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Abstract

Earlier work has presented algorithms to factor and
compute GCDs of symbolic Laurent polynomials, that is
multivariate polynomials whose exponents are themselves
integer-valued polynomials. This article extends the no-
tion of univariate polynomial decomposition to symbolic
polynomials and presents an algorithm to compute these
decompositions. For example, the symbolic polynomial
f(X) = 2Xn2+n − 4Xn2

+ 2Xn2−n + 1 can be de-
composed as f = g ◦ h where g(X) = 2X2 + 1 and
h(X) = Xn2/2+n/2 −Xn2/2−n/2.

1. Introduction
It often arises that the general form of a polynomial is

known, but the particular values for the exponents are un-
known. For example, we may know a polynomial is of the
form 3Xn2+1 −X2n + 2, where n is an integer-valued pa-
rameter. We call this a “symbolic polynomial”—a notion
we define more precisely later—and ask what computations
we can perform on such values.

Computer algebra systems are very good at performing
arithmetic in particular algebraic domains, such as polyno-
mials with coefficients from a particular ring or matrices of
a given size with elements from a known ring. They do not
do very well in other settings, however, when certain quan-
tities are not known in advance. For example, when the co-
efficient ring, the dimension of a matrix or the degree of a
polynomial is not known. In this case, a person can perform
arithmetic by hand where a computer algebra system will
abandon knowledge of algebraic algorithms and fall back
on general term-rewriting techniques. It is a significant gap
in the field of symbolic mathematical computation that al-
gorithms for polynomials or matrices with symbolic degrees
or sizes remain largely unexplored.

In the current work, we show how the notion of polyno-
mial decomposition may be extended to symbolic polyno-
mials and how such decompositions may be computed.

In earlier work we have observed that there is an impor-
tant gap between the current worlds of computer algebra
and symbolic computation [23]. We have shown that un-
der certain conditions symbolic polynomials form a unique
factorization domain and have given algorithms to compute
their factorizations and GCDs [23, 25]. We have explored
the question of how t make these algorithms more efficient
when the exponents of the symbolic polynomials are them-
selves sparse [12, 13, 24]. In related work, we have exam-
ined how to perform arithmetic on matrices with blocks of
symbolic size [21]. We are interested in results that are valid
for all values of the symbolic parameters, e.g. for all values
of n. This notion of symbolic polynomial is related to ex-
ponential polynomials [3, 5, 6, 19, 20] and to parametric
families of polynomials [16, 27, 28].

This paper is organized as follows: Section 2 gives the
preliminaries necessary to phrase our problem precisely.
Section 3 then states the decomposition problem. Sections 4
and 5 provide the necessary theory on which symbolic poly-
nomial decomposition depends. Section 4 gives theorems
about the existence and uniqueness of symbolic polynomial
composition and Section 5 shows that complete decompo-
sitions exist, the form they must take and how different de-
compositions must be related. Section 6 presents our algo-
rithm for finding symbolic polynomial decompositions and
Section 7 concludes the paper.

2. Preliminaries

Our model of symbolic polynomials is one where expo-
nents are expressed as integer-valued functions of param-
eters. We model the exponents using integer-valued poly-
nomials. It would be possible to model exponents using
a larger class of functions, but integer-valued polynomials
have been sufficient for our purposes.

In this section, present the notion of integer-valued poly-
nomials and define symbolic polynomials in terms of them.
We also present some basic facts that are used later in the
article.



Integer-Valued Polynomials

Definition 1 (Integer-valued polynomial). For an integral
domain D with quotient field K, the (univariate) integer-
valued polynomials over D, denoted Int(D), are defined as

Int(D) = {f | f ∈ K[X] and f(a) ∈ D, for all a ∈ D}.

For example, 1
2n

2 − 1
2n ∈ Int(Z) because if n ∈ Z, either

n or n − 1 is even. Integer-valued polynomials have been
studied for many years, with classic papers dating back 90
years [14, 17]. We make the obvious generalization to mul-
tivariate polynomials.

