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Abstract The generalized eigenvalue problem ˜Hy = λHy with H a Hankel
matrix and ˜H the corresponding shifted Hankel matrix occurs in number of
applications such as the reconstruction of the shape of a polygon from its
moments, the determination of abscissa of quadrature formulas, of poles of
Padé approximants, or of the unknown powers of a sparse black box poly-
nomial in computer algebra. In many of these applications, the entries of the
Hankel matrix are only known up to a certain precision. We study the sensi-
tivity of the nonlinear application mapping the vector of Hankel entries to its
generalized eigenvalues. A basic tool in this study is a result on the condition
number of Vandermonde matrices with not necessarily real abscissas which are
possibly row-scaled.
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1 Introduction

Given complex numbers h0, h1, . . . , h2n−1, which we refer to as moments, we
are interested in the generalized eigenvalue problem (abbreviated as GEP)

˜HnyR = λHnyR, yL
˜Hn = λyLHn (1)

for the Hankel matrices

Hn :=

⎡

⎢

⎢

⎢

⎣

h0 h1 · · · hn−1
h1 h2 · · · hn
...

...
...

hn−1 hn · · · h2n−2

⎤

⎥

⎥

⎥

⎦

, ˜Hn :=

⎡

⎢

⎢

⎢

⎣

h1 h2 · · · hn
h2 h3 · · · hn+1
...

...
...

hn hn+1 · · · h2n−1

⎤

⎥

⎥

⎥

⎦

.

Such eigenvalue problems appear in applications such as shape reconstruction
of a polygon from its moments [15], determination of abscissa of quadrature
formulas [10,11] and the determination of the unknown powers of a multi-
variate sparse black box polynomial in computer algebra [12,14]. The shape
from moments problem is applicable to a wide variety of inverse problems of
uniform density regions related to general elliptical equations appearing for
example in statistics and probability, geophysics, and computed tomography
(see for instance the references in [15]). In the case of sparse multivariate
interpolation the applications include approximate multivariate factorization
and decompositions of approximately specified polynomial systems (see the
references in [14]).

In many applications, the moments hk are obtained by measurements and
hence are affected by some error. In this paper we are interested in the sensitiv-
ity of the generalized eigenvalues with respect to such errors in the moments.
In other words, we are interested in the sensitivity of the application

Gn : C
2n �→ C

n (2)

(h0, . . . , h2n−1) �→ (λ1, . . . , λn)

which maps the moments to the n generalized eigenvalues defined by (1). Up
to first order, this sensitivity is measured by the norm of the Jacobian of this
non-linear map. In the case λj ∈ R and cj > 0, which is related to orthogonality
on the real line, such a study was done previously by Gautschi [10,11] followed
by other authors [5,9]. In our applications, however, we are more interested in
the case where λj and cj are complex.

In the applications mentioned earlier the input is a set of given moments hk
satisfying

hk =
n
∑

j=1

cjλ
k
j , k = 0, . . . , 2n − 1, (3)
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with cj ∈ C\ {0} and distinct λj ∈ C. In such applications, the quantities cj and λj
are unknown, and need to be computed from the moments. Notice that the λj
in formula (3) are just the generalized eigenvalues of problem (1). Conversely,
one may in fact show that if (1) has distinct generalized eigenvalues λ1, . . . , λn
then there exist suitable cj such that Eq. (3) holds true. Thus, the generalized
eigenvalue problem (1) is a convenient way of writing the problem of finding
the λj from the moments hk. Additional details for the above points are given
later in Sect. 2.1.

This paper has two main contributions. The first is the (rather surprising)
result that the sensitivity of (1) with respect to both structured and unstruc-
tured perturbations can be measured essentially by the same quantity. This
gives a theoretical justification for a numerical observation in [15]. Our sec-
ond contribution is to give lower bounds for the (relative) sensitivity for the
most sensitive eigenvalue of (1). These lower bounds are given in terms of the
condition number of the underlying Hankel matrix Hn. For a subclass of such
problems (which are relevant to the applications mentioned earlier) there are
lower bounds for the most sensitive eigenvalue that is given in terms of an
associated Vandermonde matrix formed with the help of the (possibly com-
plex) λj multiplied by some diagonal factor. In order to obtain more precise
information about the sensitivity in terms of these λj, we finally analyze more
closely the condition number of such scaled Vandermonde matrices. Our anal-
ysis shows that this sensitivity potentially grows exponentially with the size of
the matrix.

The remainder of the paper is organized as follows. In Sect. 2 we recall the
notion of ill-disposed generalized eigenvalues from [15] and compare the sen-
sitivity of (1) with respect to both structured and unstructured perturbations.
In Sect. 3 we study the sensitivity for the most sensitive eigenvalue of (1) and
its relation to the condition number of the underlying Hankel matrix. In this
section we also give lower bounds for the most sensitive eigenvalue for a sub-
class of problems relevant for our applications, and study the dependency of
this lower bound on the distribution of the λj in the complex plane. In Sect. 4 we
illustrate the impact of our results by discussing some simple examples coming
from the applications of shape detection and the reconstruction of a sparse
black box polynomial. The proof of the main Theorem of Sect. 3 is given in
Sect. 5. Finally, a conclusion and discussion for further work is given in Sect. 6.

Notations: We let ‖ · ‖ be the Euclidean vector norm and the spectral matrix
norm and ‖S‖F = √

trace(S∗S) the subordinate Frobenius matrix norm, where
S∗ denotes the adjoint of the matrix S. The jth canonical vector is denoted by
ej. For a continuous function f : C �→ C, and some compact set E ⊂ C, we
consider the norms

‖f‖L2(∂D) :=
⎡

⎣

1
2π

2π
∫

0

|f (eit)|2 dt

⎤

⎦

1/2

, ‖f‖L∞(E) := max
z∈E

|f (z)|,
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where D denotes the closed unit disk, and ∂D its boundary. Given a poly-
nomial p(z) = a0 + a1z + · · · + anzn, we consider its vector of coefficients

p := (a0, a1, . . . , an)

t, the length of this vector being clear from the context. One
easily verifies that, for any polynomial p of degree at most n − 1, the following
bounds hold

deg p < n : ‖
p‖ = ‖p‖L2(∂D),
1√
n

‖p‖L∞(∂D) ≤ ‖p‖L2(∂D) ≤ ‖p‖L∞(∂D).

(4)

2 Unstructured and structured perturbations of the GEP

In this section we give some background for the generalized eigenvalue prob-
lem (1). In particular, we show that in the generic case it can always be for-
mulated in terms of problem (3) and give a simple well-known formula for
the generalized eigenvectors. We also recall the perturbation analysis of this
problem for the case of unstructured perturbations from [15] and then give the
main result of this section, a perturbation analysis which takes into account the
special Hankel structure of our input matrices.

2.1 Preliminaries

Let us first show that the generalized eigenvalue problem (1) is equivalent to
finding λj in Eq. (3) from the moments hk in the generic case. Thus, suppose
problem (1) has moments defined by (3). Then one has a simple formula for the
corresponding generalized eigenvalues and eigenvectors. Indeed in this case
one has the factorizations of the two Hankel matrices

Hn = Vt
n diag (c1, . . . , cn)Vn = Wt

n Wn, ˜Hn = Vt
n diag (λ1c1, . . . , λncn)Vn,

(5)

where t denotes taking of a transpose (without taking conjugates), and

Vn =

⎡

⎢

⎢

⎢

⎣

1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

...
1 λn · · · λn−1

n

⎤

⎥

⎥

⎥

⎦

, Wn := diag (
√

c1, . . . ,
√

cn)Vn, (6)

a Vandermonde matrix and a row-scaled Vandermonde matrix, respectively. It
follows from (5) that the generalized eigenvalues of (1) are given by the abscissa
λj of (3), with corresponding right and left eigenvectors given by yR = (yL)t =
V−1

n ej.
Conversely suppose that (1) has distinct generalized eigenvalues λ1, . . . , λn.

