p 1 core r ÷ f2 r = p(p+ 1) r ÷ p r ÷ f2
15 0.019 0.009 0.040 0.098 0.003 0.019 0.110 0.009
17 0.035 0.218 0.082 0.242 0.007 0.246 0.268 0.015
19 0.064 0.501 0.064 0.551 0.023 0.548 0.598 0.027
21 0.129 1.16 0.129 1.16 0.036 1.127 1.234 0.048
23 0.204 2.06 0.204 2.28 0.057 2.209 2.442 0.072
25 0.318 4.21 0.318 4.21 0.099 4.069 4.444 0.102

Table 7: Timings (in CPU seconds) for polynomial arithmetic

Notice that unlike Maxima, the Magma timings for r÷ f2 are slower than the timings for r÷ p
even though f2 is a relatively small polynomial.

Maple is using parallel algorithms from [19, 26]. The timings for Maple are real times. The
timings in columns r = p(p+ 1) and r ÷ p are parallel timings for a 24 core CPU and the timings
for 1 core follow. The Maple parallel timings for r = p(p+ 1) and r ÷ p are about 10 times faster
than the Maple 1 core timings, which are comparable to the Singular timings which are about 5 to
10 times faster than Magma which is 10 times faster than Maxima.

9 Problem 8: Which Polynomial Representation is Best?

At the 1984 Macsyma User’s Conference in Schenectady New York, David Stoutemyer gave a
talk entitled “Which polynomial representation is best?”. Let me here first show three different
polynomial representations, namely, sum-of-terms representations, recursive sparse representations
and the recursive dense representation. Then I will return to Stoutemyer’s question.

9.1 Distributed Representations

The sum-of-terms representation is used by Magma, Maple, Mathematica, Maxima, and Singular.
Singular’s sum-of-terms representation for the polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 is
depicted in Figure 1. Singular uses a linked list of terms. Here the terms are ordered in decreasing
graded lexicographical order. Singular knows f is a polynomial in the ring Z[x, y, z] so the variables
do not appear explicitly in the representation.

Maple also uses a sum-of-terms representation. Maple’s sum-of-terms representation for the
polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 is depicted in Figure 2. In Maple the terms are

13

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Figure 1: Singular’s sum-of-products representation for 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

not sorted ordered in a monomial ordering. They are sorted by the address of the PROD objects
(the monomials). Mathematica’s representation is very similar to Maple’s. The main difference is
that Mathematica sorts terms by lexicographical order.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

Figure 2: Maple’s sum-of-terms representation for 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

There is a subtle difference between the sum-of-terms representation used by Magma and Sin-
gular and the sum-of-terms representation used by Maple, Mathematica, and Maxima, namely, the
latter use a sparse representation for the monomials, that is, no zero exponents appear in their
representations. In Singular the term −8x3 is stored as −8 3 0 0 but in Maple it’s stored as

PROD x 3 . If f is a linear polynomial in n variables where n is large, then Maple uses O(n)
space to store f but Singular needs O(n2) space. Thus a linear system of n linear polynomials in
n unknowns requires O(n2) space in Maple but O(n3) space in Singular.

9.2 Recursive Representations

The recursive representation is used by Derive, Fermat, Pari, Reduce and Trip. Trip’s recursive
sparse representation for the polynomial f = 9xy3z− 4y3z2− 6xy2z− 8x3− 5 is depicted in Figure
3. To understand the representation it is helpful to think of f as a polynomial in the ring Z[z][y][x],
that is, f = (−8)x3 + ((9z)y3 + (−6z)y2)x+ ((−4z2)y3 + (−5)).

Algorithms for +,−,×,÷ in the recursive representation are different from those in the sum-of-
terms representation. In the sum-of-terms representation there is a significant cost for processing
monomials. Storage must be allocated for each monomial. In the recursive representation there
are no monomials. Algorithms are simpler because they are univariate.

Pari uses a recursive dense representation for all polynomials. Pari’s recursive dense represen-
tation for the polynomial 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 is depicted in Figure 4.