Definition 2 (Multivariate integer-valued polynomial). For
an integral domain D with quotient field K, the (mul-
tivariate) integer-valued polynomials over D in variables
X1, . . . , Xn, denoted Int[X1,...,Xn](D), are defined as

Int[X1,...,Xn](D) =
{f | f ∈ K[X1, . . . , Xn] and f(a) ∈ D, for all a ∈ Dn}.

For consistency we will use the notation Int[X](D) for uni-
variate integer-valued polynomials.

If a polynomial is integer-valued, then there may be a
non-trivial common divisor of all its integer evaluations.

Definition 3 (Fixed divisor). A fixed divisor of an integer-
valued polynomial f ∈ Int(D) is a value q ∈ D such that
q|f(a) for all a ∈ D. WhenD is totally ordered, the largest
fixed divisor is called the fixed divisor.

When written in the binomial basis, integer-valued polyno-
mials have the following useful property:

Property 1. If f ∈ Int[n1,...,np](Z) ⊂ Q[n1, ...np], then
when f is written using basis elements

(
n1
i1

)
· · ·
(
np

ip

)
its co-

efficients are integers.

The following result tells how to compute the largest fixed
divisor of a multivariate integer-valued polynomial.

Property 2. If f ∈ Int[n1,...,np](Z), then the fixed divisor of
f may be computed as the gcd of the coefficients of f when
written in the binomial basis.

Symbolic Polynomials

Definition 4 (Symbolic polynomial). The ring of symbolic
polynomials inX1, ..., Xv with exponents in n1, ..., np over
the coefficient ring R is the ring consisting of finite sums of
the form ∑

i

ciX
ei1
1 Xei2

2 · · ·Xein
n

where ci ∈ R and eij ∈ Int[n1,n2,...,np](Z). Multiplication
is defined by

bXe1
1 · · ·Xen

n × cXf1
1 · · ·Xfn

n = bc Xe1+f1
1 · · ·Xen+fn

n .

We denote this ring R[n1, ..., np;X1, ..., Xv].

Symbolic polynomials are isomorphic to the group ring
R[
(
Int[n1,...,np](Z)

)v], taking Int[n1,...np](Z) as an abelian
group under addition and making the identification

X1
e1X2

e2 · · ·Xv
ev ∼= (e1, . . . , ev) ∈

(
Int[n1,...,np](Z)

)v
We note that

R[;X1, ..., Xv] ∼= R[X1, ..., Xv, X
−1
1 , ..., X−1

v ].

Definition 5 (Base variables, Exponent variables). In the
ring of symbolic polynomials R[n1, ..., np;X1, ..., Xv], we
call X1, ..., Xv the base variables and n1, ..., np the expo-
nent variables.

In a ring of symbolic polynomials, the sets of base and
exponent variables need not be disjoint. Indeed, when con-
sidering differentiation of symbolic polynomials it is useful
to have the exponent variables to be a subset of the base
variables.

It is possible to define symbolic polynomials some-
what more generally, with integer-valued polynomials also
as exponents on the coefficients in R, as discussed else-
where [23, 25]. We call these extended symbolic polyno-
mials, but do not consider them in this article.

Evaluation Homomorphisms

We may evaluate any of the ni at integer val-
ues. Such a map evaluates R[n1, ..., np;X1, ..., Xv] →
R[n1, ..., ni−1, ni+1, ..., np;X1, ..., Xv](Z) as a ring homo-
morphism. A set of evaluation maps for {ni1 , ..., nik} with
distinct i1, ..., ik is associative and commutative. We may
therefore apply a set of evaluations at once, without regard
to the order in which the variables are evaluated.

All exponent variables may be evaluated to give

φ : R[n1, ..., np;X1, ..., Xv]→ R[X1, ..., Xv, X
−1
1 , ..., X−1

v ].

That is, φ evaluates symbolic polynomials to Laurent poly-
nomials. It would be possible to construct a model for
symbolic polynomials that under evaluation had no negative
variable exponents. That would, however, require keeping
track of cumbersome domain restrictions on the exponent
variables.