Then it is well-known [2] that the polynomial q(z) := det(˜Hn − z Hn) is the
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denominator of the nth Padé approximant at infinity of the series h(z) = h0z−1+
h1z−2 + · · · . Thus the generalized eigenvalues of (1) are just the poles of the
nth Padé approximant. In this case we have a partial fraction decomposition
for the nth Padé approximant given by

2n−1
∑

j=0

hj

zj+1
=

n
∑

j=1

cj

z − λj
+ O(z−2n−1)z→∞,

with cj ∈ C \ {0}. Equating coefficients leads to the representation (3).

2.2 Analysis of errors

Golub et al. [15, Sect. 3.3] considered perturbations of the generalized eigen-
value problem (1), namely

[˜Hn + ε˜En]yR(ε) = λ(ε)[Hn + εEn]yR(ε),

yL(ε)[˜Hn + ε˜En] = λ(ε)yL(ε)[Hn + εEn], (7)

where ε > 0 is small, and the perturbation matrices ˜En, En normalized such
that ‖Ẽn‖ ≤ 1, ‖En‖ ≤ 1. In a small neigborhood around a simple eigenvalue
λ(0) = λj (and thus yR(0) = (yL(0))t = V−1

n ej), the function ε �→ λ(ε) = λj(ε)

is differentiable, with its derivative at zero being given by

dλj

dε
(0) = yL(0) [Ẽn − λjEn] yR(0)

yL(0)Hn yR(0)
.

Plugging in explicitly the eigenvectors and using the first formula of (5) leads
to the expression

dλj

dε
(0) = (V−1

n ej)
t [˜En − λjEn] V−1

n ej

(V−1
n ej)t Hn V−1

n ej
= (V−1

n ej)
t [˜En − λjEn] V−1

n ej

cj
. (8)

Following [15, Sect. 3.3], we say that a generalized eigenvalue λj is ill-disposed
if the right-hand side of (8) multiplied with ‖Hn‖ + ‖˜Hn‖ is “large”.

Using the link (6) between Vn and Wn, and exploiting the given information
on the norms of En and ˜En, we obtain from (8) the simpler upper bound

∣

∣

∣

∣

dλj

dε
(0)
∣

∣

∣

∣

≤ (|λj| + 1) ‖W−1
n ej‖2. (9)

This upper bound appears to be quite rough. In addition, the bound is based
on unstructured perturbations of Hankel matrices which a priori should lead to
a severe over estimation of the actual sensitivity since in applications the per-
turbations will be structured. For instance, if we are interested in the sensitivity
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of λj with respect to small perturbations of the second moment h2, we should
consider as perturbation matrices En, ˜En those matrices obtained from Hn, ˜Hn
by replacing h2 by 1, and all other moments by 0.

However, it follows from Theorem 2.1 below that the sensitivity with respect
to structured perturbations essentially gives the same result as (9). This fact
was already observed numerically in [15]. To make a clear statement about first
order sensitivity of the generalized eigenvalues λj with respect to perturbations
on the moments hk, we have to compute the Jacobian of the non-linear map Gn
defined in (2), and to estimate the norms of its rows.

Theorem 2.1 Suppose that (1) has distinct possibly complex eigenvalues
λ1, . . . , λn, and let cj, and Wn, as in (3), and (6), respectively. Then for all
j = 1, . . . , n we have

∥

∥

∥

∥

∥

(

∂λj

∂hk

)

k=0,...,2n−1

∥

∥

∥

∥

∥

= ηj,n (|λj| + 1) ‖W−1
n ej‖2,

where 1/(2n) ≤ ηj,n ≤ √
2n.

Proof We start with the general observation that polynomial language is very
useful for expressing the inverse of a Vandermonde matrix Vn with abscissa
λ1, . . . , λn. Indeed, with the corresponding Lagrange polynomials

�j(z) =
∏

k=1,...,n,k �=j

z − λk

λj − λk
= ω(z)
(z − λj)ω′(λj)

, ω(z) =
n
∏

k=1

(z − λk), (10)

we get the relation �j(λk) = δj,k or, in other words,

j = 1, . . . , n : V−1
n ej = 
�j, ‖V−1

n ej‖ = ‖�j‖L2(∂D). (11)

Consider a fixed j ∈ {1, .., n} and a fixed k ∈ {0, 1, . . . , 2n − 1}. In order to
measure the first order sensitivity of the generalized eigenvalue λj with respect
to perturbations in the moment hk, we proceed as in (8) and obtain the formula

∂λj

∂hk
= (V−1

n ej)
t[Ẽn − λjEn]V−1

n ej

cj
.

However, now the perturbation matrices En and Ẽn have a special form, namely
the matrix En (respectively Ẽn) is the Hankel matrix obtained from the zero
matrix by replacing the (k + 1)th anti-diagonal by ones (respectively the kth
anti-diagonal). Again it is useful to express this formula in polynomial language.
With the corresponding Lagrange polynomials �j(z) = ∑

κ �j,κzκ as in (10) and
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the two polynomials

p(z) = �j(z)2 =
∑

κ

pκzκ , q(z) = (z − λj)�j(z)2 =
∑

κ

qκzκ ,

we get from (11) that

(V−1
n ej)

tEnV−1
n ej =

k
∑

m=0

�m,j�k−m,j = pk,

(V−1
n ej)

tẼnV−1
n ej =

k
∑

m=0

�m,j�k−1−m,j = pk−1,

and thus

∂λj

∂hk
= 1

cj
[pk−1 − λjpk] = qk

cj
.

Using different techniques, a similar formula has been found by Gautschi (see
[10, Sect. 3.2] and [11]) for the case λj ∈ R and cj > 0.

Since W−1
n ej = V−1

n ej/
√

cj = 
�j/
√

cj by (6) and (11), in order to establish
Theorem 2.1 it only remains to show that

|λj| + 1
2n

‖
�j‖2 ≤ ‖
q‖ ≤ √
2n(|λj| + 1) ‖
�j‖2. (12)

Notice that 
q = B
p, with B being a matrix of size (2n)× (2n − 1) obtained from
the zero matrix by replacing the main diagonal by −λj, and the lower diago-
nal by 1. The singular values of B are easily calculated: since B∗B is similar
to the tridiagonal Toeplitz matrix with main diagonal |λj|2 + 1 and lower and
upper diagonals |λj|, its eigenvalues are given by |λj|2 + 1 − 2|λj| cos(πm/(2n)),
m = 1, . . . , 2n − 1, and hence

‖
q‖
‖
p‖ = ‖B
p‖

‖
p‖

⎧

⎨

⎩

≤
√

|λj|2 + 1 − 2|λj| cos
(

π 2n−1
2n

) ≤ 1 + |λj|,
≥
√

|λj|2 + 1 − 2|λj| cos
(

π
2n

) ≥ (1 + |λj|) sin
(

π
4n

) ≥ 1+|λj|
2n .