At the 1984 Macsyma User’s Conference, Stoutemyer observed that the recursive dense represen-
tation was the fastest for polynomial multiplication and division which was a surprise. Stoutemyer

14

3

0 1 3

2 3

2 1 1 9

0

−4

−8

−5

−6

POLY x

POLY z POLY z POLY z

POLY y POLY y

Figure 3: Trip’s sparse recursive representation for 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

30 1 2

30 1 2

zPOLY 5 zPOLY 4

yPOLY 6yPOLY 6

POLY 6 x 0 −8

0 0−5 0 0

−400 0 −6 zPOLY 4

0 1

0 9

Figure 4: Pari’s recursive dense representation for 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

also observed that recursive sparse was faster than the sum-of-terms representation. These obser-
vations were later confirmed by Richard Fateman in 2003. Fateman observed that the recursive
representation used by Pari was fastest on his benchmarks and amongst the computer algebra
systems that use the sum-of-terms representation, Maple, Mathematica and Macsyma were slower
than Singular and Magma.

In 2022 I asked Henri Cohen, the author of Pari, why he chose the recursive dense representation.
Henri told me it was the first representation for multivariate polynomials that he thought of trying
and when it seemed to work well, he kept it.

9.3 Speeding up Sum-Of-Terms Representations

Fateman’s benchmark revealed that the sum-of-terms representation used by Maple, Mathematica,
and Maxima is the slowest representation, over 5 to 13 times slower than Singular’s sum-of-terms
representation which was 2.6 times slower than Pari. Why is that? Look again at Maple’s general
representation shown in Figure 2. Suppose we want to multiply two monomials wxy2 times x2yz2

in Maple. The two monomials would be stored as PROD arrays of length 7 words. They look like

PROD w 1 x 1 y 2 and PROD x 2 y 1 z 2 .

To multiply them Maple concatenates them to form the product

PROD w 1 x 1 y 2 x 2 y 1 z 2 ,

which requires a storage allocation. Maple then sorts on the variables to get

PROD w 1 x 1 x 1 y 2 y 2 z 2 ,

adds up like exponents and shrinks the array to be PROD w 1 x 2 y 4 z 2 . Then
Maple hashes the resulting monomial and looks up the simpl table to test if it already exists in
Maple. No wonder Maple is slow at multiplying polynomials! How can we speed Maple up?

15

ALTRAN [10] is one of the oldest computer algebra systems. It was developed at Bell Labs
in the 1960s to do polynomial and rational function arithmetic. ALTRAN uses a sum-of-terms
representation for polynomials but it packs monomials into words. One reason Altran did this
is because in the 1960s, memory was scarce. But packing monomials also speeds up monomial
arithmetic. In the 1980s and 1990s, as the amount of RAM on computers grew from kilobytes to
megabytes, packing monomials did not seem necessary anymore.

In [20, 21] Roman Pearce and I designed a new polynomial representation for Maple for polyno-
mials in Z[x1, x2, . . . , xn]. We pack monomials into 64 bit words using a graded monomial ordering.
Figure 5 depicts the POLY representation for the polynomial f = 9xy3z− 4y3z2− 6xy2z− 8x3− 5.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

Figure 5: Maple’s POLY representation for 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

If f is a polynomial in n > 1 variables with integer coefficients, Maple uses b = b64/(n+1)c bits
for each exponent. In the remaining 64 − nb bits Maple stores the total degree of the monomial.
For example consider the first monomial x1y3z1 in our polynomial f which is shown as 5131 in
Figure 9.3. It is encoded as the unsigned 64 bit integer 5B3 + 1B2 + 3B + 1 where B = 216. If f is
a polynomial in one variable with integer coefficients, Maple uses all 64 bits for the degree.