Algebraic Structure

By definition, symbolic polynomials have a ring structure
and algorithms to add and multiply them can be obtained
straightforwardly from the definition. Symbolic polynomi-
als also have a useful multiplicative structure.

Theorem 1 (Symbolic polynomial unique factorization).
The ring R[n1, ...np;X1, ...Xv] is a UFD if and only if the
ring R[X1, ..., Xk] is a UFD.



In previous articles [23, 25] we have shown how to com-
pute GCDs and factorizations of symbolic polynomials.
These algorithms fall into two families: extension methods,
based on the algebraic independence of variables to differ-
ent monomial powers (e.g. x, xn, xn

2
,...), and homomor-

phism methods, based on the evaluation and interpolation
of exponent polynomials.

Both these methods become costly if multivariate expo-
nent polynomials are treated as dense [12, 13]. This was
a problem in particular for extension methods because the
first algorithms converted exponent polynomials to a bino-
mial basis to handle fixed divisors, thus making exponent
polynomials dense. A transformation for efficient sparse
exponents eliminates this problem [24].

Theorem 2 (Integer exponent coefficients).
If f ∈ R[n1, ..., np;X1, ..., Xv] with exponents in
Int[n1,...,np](Z), then the substitution σ : Xi 7→ Xd!p

i

gives σf ∈ R[n1, ..., np;X1, ..., Xv] with exponents in
Z[n1, ...np].

3. The Problem

Polynomial Decomposition

If a univariate polynomial is regarded as a function of
its variable, then we may ask whether the polynomial is
the composition of two polynomial functions of lower de-
gree. This can be useful in simplifying expressions, solv-
ing polynomial equations exactly or determining the dimen-
sion of a system. Polynomial decomposition has been stud-
ied for quite some time, with early work by Ritt and oth-
ers [1, 2, 10, 18]. Algorithms for polynomial decomposition
have been proposed and refined for use in computer algebra
systems.

The univariate polynomial decomposition problem may
be stated as:

Problem 1. Let f ∈ R[X]. Determine whether there exist
two polynomials g, h ∈ R[X] of degrees greater than 1 such
that f(X) = g(h(X)) and, if so, find them.

If g and h are further decomposed, then we may find f =
g1 ◦ · · · ◦ gk. Ritt showed that (over a field of characteris-
tic zero) this full decomposition is unique up to the equiva-
lencesXm◦Xn = Xn◦Xm and Tn◦Tm = Tm◦Tn, where
Tn(X) is the Chebyshev polynomial cos(n arccosX).

Generalizations of this problem include decomposi-
tion of multivariate polynomials [4, 22], rational func-
tions [30], algebraic functions [11] and Laurent polynomi-
als [15, 29]. The relationship between polynomial composi-
tion and polynomial systems has also been studied [7, 8, 9].
Here we generalize the problem to the decomposition of
symbolic polynomials.

Symbolic Polynomial Decomposition

Unlike polynomial rings, symbolic polynomial rings are
not closed under functional composition. For example,
if g(X) = Xn and h(X) = X + 1 then g(h(X)) =∑n
i=0

(
n
i

)
Xi cannot be expressed in finite terms of group

ring operations. We therefore make the following defini-
tion.

Definition 6 (Univariate composition of symbolic polyno-
mials). Let g, h ∈ R[n1, ..., np;X]. A composition of g
and h is a finite sum f =

∑
i fiX

ei ∈ R[n1, ..., np;X]
such that under all evaluation maps, φ : {n1, ..., np} → Z,
φf = φg ◦ φh.

For brevity, we make the use the following definition.

Definition 7 (Trivial symbolic polynomial). A symbolic
polynomial f ∈ R[n1, ..., np;X] is trivial if f = c1X +
c0 ∈ R[X] or f = c−1X

−1 ∈ R[X,X−1].

We may now state the problems we wish to solve. First
we have the basic question.

Problem 2. Let f ∈ P = R[n1, . . . , np;X]. Determine
whether there exist two non-trivial symbolic polynomials
g, h ∈ P such that f(X) = g(h(X)) and, if so, find such a
pair.