In addition, since p(z) = �j(z)2, we get from (4) and the Cauchy–Schwarz
inequality that

‖
p‖2 = 1
2π

∫

|w|=1

|p(w)|2 |dw| ≥
⎡

⎢

⎣

1
2π

∫

|w|=1

|p(w)| |dw|
⎤

⎥

⎦

2

= ‖
�j‖4,
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and that

‖
p‖2 = 1
2n

2n−1
∑

m=0

|p(e2π im/(2n))|2

≤ 1
2n

⎛

⎝

2n−1
∑

m=0

|p(e2π im/(2n))|
⎞

⎠

2

= 2n

⎛

⎝

1
2n

2n−1
∑

m=0

|�j(e2π im/(2n))|2
⎞

⎠

2

=2n‖
�j‖4.

Consequently, the inequalities (12) are valid, which proves Theorem 2.1.

As a consequence of Theorem 2.1 we can say that, at least up to the factor
ηj,n, the ill-disposedness of the generalized eigenvalue λj of (1) with respect
to either structured and to unstructured perturbations can be measured by
checking whether

ρj := (|λj| + 1) ‖W−1
n ej‖2 (‖Hn‖ + ‖˜Hn‖) (13)

is “large”. The term ηj,n is close to some modest power of n depending on
the choice of the norm and on the techniques chosen to prove Theorem 2.1.
Though for particular applications it might be desirable to have sharper results,
we believe that this factor ηj,n should be neglected in the measurement of
ill-disposedness. As pointed out by Wilkinson [17], “usually the bound itself
is weaker that it might have been because of the necessity of restricting the
mass of details to a reasonable level and because of the limitations imposed by
expressing the errors in terms of matrix norms.”

3 Sensitivity of the GEP

In formula (13) of the preceding section we introduced the quantities ρj for
measuring the conditioning of the (nonlinear) generalized eigenvalue problem
(1). The aim of this section is to relate our conditioning measures to those
used for linear problems, in particular to the condition number of the under-
lying Hankel matrix Hn and the row-scaled Vandermonde matrix Wn. We are
primarily concerned with determining when at least one of the generalized
eigenvalues is ill-disposed. Our results will enable us (in the second part of this
section) to describe classes of configurations of λ1, . . . , λn where at least one of
the quantities ρj will be large.

3.1 Sensitivity of the GEP in terms of condition numbers

The following result is an interesting direct consequence of Theorem 2.1.
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Corollary 3.1 If the Hankel matrix Hn is ill-conditioned then at least one of the
generalized eigenvalues of (1) is ill-disposed. More precisely, we have the estimate

ρ1 + ρ2 + · · · + ρn ≥ ‖Hn‖ ‖H−1
n ‖.

Proof From (13) we have that ρj ≥ ‖W−1
n ej‖2 ‖Hn‖ for each j. Thus

n
∑

j=1

ρj ≥ ‖Hn‖
n
∑

j=1

‖W−1
n ej‖2 = ‖Hn‖ trace((W−1

n )∗W−1
n )

≥ ‖Hn‖ ‖(W−1
n )∗W−1

n ‖ ≥ ‖Hn‖ ‖(Wt
nWn)

−1‖ = ‖Hn‖ ‖H−1
n ‖.

Hankel matrices are suspected to be notoriously ill-conditioned (for instance,
the famous Hilbert matrix is a Hankel matrix). In the case of positive definite
Hankel matrices (or, equivalently, λj ∈ R and cj > 0 for all j) we can be even
more precise. Namely, in [4] it is shown that any positive definite Hankel matrix
of order n has a spectral condition number bounded below by 3.2×10n−1/(16n).
Thus Corollary 3.1 confirms a result of Gautschi [10,11] saying that, in case
cj > 0 and λj ∈ R, the sensitivity of the map Gn is increasing exponentially in n.

Of course there are also Hankel matrices which are well-conditioned (for
example the counter identity), and therefore we should say more about the
case of non-real data. Here the following special case occurs quite often in
applications.

Definition 3.2 We say that the unit disk case holds if the (unperturbed)moments
hk are generated by (3) with |cj| ≤ 1 and distinct |λj| ≤ 1.

For the case of shape detection from moments we always have |cj| ≤ 1 by
[15, Eq. (2.2)], and the assumption |λj| ≤ 1 will be true after scaling of the
moments (such a scaling was proposed to be useful in [15, Sect. 4]). For the
application of reconstructing a sparse black box polynomial, we have |λj| = 1,
and the assumptions on cj can be seen as reasonable assumptions on the scaling
of the unknown coefficients cj. These applications are discussed later in Sect. 4.

For the unit disk case, we have the following direct consequence of
Theorem 2.1.

Corollary 3.3 Suppose that the unit disk case holds. If the row-scaled
Vandermonde matrix Wn defined in (6) is ill-conditioned then at least one of
the generalized eigenvalues of (1) is ill-disposed. More precisely, we have the
estimate

ρ1 + · · · + ρn ≥ ‖Hn‖
n2

(‖Wn‖F ‖W−1
n ‖F

)2.
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Proof From (13) we know that

ρ1 + · · · + ρn ≥ ‖Hn‖
n
∑

j=1

‖W−1
n ej‖2 = ‖Hn‖ ‖W−1

n ‖2
F .

Thus the assertion follows by observing that in the unit disk case we have the
rough bound ‖Wn‖F ≤ n.

The factor n−2 in front of the Frobenius condition number of Wn in Corol-
lary 3.3 depends on the choice of the norm and the techniques of proof, and thus
does not seem to be significant. Also, in typical examples, the quantity ‖Hn‖ is
of magnitude 1. Thus, roughly speaking, Corollary 3.3 tells us that, within the
set of generalized eigenvalues, there is at least one for which the sensitivity is
bounded below by the square of the condition number of Wn.

In comparing Corollaries 3.1 and 3.3 we recall that Hn = Wt
n Wn. Thus, the

square of the Frobenius condition number of Wn might potentially be much
larger than the condition number of the Hankel matrix Hn, and so may lead to
sharper bounds.

3.2 Sensitivity of the GEP with respect to distribution of eigenvalues

In Corollary 3.3 we related the sensitivity of the generalized eigenvalue problem
(1) to the Frobenius condition number of the row-scaled Vandermonde matrix
Wn defined in (6). Clearly, a small |cj| will deteriorate the condition number of
Wn. However, even in the case of cj minimizing the Frobenius condition num-
ber, the condition number may still be “large” depending on the distribution
of the abscissa λj in the unit disk. The aim of the remainder of this section is to
make this last point more precise.

Definition 3.4 For a given compact set E in the complex plane, define

γn(E) = inf

{

min
D diagonal

‖DVn‖F ‖(DVn)
−1‖F : λj ∈ E distinct

}

. (14)

Besides being of interest in its own right, the quantity γn(E) ≥ n gives an
alternate lower bound for ill-disposedness, as shown in the following result.