If all monomials in a polynomial f ∈ Z[x1, x2, . . . , xn] can be packed into 64 bits using this
encoding, and deg(f) > 1, and f has at least two terms, then Maple uses the POLY representation,
otherwise it uses the sum-of-terms representation as depicted in Figure 2. Conversions between
representations when necessary are automatic and invisible to the Maple user. The Maple user can
find out which representation is being used using the dismantle command. For example

> f := 3*x^2-5*x*y;

f := 3x2 − 5xy

> dismantle(f);

POLY(6)

EXPSEQ(3)

NAME(4): x

NAME(4): y

DEGREES(HW): ^2 ^2 ^0

INTPOS(2): 3

DEGREES(HW): ^2 ^1 ^1

INTNEG(2): -5

> g := 3*x-5*y+4*z;

g := 3x− 5y + 4z

> dismantle(g);

SUM(7)

NAME(4): x

INTPOS(2): 3

NAME(4): y

INTNEG(2): -5

NAME(4): z

INTPOS(2): 4

16

9.4 Advantages of the POLY representation

A first advantage is that the POLY representation reduces the space needed to store a polynomial.
For the polynomial f = 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 the space needed by POLY is 16 words
(see Figure 5). Compare this with 33 words in Maple’s sum-of-terms representation (see Figure 2).

A second advantage is that the POLY representation eliminates memory management for the
monomials. They are not stored in Maple’s simpl table (See Section 3).

A third advantage is that to sort terms in the POLY representation, we can compare monomials
using a 64 bit unsigned integer comparison, that is, with one machine instruction. This is the fastest
it could be.

A fourth advantage is that monomial multiplication becomes a 64 bit unsigned integer addition,
that is, one machine instruction. Again, this is the fastest it could be. Of course overflow could
occur. However, observe if we want to multiply f×g, no overflow can occur if deg(f)+deg(g) < 2b,
and, because the total degree of f in the POLY representation is stored in the first term, this test
is O(1).

The reader may wonder why POLY doesn’t use pure lexicographical order so that we don’t
have to store the total degree of each monomial which would mean we have more bits available for
the exponents. The reason is because of polynomial division. If one uses lexicographical order to
divide f ÷ g, and deg(g, xi) ≤ deg(f, xi) for 1 ≤ i ≤ n, intermediate degrees can be greater than
those of f and one would have to check for overflow. In graded lexicographical order, this cannot
happen. Thus if deg f < 2b then the entire division algorithm can execute with no test for overflow.

How many polynomials can be packed in the POLY representation? The first row in Table 7
shows the number of bits b = b(n + 1)/64c for exponents, for different n. The second row shows
64− nb, the number of bits available for the total degree.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
exponents 21 16 12 10 9 8 7 6 5 5 4 4 4 4 3 3 3 3 3

degree 22 16 16 14 10 8 8 10 14 9 16 12 8 4 16 13 10 7 4

Table 8: Number of bits used for exponents and the total degree in POLY for n variables.

The 64 bit word length of today’s computes is big enough so that POLY handles a wide range
of polynomials in practice. 32 bits would not be big enough. We did consider using 128 bits but
did not implement it. Currently POLY is also limited to integer coefficients. An experiment we
did try was to support rational coefficients and algebraic number coefficients but the coding effort
was deemed too great for the speedup that we would have achieved.

The POLY representation first appeared in Maple 17 in 2013 and it was first announced at
the Asian Symposium on computer mathematics in Beijing, October 2012. At that time the total
degree of f was also restricted to fit in b = b64/(n+ 1)c bits. Joris van der Hoeven asked me why
we did not use all 64− nb bits for the total degree so that we could store more polynomials in the
POLY representation. The answer I gave was that it would complicate the code. I changed my
mind when I was once again computing determinants of Vandermonde matrices.

If Vn is the n×n Vandermonde matrix in x1, x2, . . . , xn then the total degree deg(Vn) =
∑n−1

i=1 i =
n(n− 1)/2. If we use only b = b64/(n+ 1)c bits for the total degree, V9 fits in POLY but V10 does
not because for n = 9 we have b = 6 bits and deg(V9) = 45 but for n = 10 we have b = 5 bits
and deg(V10) = 55. By using all 64− nb bits for the total degree, V10, V11, V12, V13 and V14 all fit in
POLY, a large increase in the range of POLY. Using all 64− nb bits for the total degree in POLY
was added for Maple 18.