More generally, we have:

Problem 3. Let f ∈ P = R[n1, . . . , np;X]. Determine
whether there exist T non-trivial indecomposable symbolic
polynomials g1, . . . , gT ∈ P such that f = g1 ◦ · · · ◦ gT
and, if so, find such a decomposition.

Can there be more than one such decomposition? We ask:

Problem 4. Determine what forms can decompositions f =
g1 ◦ · · · ◦ gT can take.

This article answers these questions.

4. Composition Theorems

We now present theorems on the uniqueness and exis-
tence of symbolic polynomial compositions. We first show
uniqueness.

Theorem 3 (Composition uniqueness). If a composition of
two symbolic polynomials exists, then it is unique.

Proof. Let g, h ∈ R[n1, ..., np;X]. Suppose there are two
compositions p and q of g and h. Then, under any evalua-
tion map φ for n1, ..., np, we must have φp = φq. Since the
exponents of p are all distinct polynomials in Q[n1, ..., np],
and likewise for the exponents of q, we may find an infi-
nite number of evaluations which keep all exponents of p



distinct and all exponents of q distinct. As there are only
a finite number of ways to put the terms of p into corre-
spondence with the terms of q, this means there is at least
one correspondence of terms for which the exponents agree
on an unbounded number of distinct evaluations for each
variable ni. Since the exponents are polynomials of fixed
degree this implies there is a correspondence equating the
terms of p and terms of q, and hence p = q.

We denote this unique composition, if it exists, as g ◦ h or
g(h(X)).

We now restrict our attention to the case where the coef-
ficient ring is the field of complex numbers. This allows the
case where roots of unity are required and avoids technical-
ities arising when the characteristic of the coefficient field
divides the degree of g. This so-called “wild” case is less
important with symbolic polynomials because degrees are
not always fixed values.

Theorem 4 (Composition existence).
Let

g(X) =
R∑
i=1

giX
pi h(X) =

S∑
i=1

hiX
qi

be symbolic polynomials in P = C[n1, ..., np;X], with
gi 6= 0, hi 6= 0, and with the pi all distinct and the qi all
distinct. The functional composition g(h(X)) exists in P if
and only if at least one of the following conditions hold:

Condition 1. h is a monomial and g ∈ C[X,X−1],

Condition 2. h is a monomial with coefficient h1 a dth root
of unity, where d is a fixed divisor of all pi,

Condition 3. g ∈ C[X].

Proof.

If any of the conditions hold, then g(h(X)) ∈ P (⇒)

If Condition 1 holds, then

g(h(X)) =
R∑
i=1

gi(h1X
q1)pi =

R∑
i=1

gih
pi

1 X
q1+pi

Since pi ∈ Z, we have hpi

1 ∈ C and g(h(X)) ∈
C[n1, ..., np;X].
If Condition 2 holds, then there is a d ∈ Z such that hd1 = 1
and pi = dp′i for some p′i ∈ Int[n1,...,np](Z). We then have

g(h(X)) =
R∑
i=1

gi (h1X
q1)pi =

R∑
i=1

gi
(
hd1
)p′

i Xq1+pi

=
R∑
i=1

giX
q1+pi ∈ C[n1, ..., np;X].

If Condition 3 holds, then

g(h(x)) =
R∑
i=1

gi

( S∑
j=1

hjX
qj

)pi

=
R∑
i=1

gi

pi∑
j1+···+jS=0

(
pi

j1, ..., jS

)
(h1X

q1)j1 · · · (hSXqS )jS

=
R∑
i=1

pi∑
j1+···+jS=0

(
gi

(
pi

j1, ..., jS

) S∏
k=1

hjkk

)
X
∑S

k=1 jkqk .

Because each pi ∈ N0, this is a finite sum with coeffi-
cients in C and powers of X in Int[n1,...,np](Z). Therefore
g(h(X)) ∈ C[n1, ..., np;X].

If g(h(X))∈P , then one of the conditions must hold (⇐)

We consider three disjoint and exhaustive cases:

• Case A, where h is a monomial,

• Case B, where h is not a monomial and asymptotically
all pi ≥ 0,

• Case C, where h is not a monomial and asymptotically
some pi < 0.