Lemma 3.5 Let E be a compact set with λ1, . . . , λn ∈ E. Then

ρ1 + · · · + ρn ≥ γn(E). (15)

Moreover, in the unit disk case we have that

ρ1 + · · · + ρn ≥ ‖Hn‖
n2 γn(E)2. (16)
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Proof We start by observing that, for fixed λ1, . . . , λn, it is not difficult to
determine the diagonal factor in (14) which minimizes the Frobenius condi-
tion number. Indeed, using the Cauchy–Schwarz inequality we find that

‖DVn‖F ‖(DVn)
−1‖F ≥

n
∑

j=1

‖(DVn)
tej‖ ‖(DVn)

−1ej‖ =
n
∑

j=1

‖Vt
nej‖ ‖V−1

n ej‖,

(17)

with equality if D = diag
(

√

‖V−1
n ej‖/‖Vt

nej‖
)

.
In order to show (15) we first observe that for the row-scaled Vandermonde

matrix Wn of (6) we have

‖Hn‖ ‖W−1
n ej‖ = ‖Wt

nWn‖ ‖W−1
n ej‖ ≥ ‖Wt

nej‖ =
√

|cj| ‖Vt
nej‖,

and ‖W−1
n ej‖ = ‖V−1

n ej‖/
√|cj|. Thus, by (13),

ρ1 + · · · + ρn ≥
n
∑

j=1

‖Hn‖ ‖W−1
n ej‖2 ≥

n
∑

j=1

‖Vt
nej‖ ‖V−1

n ej‖ ≥ γn(E),

where the last inequality follows from (17). Finally, in the unit disk case, Eq. (16)
follows directly from Corollary 3.3 and Definition 3.4.

For the remainder of this section we will give lower bounds for γn(E) and
thus for the measure of ill-disposedness of our generalized eigenvalues. Notice
that if ∂D ⊂ E, then we may choose as λj the nth roots of unity. In this case
Wn = Vn/

√
n is unitary, and thus γn(E) attains its smallest possible value,

namely n. We will show in Theorem 3.6 below that, for sufficiently “nice” sets
E, γn(E) can be bounded below and above by a quantity γ (E)n multiplied by
a modest power of n. Here γ (E) ≥ 1 measures which part of the unit circle is
not part of E. When E contains the unit circle ∂D then γ (E) = 1. If however
∂D �⊂ E, then γ (E) > 1, and thus γn(E) grows exponentially, with the rate
depending on the size of the part of the unit circle not included in E.

In order to give a precise definition of γ (E), we require some tools from
complex analysis. In order to simplify our work we will assume in the following
that E is a simply connected compact set. Denote by φ the Riemann map which
maps the complement of E conformally onto the complement of the closed unit
disk D. Then the Green function of E with pole at y is given by

gE(z, y) =

⎧

⎪

⎨

⎪

⎩

log

(∣

∣

∣

∣

∣

1 − φ(y)φ(z)
φ(z)− φ(y)

∣

∣

∣

∣

∣

)

for z, y ∈ C \ E,

0 otherwise,

(18)
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with gE being continuous in both variables. Notice that gE(z, y) ≥ 0 for z, y ∈ C,
and strictly positive if both z and y lie in the complement of E. Thus the constant

γ (E) = exp

⎛

⎝max
x∈∂D

1
2π

2π
∫

0

gE(x, eit)dt

⎞

⎠ (19)

is at least 1, with equality if and only if ∂D ⊂ E. It will be shown in the proof of
Lemma 5.2 that in some cases we have a simplified expression for γ (E), namely

E ⊂ D : γ (E) = exp

(

max
x∈∂D

gE(x, ∞)

)

. (20)

For E a real interval, it follows from [4, Remark 3.4] (where the spectral
condition number was considered) that

γn+1(E) ≥ 1

2
√

2n + 2
(γ (E)n − 2γ (E)−n), (21)

with the right-hand side clearly being exponentially increasing. Inequality (21)
shows, for example, that positive definite Hankel matrices of order n have a
condition number bounded below by some term exponentially increasing in n.
In fact, a behavior similar to (21) is true for any sufficiently “nice” set E.

Theorem 3.6 For any compact set E ⊂ C which is regular with respect to the
Dirichlet problem we have that

lim
n→∞ γn(E)1/n = γ (E),

and γn(E) ≤ n2 γ (E)n−1 for all n ≥ 1. If, in addition E is simply connected and
of bounded variation V, then we have that

γn(E) ≥ 1√
n

[

π

2V
γ (E)n−1 − 1 − V

π

]

. (22)

Proof See Sect. 5.

With respect to the second part of Theorem 3.6 we notice that any simply
connected compact set is known to be regular with respect to the Dirichlet
problem. We also recall, for example from [1], that E is of bounded variation
V if, given some parametrization β : [0, 1] �→ ∂E of the boundary of E, there
exists a tangent at almost every β(s), forming an angle θ(s) with the positive
real axis, and if θ has a total variation bounded by V. For instance, convex sets
are of bounded variation 2π .

In order to make the statements of Theorem 3.6 more precise, we need to
know both V and the Riemann map. The latter can be determined for various
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domains, for example for sectors E = {reit : α′ ≤ t ≤ α + α′, 0 ≤ r ≤ 1} (here
V = 2π), for a rectangle E with edges ±a± ib (here V = 2π), or more generally
for a polygon (see any advanced textbook on conformal mappings). Here we
will have a look at two particular examples.

Example 3.7 Consider the case of a subarc of the unit circle E = {eit : α′ ≤
t ≤ α + α′} with 0 < α < 2π . Here one easily verifies that V = 2π + 2α. The
Riemann map φ is found as φ1 ◦ φ2, where

φ1(z) = z/ tan(α/4)+
√

(z/ tan(α/4))2 − 1

which maps C \ [− tan(α4 ), tan(α4 )] conformally on C \ D and

φ2(z) = i
e−iα′−iα/2z − 1
e−iα′−iα/2z + 1

which maps C \ E conformally on C \ [− tan(α4 ), tan(α4 )]. Since E ⊂ D, we may
apply (18) and (20), leading to

γ (E) = max
α+α′≤t≤α′+2π

∣

∣

∣

∣

∣

1 − φ(eit)φ(∞)

φ(eit)− φ(∞)

∣

∣

∣

∣

∣

, φ(∞) = i
1 + cos(α4 )

sin(α4 )
,

φ1(e
i(t+α′+ α

2 )) = i tan

(

t
2

)

.

Thus

γ (E) = |φ(∞)| = 1 + cos(α/4)
sin(α/4)

= 1
tan(α/8)

, 0 < α < 2π . (23)

Example 3.8 For an ellipse E ⊂ D with foci at ±c and half axes c(R ± 1/R)/2,
R ≥ 1 (including the case of the interval [−c, c] for R = 1) we have V = 2π (since
E is convex), and φ(z) = �(z/c)/R, φ(∞) = ∞ where �(z) = z + √

z2 − 1. If
0 < c ≤ 2/(R + 1/R) then E ⊂ D, and a simple computation shows that

γ (E) = |φ(i)| = 1
R

(

1
c

+
√

1
c2 + 1

)

.

In particular, for the special case c = 2/(R + 1/R) of ellipses in D containing
±1 we find that γ (E) = (1 +√

1 + c2)/(1 −√
1 − c2). Notice that this is increas-

ing in c (that is as the eccentricity increases), tends to 1 for c → 0 (that is the
case of small eccentricity, E = D) and to 1 + √

2 for c → 1 (the case of large
eccentricity, E = [−1, 1]). If, on the other hand we have 2/(R − 1/R) ≤ c, then
D ⊂ E and hence γ (E) = 1. Finally, if 2/(R − 1/R) > c > 2/(R + 1/R) then
we need to apply formula (19), with the maximum being attained for x = i by
symmetry. Since the resulting expressions are complicated, we omit details.
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We can conclude from (23) and Theorem 3.6 that, if a part of the unit circle
is omitted by the generalized eigenvalues of (1), then some of them are neces-
sarily ill-disposed, even if n is not too large. However, the following example
shows that for well-disposedness it is not enough to simply require that the
generalized eigenvalues are distributed throughout the unit circle and are well
separated.