17

9.5 Benchmark for POLY

The timings in Table 9 compare the speed of Maple on multiplying three polynomials f1 × f2 × f3
in n variables and factoring their products. The polynomials f1, f2 and f3 have 100 terms in n
variables and 6 digit coefficients. The code for generating the input polynomials and timings is
given in Appendix B.

Column Maple 16 is before POLY was added to Maple. Column Maple 17 is for after POLY
was added to Maple. Column Maple 18 is after further improvements to POLY. For Maple 2019 the
polynomial factorization algorithm was changed. Previously Maple used Paul Wang’s multivariate
Hensel lifting from [29, 7]. Since Maple 2019, Maple uses Monagan and Tuncer’s algorithm from
[22, 23, 24] which uses sparse polynomial interpolation.

Maple 16 Maple 17 Maple 18 Maple 2019

n expand factor expand factor expand factor expand factor
5 0.158s 25.15s 0.029s 8.61s 0.032s 8.87s 0.034s 0.80s
6 0.504s 86.30s 0.058s 29.29s 0.048s 34.53s 0.052s 1.69s
7 0.719s 4.35m 0.050s 1.45m 0.055s 69.38s 0.063s 3.02s
8 1.07s 8.06m 0.049s 3.90m 0.058s 2.52m 0.066s 4.16s
9 0.96s 10.47m 0.049s 4.91m 0.058s 3.83m 0.068s 5.05s

10 1.13s 16.10m 0.049s 12.26m 0.058s 3.61m 0.070s 5.58s
11 1.25s 21.47m 0.048s 9.07m 0.058s 19.96m 0.069s 6.70s
12 1.35s 37.54m 1.17s 38.84m 0.98s 21.01m 1.99s 1.33m
13 1.41s 76.87m 1.22s 109.79m 1.11s 25.56m 2.47s 1.57m
14 1.20s 98.50m 1.30s 3.17h 1.10s 30.17m 4.95s 2.29m
15 1.24s 58.59m 1.32s 112.4m 1.27s 47.24m 1.68s 2.52m

Table 9: CPU timings for multiplying and factoring polynomials in n variables

Polynomial multiplication is about 20 times faster for 5 ≤ n ≤ 11 in Maple 17 than in Maple
16. This is due entirely to POLY. Factorization is 2 to 3 times faster for 5 ≤ n ≤ 11. This is also
due to POLY. The product f1 × f2 × f3 at n = 12 variables overflows the 64 bit monomials so
Maple uses the old sum-of-products representation so there is no gain for 12 ≤ n ≤ 15.

The factorization timings for Maple 16, 17, and 18 are increasing exponentially as a function
of n. Paul Wang’s multivariate Hensel lifting is, in general, exponential in n. In contrast the
factorization timings for Maple 2019 are linear in n (the jump at n = 12 is because POLY overflows).
The Monagan and Tuncer polynomial factorization algorithm is random polynomial time.

10 Factoring Determinants of Polynomial Matrices.

We consider three families of matrices of polynomials, Vn the n by n Vandermonde matrix in
x1, x2, . . . , xn, Tn the symmetric Toeplitz matrix in x1, x2, . . . , xn and Cn the cyclic matrix in
x1, x2, ..., xn. For each matrix we compute and factor it’s determinant. Note that det(Vn), det(Tn)
and det(Cn) are all polynomials in Z[x1, x2, . . . , xn.

We time Maxima version 5.45.0, Maple 2024, Magma V2.28-19 and Singular 3.4.1. Timings
were obtained on a 24 core Intel Xeon Gold 6342 CPU running at 2.8/3.5 GHz base/turbo.

18

10.1 Vandermonde matrices

The n by n Vandermonde matrix V n is defined by Vnij = xj−1i for 1 ≤ i ≤ n, 1 ≤ j ≤ n. The
factorization of det(Vn) is

∏
1≤i<j≤n(xj − xi). For example

V3 =

 1 x1 x21
1 x2 x22
1 x3 x23

 det(V3) = −x21x2 + x21x3 + x1x
2
2 − x1x23 − x22x3 + x2x

2
3

= (x3 − x2)(x3 − x1)(−x1 + x2).