Case A: h is a monomial

We have

g(h(x)) = g(h1X
q1) =

R∑
i=1

gih
pi

1 X
pi+q1

If all pi ∈ Z, then hpi

1 ∈ C and Condition 1 is satisfied.
Otherwise there exists at least one i0 for which pi0 6∈ Z.
Then pi0 is a polynomial in n1, ..., np that takes on some
number of distinct integer values, m1,m2, .... We must
have hmi

1 = h
mj

1 so so hmi−mj

1 = 1. Since mi 6= mj if
i 6= j, h1 must be a root of unity. For each pair (i, j) there
exist q, r ∈ Z, 0 ≤ r < |mj | such that mi = qmj + r
so hmi

1 = (hmj

1 )qhr1 = hr1 = 1. Repeating this gives
h

gcd(mi,mj)
1 = 1 and we have shown h1 must be a dth root

of unity for some fixed divisor d of pi0 . Likewise h1 must
be a dth

i root of unity for some fixed divisor di for each other
pi. Therefore Condition 2 is satisfied.

Case B: h not a monomial and asymptotically all pi ≥ 0

We assume that g(h(X)) ∈ P with some exponent pi 6∈
N0 and show this leads to a contradiction and therefore that
Condition 3 must hold.

We consider two sub-cases depending on whether q1 is
asymptotically positive or negative. In both cases, choose



one of the variables ni and call it n. Evaluate the other ni at
integer points that do not make pi constant if it contains n.
We show the contradiction with these univariate exponents.

Case B.1: q1 > 0

We consider the case where all pi and q1 remain positive as
n grows. In this case, there exists NB such that for n >
NB we have pi ≥ 0, q1 > 0, all the pi are distinct and
retain their relative order and likewise for the qi. Label the
exponent polynomials such that p1 > p2 > · · · > pR and
q1 > q2 > · · · > qR.

We have

g(h(X)) =
R∑
i=1

gi(
S∑
j=1

hjX
qj )pi

Let

h(X) = h1X
q1 + h2X

q2 + η

where η = h3X
q3 + · · ·+ hSX

qS .

Since p1 > p2 ≥ 0, we may write binomial expansions
of the terms h(X)p1 and h(X)p2 .

g(h(X)) =
R∑
i=1

gi(h1X
q1 + h2X

q2 + η)pi

= g1

(
(h1X

q1)p1 + p1(h1X
q1)p1−1(h2X

q2 + η)

+
(
p1

2

)
(h1X

q1)p1−2(h2X
q2 + η)2 + L1

)
+ g2

(
(h1X

q1)p2 + p2(h1X
q1)p2−1(h2X

q2 + η)

+
(
p2

2

)
(h1X

q1)p2−2(h2X
q2 + η)2 + L2

)
+ L∗,

where one or more of η, L1, L2 and L∗ may be zero. If
R = 1 then the g2 term and L∗ are zero and the argument
specializes.

Expanding the quadratic terms (h2X
q2 + η)2, we have

g(h(X)) =

g1h
p1
1 X

A1 + g1p1h
p1−1
1 h2X

A2 + g1p1h
p1−1
1 XA3η

+ g1

(
p1

2

)
hp1−2

1 h2
2X

A4

+ 2g1

(
p1

2

)
hp1−2

1 h2X
A5η + g1

(
p1

2

)
hp1−2

1 XA6η2

+ g1L1

+ g2h
p2
1 X

B1 + g2p2h
p2−1
1 h2X

B2 + g2p1h
p2−1
1 XB3η

+ g2

(
p2

2

)
hp2−2

1 h2
2X

B4

+ 2g2

(
p2

2

)
hp2−2

1 h2X
B5η + g2

(
p2

2

)
hp2−2

1 XB6η2

+ g2L2

+ L∗

where

A1 = q1p1 B1 = q1p2

A2 = q1(p1 − 1) + q2 B2 = q1(p2 − 1) + q2

A3 = q1(p1 − 1) B3 = q1(p2 − 1)
A4 = q1(p1 − 2) + 2q2 B4 = q1(p2 − 2) + 2q2
A5 = q1(p1 − 2) + q2 B5 = q1(p2 − 2) + q2