Example 3.9 Let En = {λ1, . . . , λn}, with n = 6m + 1, be the set

{

exp

(

2π ij
4m+1

)

: j=0, . . . , 4m
}

∪
{

exp

(

2π i(2j+1)
8m+2

)

: j=−m, −m+1, . . . , m−1
}

,

a subset of the unit circle which has no significant gaps, (see Fig. 1 for m = 4.)
We claim that

γn(En) ≥ ρm

n
(24)

for ρ = exp
( 8Catalan

π

) ≈ 10.30 > 1, so that there is exponential growth.
To see this claim, suppose without loss of generality that λ1 = 1. We make

use of (17) and of the formulas (4) and (11) in order to conclude that

γn(En) ≥ ‖Vt
ne1‖ ‖V−1

n e1‖ = √
n ‖V−1

n e1‖ ≥ max
|z|=1

|�1(z)| ≥ |�1(−1)|,

with �1 the correspond first Lagrange polynomial, see (10). With our choice of
abscissa we have that

n
∏

j=1

(z − λj) = (z4m+1−1) ω̃(z), where ω̃(z) =
m−1
∏

j=−m

(

z−exp

(

2π i(2j + 1)
8m + 2

))

,
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Fig. 1 The eigenvalues of Example 3.9 for m = 4
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and thus, again by (10),

|�1(−1)| = |ω̃(−1)|
(4m + 1) |ω̃(1)| ≥ |ω̃(−1)|

n |ω̃(1)| .

Notice that in the right-hand expression there are no longer the (4m+1)th roots
of unity, and that the zeros of ω̃ all lie in the right-hand half circle. This enables
us to show exponential growth. Indeed, the mapping x �→ log(1/ tan(x)) is both
decreasing and concave on [0,π/4], and hence

log

( |ω̃(−1)|
|ω̃(1)|

)

=
m−1
∑

j=−m

log

⎛

⎝

∣

∣

∣

∣

∣

∣

−1 − exp
(

2π i(2j+1)
8m+2

)

1 − exp
(

2π i(2j+1)
8m+2

)

∣

∣

∣

∣

∣

∣

⎞

⎠

= 2
m−1
∑

j=0

log

⎛

⎝

1
∣

∣

∣tan
(

π(2j+1)
8m+2

)∣

∣

∣

⎞

⎠

≥ 2
m−1
∑

j=0

log

⎛

⎝

1
∣

∣

∣tan
(

π
4

2j+1
2m

)∣

∣

∣

⎞

⎠ dt

≥ 2m

1
∫

0

log

(

1
∣

∣tan
(

π t
4

)∣

∣

)

dt = 8mCatalan
π

.

In the last estimate we have used the classical fact that the midpoint quadra-
ture rule gives an upper bound for the corresponding integral of some concave
function. This proves (24). We remark that the term ρ in (24) can in fact be
shown to be optimal.

4 Applications of the generalized Hankel eigenvalue problem

In this section we briefly describe two applications of the generalized Han-
kel eigenvalue problem, sparse polynomial interpolation and the shape from
moments problem.

4.1 Sparse interpolation of black box polynomials

Sparse interpolation is the problem of finding a sparse standard representation
of a multivariate polynomial f (x1, . . . , xd) represented as a black-box. That is
we want to find constants ci and powers mi,j such that one can write f in its
standard form

f (x1, . . . , xd) =
t
∑

j

cjx
m1,j
1 · · · x

md,j
d . (25)
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Here the number of nonzero terms t is typically considered as being known.
The sparse interplation problem in a numerical context has been introduced
and studied by Giesbrecht et al. [12,14]. Applications of sparse interpolation
include its use in approximate polynomial factorization and the decomposi-
tion of approximately specified polynomial systems. We refer the reader to the
references in [14] for more information on these applications.

Assuming that an upper bound of the degree for each xj is available (which is
typically the case), the initial approach found in [14] evaluates the polynomial
at the points

hk = f (vk
1, . . . , vk

d), k = 0, . . . , 2t − 1

with each vj = e
2π i
pj . Here pj are relatively prime integers with pj larger than the

upper bound of the degree of term xj. If we set

λj = e
2π i

(m1,j
p1

+···+ md,j
pd

)

,

then this sparse interpolation problem becomes one of determining the cj and
λj satisfying

hk =
t
∑

j=1

cjλj
k, k = 0, . . . , 2t − 1.

Once the λj are known, the individual powers mi,j are determined by taking
logarithms and applying Chinese remaindering. We refer the reader to [14] for
further details. Notice that in this application each λj lies on the unit circle.

Example 4.1 Consider the sparse interpolation problem for the simple univar-
iate polynomial

f (x) =
11
∑

j=1

cjxj−1 +
10
∑

j=1

c11+jx
p+j−11

having 21 terms and p as our upper bound. In this example the corresponding

abscissas on the unit circle are
{

1, e
2π i
p , . . . , e

20π i
p , e

−20π i
p , . . . , e

−2π i
p
}

. In this case
(22) together with Example 3.7 for α = 20π

p gives a lower bound for the con-
ditioning of the corresponding generalized eigenvalues. Indeed for a degree as
small as p = 101 the resulting condition number is already bounded below by
1020, illustrating the conditioning problem for this example.

To reduce the ill-conditioning in the sparse interpolation problem, [14] adopts

a strategy of evaluating points at vj = e
2π i

rj
pj with rj a random point between
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1 and pj − 1, where pj is a distinct prime and

λj = e
2π i

(m1,jr1
p1

+···+ md,jrd
pd

)

.

They show that, for such a random choice of root of unity, the condition number
of the associated problem is reasonable with probability at least 1

2 , independent
of the input polynomial.

Of course for an unlucky choice of a root of unity, the conditioning may still
be high. In the example above having an r between 1 and p

20 only ensures a
distribution on the half circle. Here (22) together with Example 3.7 for α = π

give the lower bound

γ21(E) ≥ (1 + √
2)20

8
√

21
− 5√

21
≈ 1.23 × 106,

which together with (15) and (16) implies that at least some of the λj are quite
ill-disposed. The authors in [14] propose to restart the interpolation if such
ill-conditioning is encountered, as another random choice will again be well-
conditioned with reasonable probability.

4.2 The shape from moments problem

The shape from moments problem is to find the vertices zj of a polygonal
domain D using complex moments. The problem has a wide variety of uses in
both pure and applied mathematics, for example for solving inverse problems
for uniform regions related to general elliptical equations. We refer the reader
to [15] and the references therein for examples of such applications.

The method takes advantage of a formula originally due to Motzkin and
Schoenberg [6, also the references given there] and Davis [6,7] which states
that for any simply connected polygonal domain D with t vertices z1, . . . , zt,
there are weights c1, . . . , ct such that for any function f analytic in the closure
of D

∫ ∫

D

f ′′(z) dxdy =
t
∑

j=1

cjf (zj). (26)

In fact, there is an explicit formula for the cj in terms of the zj (see, e.g., [15,
Eq. (2.2)]), and |cj| = | sin(ψj)|, with ψj being the outer angle of D at zj.