To factor det(V3) Maple choose a main variable, say x1, writes D3 = det(V3) as a polynomial
in Z[x2, x3][x1] to get

D3 = (x3 − x2)x21 + (x22 − x23)x1 + (x2x
2
3 − x22x3)x0,

computes the GCD of the coefficients in x1, that is, computes

c = gcd(x3 − x2, x22 − x23, x2x23 − x22x3) = x3 − x2.

If c 6= 1 Maple factors c and p = D3/c = x21 − x1x2 − x1x3 + x2x3 recursively. To factor p, Maple
computes the GCD of the coefficients in each variable to try to identify a factor cheaply. Here for
x1, we have gcd(1,−x2 − x3, x2x3) = 1 but for x2 we get gcd(x3 − x1, x21 − x1x3) = x3 − x1 and
obtain the factorization p = (x3 − x1)(x2 − x1). The entire factorization of det(Vn) is done with a
sequence of GCD computations. Table 10.1 shows the time it takes Maple, Magma, Singular and
Maxima to compute and then factor det(Vn). We conjecture that the reason Magma is so slow is
because of its poor polynomial division algorithm (See Section 8).

Maple 2024 Magma 2.29-19 Singular 3.4.1 Maxima 5.45.0

n #det det factor det factor det factor det factor

7 5040 0.004 0.006 0.01 0.04 0.002 0.018 1.153 1.99
8 40320 0.024 0.036 0.02 0.50 0.029 0.180 17.56 44.99
9 362880 0.144 0.553 0.18 8.90 0.538 2.163 255.66 875.83

10 3628800 1.59 11.18 3.20 518.78 10.053 34.405 OM NA
11 39916800 19.39 252.60 34.26 22,739.0 131.202 8,851.09 NA NA
12 479001600 253.80 5334.6 NA NA NA NA NA NA

Table 10: Timings (in CPU seconds) to compute and factor det(Vn). OM = Out of Memory. NA
= Not Attempted.

Maple ran out of memory when trying to compute det(V13) because the determinant is too big.
The POLY representation (see Figure 5) needs 2 words of memory per term to store det(V13) for
a total of 8 · 2 · 13! = 99.6 gigabytes. Maple’s sum-of-products representation (see Figure 2) would
need 25 words per monomial for a total of 8 · 25 · 13! = 1.245 terabytes.

10.2 Symmetric Toeplitz matrices

Let Tn be the n by n symmetric Toeplitz matrix with Tnij = x|i−j|+1 for 1 ≤ i ≤ n, 1 ≤ j ≤ n. For
n ≥ 2, det(Tn) has two irreducible factors. For example

T3 =

 x1 x2 x3
x2 x1 x2
x3 x2 x1

 det(T3) = x31 − 2x1x
2
2 − x1x23 + 2x22x3

= (x1 − x3)(x21 + x1x3 − 2x22).

19

Table 10.2 below has timings for Magma, Maple, Singular and Maxima to compute and then
factor det(Tn). The column numterms is the number of terms of the two factors. The polynomial
det(Tn) and its factors are dense. All four computer algebra systems use multivariate Hensel lifting
to recover the factors. They first pick a main variable, say x1, then pick an evaluation point
(α2, α3, . . . , αn) ∈ Zn−1 then factor the univariate polynomial det(Tn)(x1, α2, α3, . . . , αn) over Z.
They then apply Hensel lifting to recover the variables in the multivariate factors one variable at
a time. The four computer algebra systems have different Hensel lifting algorithms.

Maxima uses Paul Wang’s Hensel lifting from [29]. Since Maple 2019, Maple uses Monagan and
Tuncer’s sparse Hensel lifting from [22, 23, 24]. Prior to Maple 2019, Maple used Keith Geddes’
implementation of Wang’s algorithm from the [7] text. Allan Steel implemented the Hensel lifting
in Magma. Allan also used the description of Wang’s algorithm from [7]. Martin Lee implemented
the Hensel lifting for Singular. His implementation is described in his PhD thesis [15].

Magma 2.28-19 Maple 2024 Singular 3.4.1 Maxima 5.45.0

n #f1,#f2 det factor det factor det factor det factor

8 167,167 0.01 0.09 .008 .089 0.003 0.018 .840 40.44
9 294,153 0.08 0.26 .026 .218 0.019 0.150 7.93 896.7
10 931,931 0.64 1.50 .382 3.83 0.112 2.406 64.18 22,013.1
11 1730,849 5.09 4.55 1.52 9.71 0.695 29.249 373.2 NA
12 5579,5579 32.93 94.89 6.71 21.92 4.526 405.785 NA NA
13 10611,4983 215.14 365.3 36.41 55.16 36.915 1,689.11 NA NA
14 34937,34937 1204.37 5,484.3 169.2 388.80 130.86 96,242.9 NA NA

Table 11: Timings (in CPU seconds) to compute and factor det(Tn). NA = Not Attempted.

10.3 Circulant matrices

Let Cn be the n by n circulant matrix with Cnij = x(i+j−2) mod n+1 for 1 ≤ i ≤ n, 1 ≤ j ≤ n. For
n ≥ 1, det(Cn) has φ(n) irreducible factors where φ is Euler’s totient function. One of the factors
is x1 + x2 + · · ·+ xn. For example

C3 =

 x1 x2 x3
x2 x3 x1
x3 x1 x2

 det(C3) = −x31 + 3x1x2x3 − x32 − x33
= (x1 + x2 + x3)(−x21 + x1x2 + x1x3 − x22 + x2x3 − x23).

Notice that the second factor of det(C3) has 6 terms but det(C3) has 4 terms. If n is prime
then det(Cn) has one linear factor x1 + x+ 2 + · · ·+ xn and one large non-linear factor which has
more terms than det(Cn). In Table 10.3 below, column 2 shows the number of terms in det(Cn)
and the number of terms in the largest factor of det(Cn).

In Hensel lifting, the linear factor will be found first. For an odd prime n, the non-linear factor
can be found by a single division. But this division has a quotient with many more terms than the
divisor which has n terms which will cause a slowdown if the division algorithm is poor. If division
is not used then the Hensel lifting must recover the large factor. Notice what happens to Magma
and Singular for n = 11 and n = 13 in Table 10.3.

20

Magma 2.28-19 Maple 2024 Singular 3.4.1 Maxima 5.45.0

n #det,#fmax det factor det factor det factor det factor

7 246, 924 0.00 0.01 .002 .020 0.001 0.012 .090 0.15
8 810, 86 0.01 0.05 .007 .084 0.003 0.018 0.580 0.361
9 2704, 1005 0.03 0.53 .027 .273 0.011 0.137 3.80 0.635
10 7492, 715 0.15 5.70 .135 2.18 0.056 0.340 30.39 4.037
11 32066,184756 0.95 104.52 .931 0.983 0.310 133.167 2922.1 35.42
12 86500, 621 7.02 2019.27 3.22 4.07 2.359 2.814 OM 113.97
13 400024,2704156 61.72 43,519.1 17.59 11.23 12.673 39,838.9 NA NA
14 1366500,27132 427.74 > 6days 160.8 508.2 54.865 296.051 NA NA

Table 12: Timings (in CPU seconds) to compute and factor det(Cn). OM = Out of Memory, NA
= Not Attempted.

References

[1] Wibe Bosma, John Cannon and Catherine Playoust. The Magma algebra system. I. The user
language, J. Symb. Cmpt., 24:235–265, Elsevier, 1997. DOI = 10.1006/jsco.1996.0125,

[2] Steven W. Brown. On Euclid’s algorithm and the computation of polynomial greatest common
divisors, J. ACM 18:478–504, ACM, 1971.

[3] Bruce W. Char, Keith O. Geddes, W. Morven Gentleman, Gaston H. Gonnet. The Design
of Maple: a Compact, Portable, and Powerful Computer Algebra System. Proceedings of
EUROCAL ’83, pp. 101–115, Springer, March 1983.