If we let

hk = k(k − 1)
∫ ∫

D

zk−2dx dy
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be weighted complex moments, then formula (26) becomes

hk =
t
∑

j=1

cj zk
j

so that our shape from moments problems attempts to find c1, . . . , ct and
z1, . . . , zt from the knowledge of hk for 0 ≤ k ≤ 2t − 1.

In practice one also transforms these moments via shifts in order to center
the problem around the center of mass of the polygonal region. In addition,
in [15] these transformed moments are scaled in order that the region can be
moved inside the unit disk. If the region is already inside the unit disk then the
scaling is done in such a way as to enlarge the region so as to take more space
inside the disk.

As a consequence of the scaling used in the shape from moments problem
the unit disk case holds, and so implies that ‖Hn‖ + ‖˜Hn‖ ≤ 2n2. In addition,
‖Hn‖ ≥ |h2|, which by (26) equals twice the volume of D. Thus, in view of (13),
the quantity

‖W−1
n ej‖2 = 1

| sin(ψj)| ‖V−1
n ej‖2

is a good measure for ill-disposedness of the generalized eigenvalue λj of prob-
lem (1), or, in other words, of the sensitivity of the problem of recovering
the vertex λj from the moments. The following example shows that, even for
domains where | sin(ψj)| is not too small, the quantities ‖V−1

n ej‖ are quite often
exponentially increasing in n, implying that the corresponding vertices are ill-
disposed.

Example 4.2 Let {λ1, . . . , λn} with n = 2m be the set

λ2j = R e2π i j
m and λ2j−1 = r eπ i (2j−1)

m j = 1, . . . , m

with 1 ≥ R ≥ r > 0. Consider the shape from moments problem used to recon-
struct the star pattern with m equally spaced vertices λ2j−1 on an inside circle
of radius r and m equally spaced vertices λ2j on an outside circle of radius R.
See Fig. 2 for n = 18.

In order to describe the sensitivity of the problem of recovering vertex λj

from the moments, we determine the asymptotic behavior of ‖V−1
n e2j‖ and of

‖V−1
n e2j−1‖ (which by symmetry do not depend on j) for n → ∞. We again

make use of the formulas (10) and (11) from Sect. 2 expressing V−1
n ej in terms

of Lagrange polynomials. Here we observe that the polynomial ω of (10) can
be factored as ω(z) = ω1(z) ω2(z) where

ω1(z) =
m
∏

j=1

(z − λ2j−1) = zm + rm, ω2(z) =
m
∏

j=1

(z − λ2j) = zm − Rm.
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Fig. 2 The polygon of Example 4.2 for n = 18 with R = 1 and r = 1
2

Consequently, |ω′(λ2j)| = mRm−1(Rm + rm), and, by (11),

‖V−1
n e2j‖2 = ‖ω(z)/(z − λ2j)‖2

L2(∂D)

|ω′(λ2j)|2 = ‖ω1(z)
∑m−1

k=0 zm−1−kλk
2j‖2

L2(∂D)

|ω′(λ2j)|2
= εm

m2R4m−2 ,

where εm ∈ [1/4, 2m]. Similarly one can show that

‖V−1
n e2j−1‖2 =

‖ω2(z)
∑m−1

k=0 zm−1−kλk
2j−1‖2

L2(∂D)

|mrm−1(rm + Rm)|2 = ε′
m

m2r2m−2R2m ,

with ε′m ∈ [1/4, 2m]. Thus, for inner vertices, our measure for ill-disposedness
is exponentially increasing in n unless r = R = 1 (i.e., D is a regular poly-
gon with 2n vertices). Moreover, if the outer vertices do not lie on the unit
circle R = 1 but strictly inside the unit disk (R < 1), then also our measure
for ill-disposedness is exponentially increasing in n. This confirms a previously
mentioned claim that one should scale D in a way that it takes as much space
as possible in the unit disk.

5 Proof for theorem 3.6

Our proof of Theorem 3.6 is divided in several parts. First, in Lemma 5.1 we
relate the quantity γn(E) defined in (14) to the solution γ̃n(E) of an extremal
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problem for weighted polynomials in the complex plane, namely, the problem
of finding the quantity

γ̃n(E) := max

{ ‖P‖L∞(∂D)
‖ρnP‖L∞(E)

: P is a polynomial of degree ≤ n
}

, (27)

where ρ(z) := 1/max(|z|, 1). In Lemma 5.2 we report about some recent results
on weighted polynomials and relate the quantity γ̃n(E) to γ (E) defined in (19)
and (20). For the special case of simply connected E ⊂ D we give, in Lemma 5.3,
sharper estimates for a quantity closely related to γ̃n(E). Finally, we follow the
Lemma with a proof of Theorem 3.6.

Lemma 5.1 Let E ⊂ C be compact and n ≥ 1 an integer. Then

1√
n
γ̃n−1(E) ≤ γn(E) ≤ n2 γ̃n−1(E).

Proof Consider λ1, . . . , λn ∈ E, and the corresponding Lagrange polynomials
�j as defined in (10). For any polynomial P of degree at most n − 1 we obtain,
using the Lagrange interpolation formula and (4),

‖P‖L∞(∂D) ≤ √
n ‖P‖L2(∂D) ≤ √

n
n
∑

j=1

|P(λj)| ‖�j‖L2(∂D).

≤ √
n ‖ρn−1P‖L∞(E)

n
∑

j=1

1
ρ(λj)n−1

‖�j‖L2(∂D).

Since ‖�j‖L2(∂D) = ‖V−1
n ej‖ by (11) and ‖Vt

nej‖ = [1+|λj|2 +· · ·+ |λj|2n−2]1/2 ≥
1/ρ(λj)

n−1 with the weight function ρ(z) = 1/max(1, |z|) as defined above, it
follows that

‖P‖L∞(∂D) ≤ √
n ‖ρn−1P‖L∞(E) γn(E)

for any polynomial P of degree at most n − 1. Thus γ̃n−1(E) ≤ √
n γn(E), as

claimed in the assertion of Lemma 5.1.
In order to show the other estimate, we first have to choose “good” points

λj ∈ E such that the discrete set En := {λ1, . . . , λn} satisfies γ̃n−1(En) ≈ γ̃n−1(E).
Here we will take the set of weighted Fekete points1 defined as follows (cf. [16,
Sect. III.1]). If we explicitly denote Vn(λ1, . . . , λn) for a Vandermonde matrix
with abscissa λ1, . . . , λn, then the weighted Fekete points are those points in E

1 For special sets E some other points like Fejer points or suitable alternants might lead to sharper
estimates. Compare with [4].
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maximizing the expression

det Vn(λ1, . . . , λn)

n
∏

k=1

ρ(λk)
n−1.