[4] Bruce Char, Gregory J. Fee, Keith O. Geddes, Gaston H. Gonnet, Michael B. Monagan,
Stephen M. Watt. On the Design and Performance of the Maple System. Proceedings of the
1984 Macsyma User’s Conference, pp. 189–220, 1984.

[5] Bruce Char, Keith Geddes, Gaston Gonnet. GCDHEU: Heuristic Polynomial GCD Algorithm
Based on Integer GCD Computation. Proceedings of EUROSAM 84, LNCS 174:285–296,
Springer, 1984.

[6] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 4-4-0 — A computer
algebra system for polynomial computations. https://www.singular.uni-kl.de, 2024.

[7] K.O. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer, 1992.

[8] Richard Fateman. Comparing the speed of programs for sparse polynomial multiplication.
ACM SIGSAM Bulletin 37(1):4–15, 2003.

[9] Keith Geddes. Numerical Integration using Symbolic Analysis. Maple Technical Newsletter
6:8–17, Waterloo Maple Software, Fall 1991.

[10] Hall, A.D. The ALTRAN System for Rational Function Manipulation — A Survey. Commu-
nications of the ACM, 14(8):517–521, August 1971.

[11] Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial GCD algorithm. In
Proceedings of ISSAC 2016, pp. 271–278, ACM, 2016.

[12] Qiao-Long Huang and Michael Monagan. A New Sparse Polynomial GCD by Separating Terms.
Proceedings of ISSAC 2024, pp. 134-142, ACM Digital Library, 2024.

[13] Johnson, S.C. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8(3):63–71, 1974.

21

[14] J. de Kleine, M. Monagan, A. Wittkopf. Algorithms for the Non-monic case of the Sparse
Modular GCD Algorithm. Proceedings of ISSAC ’2005, ACM Press, pp. 124–131, 2005.

[15] Martin M. Lee. Factorization of multivariate polynomials. Ph.D. Thesis, 2013. See
https://d-nb.info/1036637972/34

[16] The Maxima Group. Maxima, a Computer Algebra System. Version 5.45.0, May 24, 2021.
http://maxima.sourceforge.net/

[17] M. B. Monagan. In-place arithmetic for polynomials over Zn. Proceedings of DISCO ’92, LNCS
721:22–34, Springer, 1993.

[18] Michael Monagan and Roman Pearce. Sparse Polynomial Division Using a Heap. J. Symb.
Cmpt. 46(7):807–822, 2011.

[19] Michael Monagan and Roman Pearce. Parallel Sparse Polynomial Multiplication using Heaps.
Proceedings of ISSAC ’09, pp. 263-269, ACM, 2009.

[20] Michael Monagan and Roman Pearce. POLY: A new polynomial data structure for Maple. In
Computer Mathematics, Springer Verlag, pp. 325–348, October 2014.

[21] Michael Monagan and Roman Pearce. The design of Maple’s sum-of-products and POLY data
structures for representing mathematical objects. Communications of Computer Algebra, 48
(4), pp. 166–186, December 2014.

[22] Michael Monagan and Baris Tuncer. Using Sparse Interpolation in Hensel Lifting. Proceedings
of CASC 2016, LNCS 9890:381–400, Springer, 2016.

[23] Michael Monagan and Baris Tuncer. Polynomial Factorization in Maple 2019. Proceedings of
the 2019 Maple conference, In Maple in Mathematics Education and Research. Communications
in Computer and Information Science, 1125:341–345, Springer, 2020.

[24] Michael Monagan and Baris Tuncer. The complexity of sparse Hensel lifting and sparse poly-
nomial factorization. J. Symb. Cmpt. 99: 189–230, Springer, 2020.

[25] Michael Monagan and Roman Pearce. Sparse Polynomial Division Using a Heap. J. Symb.
Cmpt. 46 (7) 807–822, 2011.

[26] Roman Pearce and Michael Monagan. Parallel Sparse Polynomial Division using Heaps. Pro-
ceedings of PASCO ’2010, pp. 105–111, ACM, 2010.

[27] Juho Snellman’s Weblog. Numbers and tagged pointers in early Lisp implementations.
https://www.snellman.net/blog/archive/2017-09-04-lisp-numbers/ Posted 2017.

[28] David Stoutemyer. Which polynomial representation is best? Surprises Abound! Proceedings
of the 1984 Macsyma User’s Conference, pp. 221–243, May 1984.
Accessible at https://udspace.udel.edu/items/55e9feab-ba45-46a1-9dc0-db2adbfb7157

[29] Wang, P.S. An improved Multivariate Polynomial Factoring Algorithm. Mathematics of Com-
putation, 32, 1978.

[30] Paul Wang. The EEZ-GCD algorithm. ACM SIGSAM Bulletin, 14(2): 50–60, 1980.

[31] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of EUROSAM ’79,
pp. 216–226. Springer-Verlag, 1979.

22

11 Appendix A

Example of the GCDHEU algorithm from [5] for computing a bivariate GCD in Z[x, y].

> A := -21*x^9+31*x^8*y-172*x^7*y^2-470*x^6*y^3-12*x^5*y^4+220*x^4*y^5+379*x^3*y^6

-17*x^2*y^7+324*x*y^8+490*y^9-116*x^8-168*x^7*y+907*x^6*y^2-559*x^5*y^3-519*x^4*y^4

-900*x^3*y^5+71*x^2*y^6+259*x*y^7-801*y^8+217*x^7-598*x^6*y+889*x^5*y^2+744*x^4

*y^3+789*x^3*y^4+706*x^2*y^5-128*x*y^6+211*y^7+173*x^6-858*x^5*y+329*x^4*y^2-

732*x^3*y^3-433*x^2*y^4-502*x*y^5-375*y^6+265*x^5-1069*x^4*y-187*x^3*y^2+396*x^2

*y^3-398*x*y^4+387*y^5+544*x^4+700*x^3*y+475*x^2*y^2+509*x*y^3-89*y^4-206*x^3-

853*x^2*y-104*x*y^2+678*y^3+731*x^2-130*x*y-610*y^2-350*x-322*y+343:

> B := -141*x^8-115*x^7*y+473*x^6*y^2+548*x^5*y^3+158*x^4*y^4+95*x^3*y^5-111*x^2*y^6

-579*x*y^7-240*y^8+86*x^7-481*x^6*y-450*x^5*y^2-469*x^4*y^3-83*x^3*y^4-204*x^2*y

^5+1003*x*y^6+601*y^7+537*x^6-295*x^5*y+907*x^4*y^2+223*x^3*y^3-156*x^2*y^4-863

*x*y^5-511*y^6+355*x^5-148*x^4*y-702*x^3*y^2-61*x^2*y^3+860*x*y^4+221*y^5-617*x

^4-12*x^3*y+209*x^2*y^2+198*x*y^3+30*y^4+104*x^3+759*x^2*y-1129*x*y^2-141*y^3

-768*x^2-49*x*y-340*y^2+829*x+929*y-497:

> a := subs(x=1000,y=10^9,A); # a := A(1000,10^9)

a := 49000032319898325959007109072569297970500817408731666987150004426241241\

3472730650343

> b := subs(x=1000,y=10^9,B); # b := B(1000,10^9)

b := -240000578399109997416204704861607608274510011324228190813886664967767171497

> g := igcd(a,b);

g := 5000002993

> g := genpoly(g,10^9,y);

g := 2993 + 5 y

> G := genpoly(g,10^3,x);

G := 3 x + 5 y - 7

12 Appendix B

Maple code for generating the polynomials f1, f2, f3 for the benchmark in Section 9.5.

kernelopts(numcpus=1);

d := 10;

for n from 5 to 15 do

X := [seq(x||i, i=1..n)];

f := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

g := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

h := randpoly(X,coeffs=rand(-10^6..10^6),terms=100,degree=d);

a := CodeTools[Usage](expand(f*g*h));

h := CodeTools[Usage](factor(a)); # Uses MTSHL in Maple 2019

od:

23