For the corresponding Lagrange polynomials �j we have

‖ρn−1�j‖L∞(E) = ρn−1(λj) max
z∈E

ρ(z)n−1

ρ(λj)n−1

det Vn(λ1, . . . , λj−1, z, λj+1, . . . , λn)

det Vn(λ1, . . . , λn)

≤ ρn−1(λj)

by definition of the Fekete points. Hence, for any polynomial P of degree at
most n − 1, by the Lagrange interpolation formula,

1 ≤ ‖ρn−1P‖L∞(E)
‖ρn−1P‖L∞(En)

≤
n
∑

j=1

|P(λj)|
‖ρn−1P‖L∞(En)

‖ρn−1�j‖L∞(E) ≤ n,

implying that γ̃n−1(E) ≤ γ̃n−1(En) ≤ nγ̃n−1(E). Also, by (the sharpness of) the
Hölder inequality applied to the Lagrange interpolation formula, we have that,
for any ζ ∈ C,

max

{ |P(ζ )|
‖ρnP‖L∞(En)

: P is a polynomial of degree≤n−1
}

=
∞
∑

j=1

|�j(ζ )|/ρ(λj)
n−1.

Thus

nγ̃n−1(E) ≥ γ̃n−1(En) = max
ζ∈∂D

n
∑

j=1

|�j(ζ )|/ρ(λj)
n−1

≥
⎡

⎣max
ζ∈∂D

n
∑

j=1

|�j(ζ )|2/ρ(λj)
2n−2

⎤

⎦

1/2

≥
⎡

⎢

⎣

n
∑

j=1

1
ρ(λj)2n−2

1
2π

∫

|ζ |=1

|�j(ζ )|2 |dζ |
⎤

⎥

⎦

1/2

=
⎡

⎣

n
∑

j=1

‖
�j‖2

ρ(λj)2n−2

⎤

⎦

1/2

≥ 1√
n

n
∑

j=1

‖
�j‖
ρ(λj)n−1

.
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On the other hand, by (14), (17), and (11),

γn(E) ≤ γn(En) =
n
∑

j=1

‖
�j‖
√

1 + |λj|2 + · · · + |λj|2n−2 ≤ √
n

n
∑

j=1

‖
�j‖
ρ(λj)n−1

,

and consequently the second inequality of Lemma 5.1 is true.

The following result on the weighted polynomial extremal problem (27) was
obtained in a more general setting by Maskhar and Saff in 1985. We refer the
reader to [16, Sect. III.2] and the references therein.

Lemma 5.2 Let E ⊂ C be compact, and regular with respect to the Dirichlet
problem. Then for any integer n ≥ 1 we have that γ̃n(E) ≤ γ (E)n, and

lim
n→∞ γ̃n(E)1/n = γ (E).

Proof The logarithmic potential of a probability measure μ is defined by

Uμ(z) :=
∫

log

(

1
|z − t|

)

dμ(t).

According to [16, Theorems I.1.3 and I.4.8], given some function Q continuous
on E there exists a unique probability measure μQ (called the equilibrium mea-
sure in the presence of an external field Q) supported on E and a constant cQ
such that

UμQ(z)+ Q(z)
{= cQ for z lying in the support of μQ,

≥ cQ for z ∈ E.

In addition,μQ has a continuous potential by the assumption on E. The weighted
Bernstein–Walsh inequality [16, Theorem III.2.1] tells us that, for any integer
n ≥ 0, for any polynomial Pn of degree at most n, and for any z ∈ C, we have

|Pn(z)| ≤ en(cQ−UμQ (z)) ‖e−nQPn‖L∞(E).

Moreover, this inequality is sharp since by [16, Theorem III.5.3] and the follow-
ing remarks we have for all z ∈ C

ecQ−UμQ (z) = lim
n→∞ sup

{

[ |Pn(z)|
‖e−nQPn‖L∞(E)

]1/n

: Pn a polynomial of degree n

}

.
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Thus the assertion of the Lemma 5.2 follows by showing that the constant γ (E)
of (19) equals

γ (E) = max
z∈∂D

exp(cQ − UμQ(z)) (28)

for our external field Q = log(1/ρ). Using [16, Example 0.5.7] we have that

Q(z) = log

(

1
ρ(z)

)

= log(max(1, |z|)) = −
π
∫

−π
log

(

1
|z − t|

)

dt
2π

,

that is, the external field coincides with (−1) times the logarithmic potential
Uν of a probability measure ν. Thus we know from [16, Example II.4.8]) that
μQ = ν̂, the balayage measure of ν onto E (see, e.g., [16, Theorem II.4.7]), and

U ν̂ (z)+ Q(z) = U ν̂ (z)− Uν(z) = F(∞)− F(z), where

F(z) :=
∫

gE(z, t)dν(t) = 1
2π

2π
∫

0

gE(z, eit)dt.

The latter formula follows from integration [16, Eq. (4.32) of Chap. II] with
respect to ν. Notice that, since the Green function is continuous, the function
F equals zero on E, and hence cQ = F(∞). Finally, by Eq. (19) we have that
γ (E) = ‖F‖L∞(∂D), and Q is identically zero on ∂D. Thus (28) holds.

It only remains to establish formula (20). Let E ⊂ D. Then Uν is constant on
E, and hence ν̂ is the equilibrium measure of E. Using the classical link between
Green functions and potentials of equilibrium measures (cf. [16, Eq. (4.8) of
Chap. I]), we conclude that F(z) = g∂D(z, ∞)−gE(z, ∞)+c for some constant c.
Comparing the values on E yields that c = 0 and so implies the alternate
representation (20) in the case E ⊂ D.

Lemma 5.3 Let E ⊂ C be a compact simply connected set of bounded rotation
V. As before, let φ map C \ E conformally to C \ D, with φ(∞) = ∞, and
φ′(∞) > 0, and let

Q(x) =
M
∏

k=1

(x − ωk), ωk ∈ C \ E.

Then for all z �∈ E and m ≥ M

max

{ |P(z)/Q(z)|
‖P/Q‖L∞(E)

: deg P ≤ m
}

≥ π

V
|φ(z)|m−M

M
∏

j=1

∣

∣

∣

∣

∣

1 − φ(z)φ(ωk)

φ(z)− φ(ωk)

∣

∣

∣

∣

∣

− 1 − π

V
.
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Proof Consider the function

R̃(w) = wm−M
M
∏

k=1

1 − wφ(ωk)

w − φ(ωk)

which is a Blaschke product, analytic in D, and of modulus 1 on ∂D, and so in
particular satisfies

‖R̃‖L∞(∂D) = 1.

Following [1,8] we also consider the Faber map T which for a rational function
R analytic in |w| ≤ θ , θ > 1, is defined by

r(z) := T(R)(z) = 1
2π i

∫

|φ(ζ )|=θ

R(φ(ζ ))
ζ − z

dζ , |φ(z)| < θ .

It is known (see, e.g., [8, Lemma 1.1 and Proposition 1.2]) that, with R, also T(R)
is rational, and z �→ T(R)(z)− R(φ(z)) has an analytic continuation outside E,
including infinity. In particular, T(R) has all its poles outside of E, namely at
the images under ψ , the inverse mapping of φ, of R. For the operator norm we
know from [1] that

‖T(R)‖L∞(∂E)

‖R‖L∞(∂D)
≤ ‖T‖ ≤ V

π
.

As a consequence, the function P̃ defined by

P̃/Q = r̃ = T(R̃)

is a polynomial of degree at most m, and, with the help of the maximum principle,
we get for z �∈ E

|r̃(z)|
‖r̃‖L∞(E)

≥ π

V
|R̃(φ(z))| − |r̃(z)− R̃(φ(z))|

‖R̃‖L∞(∂D)
= π

V

[

|R̃(φ(z))| − |r̃(z)−R̃(φ(z))|
]

≥ π

V

[

|R̃(φ(z))| − ‖r̃ − R̃ ◦ φ‖L∞(∂E)

]

≥ π

V

[

|R̃(φ(z))| − ‖r̃‖L∞(∂E) − ‖R̃‖L∞(∂D)
]

≥ π

V
|R̃(φ(z))| − 1 − π

V
,

as claimed in Lemma 5.3.

Proof of Theorem 3.6 The first part of the Theorem follows by combining
Lemmas 5.1 and 5.2. Suppose now that E is simply connected and of bounded
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variation. We consider first the case ∂D ⊂ E. Since ‖V−1
n ej‖ ‖Vt

nej‖ ≥
|et

jVnV−1
n ej| = 1, we see from (17) that γn(E) ≥ n. On the other hand, for

the abscissa λ1, . . . , λn being the nth roots of unity we know that V−1
n = 1

n V∗
n

and ‖V∗
nej‖ = √

n, and thus γn(E) = n by (14) and (17). Thus in this case the
last part of Theorem 3.6 is trivially true since γ (E) = 1.

If ∂D �⊂ E then γ (E) > 1 by (19), and there exists a z′ ∈ ∂D \ E with

log(γ (E)) = 1
2π

2π
∫

0

gE(z′, eit)dt = 1
2π

2π
∫

0

g(eit)dt,

where g(z) := gE(z′, z)− log
( 1

|z′−z|
)

, a continuous function on ∂D. Notice that

log(γ (E)n) = 1
∫ 2π/n

0 dt

2π/n
∫

0

n
∑

k=1

g(e2π i/keit)dt ≤
n
∑

k=1

g(e2π i/keit′)

for some t′ ∈ [0, 2π/n]. Since g is continuous we may suppose without loss of
generality that z′ �∈ {e2π i/keit′ : k = 1, . . . , n}. Taking into account (18) and
writing ωk = e2π i/keit′ , we conclude that

γ (E)n ≤ |(z′)n − eit′n|
∏

ωk �∈E

∣

∣

∣

∣

∣

1 − φ(z′) φ(ωk)

φ(z′)− φ(ωk)

∣

∣

∣

∣

∣

. (29)

Let

Q(z) =
∏

ωk �∈E

(z − ωk), Q̃(z) =
∏

ωk∈E

(z − ωk), m := deg Q,

and observe that, for z ∈ E,

ρ(z)n |Q(z)| |Q̃(z)| = |zn − eit′n|
max{1, |z|n} ≤ 2.

Hence,

γn(E) ≥ max

{ |P(z′)|
‖ρnP‖L∞(E)

: deg P ≤ n
}

≥ max

{

|Q̃(z′)P(z′)|
‖ρnQ̃P‖L∞(E)

: deg P ≤ m

}

≥ |(z′)n − eit′n|
2

max

{ |P(z′)/Q(z′)|
‖P/Q‖L∞(E)

: deg P ≤ m
}

.
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Replacing the right-hand expression by the lower bound found in Lemma 5.3
for M = m and using (29) together with the trivial estimate |(z′)n − eit′n| ≤ 2,
we obtain

π

2V
γ (E)n − 1 − π

V
≤ γn(E) ≤ γ (E)n,

the right-hand bound having been already established in Lemma 5.2. Together
with Lemma 5.1 we may conclude that the second part of Theorem 3.6 is also
true in the case ∂D �⊂ E.

6 Conclusions

In this paper we have shown that structured and unstructured errors of the
GEP for Hankel matrices (1) are bounded by essentially the same quantities.
We also relate the relative sensitivity of the most sensitive eigenvalue to the
condition number of the underlying Hankel matrix. Finally, a new result on
the growth of the condition number of special scaled Vandermonde matrices
with complex nodes is also given. This result shows that the conditioning of
the generalized eigenvalue problem (1) for a subclass of important problems of
interest grows exponentially in terms of a quantity that depends on the largest
distance between eigenvalues.

In this paper we have analyzed only the sensitivity with respect to ordinary
moments. It is natural to ask what can be done with modified moments. Recall
that a well-known procedure of improving the sensitivity of the GEP is to
consider the equivalent problem

Tt
n(
˜Hn − λHn)Tny = 0

where Tn is some suitably chosen invertible upper triangular matrix. By consid-
ering the (k + 1)th column of Tn as the coefficient vector of some polynomial
pk of degree k for k = 0, . . . , n − 1, we have from (3) that this new GEP
can be rewritten as (˜H − λH)y = 0, where the entries of ˜H = Tt

n
˜HnTn, and

H = Tt
nHnTn, respectively, are given by

˜Hk,� =
n
∑

j=1

cjλjpk(λj)p�(λj), Hk,� =
n
∑

j=1

cjpk(λj)p�(λj).

Such matrices are usually referred to as modified Gramians. The entries
∑n

j=1 cjpk(λj) of the (possibly scaled) first column/row of H are usually referred
to as modified moments.

Following the ideas of Sect. 2.2 one may show that an (unstructured)
ε–perturbation of these two matrices similar to (7) leads to a perturbation



On the numerical condition of a generalized Hankel eigenvalue problem 67

of the jth eigenvalue, which in first order can be bounded above by

∣

∣

∣

∣

dλj

dε
(0)
∣

∣

∣

∣

≤ (|λj| + 1)‖W−1ej‖2, W = diag (
√

cj)V, V =
(

pk−1(λj)
)

j,k=1,...,n
.

That is, we have to replace the Vandermonde matrix in (9) by a generalized Van-
dermonde matrix. The norm of the inverse and the condition number of such
(possibly row-scaled) generalized Vandermonde matrices has been discussed
by a number of authors for various choices of bases and particular abscissa
(for a summary see for instance [3]). A good choice of a family of polynomials
pk may dramatically improve the sensitivity of the GEP. For instance, we can
produce a unitary W by taking as pk the orthonormal polynomials with respect
to the hermitian scalar product � p, q �= ∑n

j=1 |cj| p(λj)q(λj). As another
example, choosing the corresponding formal orthogonal polynomials leads to
H being the identity matrix (and thus W−1 = Wt) and ˜H being a (in general
non hermitian) tridiagonal matrix. Here

‖W−1ej‖2 =
∑n−1
�=0 |p�(λj)|2

|∑n−1
�=0 p�(λj)2|

and thus the sensitivity will depend on the growth behaviour of the formal
orthogonal polynomials of the support of (formal) orthogonality. This in turn is
a subject of research where (up to the simple case of real orthogonality λj ∈ R

and cj > 0) very few results are known.
In summary, a suitable choice of the family of polynomials may lead to a

sparse or structured eigenvalue problem or to well-conditioned GEPs (or some-
times even both). Unfortunately, in general for our applications the entries of
the modified Gramians are not available and need to be computed which is
a potential new source of errors. In addition, it seems to us that in problems
like shape detection or sparse interpolation in general we do not have sufficient
a priori information to design a “good” family of polynomials pk. As such it
remains a topic for future research to alter our GEP in order to arrive at better
behaved numerical procedures for effective computation.

Of course there are other GEPs that remain of interest to us for specific
applications. As an example, sparse interpolation problems in computer alge-
bra often look for other bases in which sparse representations may be possible.
These include bases in terms of Cheyshev polynomials, Pochhammer (factorial)
polynomials and others (c.f. [13]). It would be of interest to study the structured
perturbations of these problems and the geometric properties of the set of
generalized eigenvalues that might effect condition numbers of such problems.
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