A6 = q1(p1 − 2) B6 = q1(p2 − 2)

We adopt the conventions deg 0 = −∞, p3 = −∞ if
R = 2, and q3 = −∞ if S = 2. The argument can be made
more precise by dividing into cases where various terms are
zero, thereby avoiding degrees of −∞. We then have

deg L1 ≤ q1(p1 − 3) + 3q2
deg L2 ≤ q1(p2 − 3) + 3q2
deg L∗ ≤ q1p3

deg η ≤ q3

with equality whenever the quantities are non-zero.

Examining the degrees of each term of our expansion,
we observe that the terms with A1 and A2 are distinct from
each other and from all the rest involving Ai, L1 and L∗.



We have

A1 > A2 since A1 = q1p1 = q1(p1 − 1) + q1

> q1(p1 − 1) + q2 = A2.

A2 > A3 + deg η since A2 = q1(p1 − 1) + q2

> q1(p1 − 1) + q3

= A3 + deg η.

A2 > A4 since A2 = q1(p1 − 1) + q2

= q1(p1 − 2) + q1 + q2

> q1(p1 − 2) + 2q2 = A4.

A4 > A5 + deg η since A4 = q1(p1 − 2) + 2q2
> q1(p1 − 2) + q2 + q3

= A5 + deg η.

A5 + deg η

> A6 + 2deg η since A5 + deg η

= q1(p1 − 2) + q2 + q3

> q1(p1 − 2) + 2q3
= A6 + 2deg η

A2 > deg L1 since A2 = q1(p1 − 1) + q2

= q1(p1 − 3) + 2q1 + q2

> q1(p1 − 3) + 3q2
≥ deg L1

A2 > deg L∗ since A2 = q1(p1 − 1) + q2

> q1(p1 − 1)− q1
= q1(p1 − 2)
≥ q1p3 ≥ deg L∗

In the last inequality we have used the fact that pi ≥ pi+1+1
and q1 > 0. Likewise, we observe that the terms with B1

and B2 are distinct from each other and from all the rest
involving Bi, L2 and L∗.

B1 >B2 > B3 + deg η

B2 > B4 > B5 + deg η > B6 + 2deg η

B2 > deg L2

B2 > deg L∗

The terms involving Ai and Bi are related by the inequali-
ties

A1 > B1 since A1 = q1p1 > q1p2 = B1,

A2 > B2 since A2 = q1(p1 − 1) + q2

> q1(p2 − 1) + q2 = B2.

The possible situations are:

A1 > A2 > B1 ≥ all the rest involving Ai, Bi, Li, L∗,
A1 > B1 = A2 > all the rest involving Ai, Bi, Li, L∗,
A1 > B1 > A2 > all the rest involving Ai, Bi, Li, L∗.

If A2 6= B1, we have

g(h(X)) =g1h
p1
1 X

p1q1 + g1p1h
p1−1
1 h2X

(p1−1)q1+q2

+ lower order terms.

If A2 = B1, we have

g(h(X)) =g1h
p1
1 X

p1q1 +
(
g1p1h

p1−1
1 h2 + g2h

p2
1

)
Xq1p2

+ lower order terms.

In all situations p1 appears in a coefficient so it must be
constant. Since the pi are integer-valued polynomials, and
since pi ≥ 0, we now have that all pi are non-negative inte-
gers, contradicting our hypothesis that at least one of them
was non-constant. Therefore Condition 3 must be satisfied.

Case B.2: q1 ≤ 0

Let q′i = −qi and h′(X) = h(X−1). Then

h′(X) = h(X−1) =
S∑
i=0

hiX
−qi =

S∑
i=0

hiX
q′i .

Note that q1 = 0 ≥ q2 + 1 so q2 < 0 and q′2 > 0. Re-
labeling the q′i to reverse their order gives g ◦ h′ satisfying
the conditions of Case B.1. Therefore Condition 3 must be
satisfied.

Case C: h not a monomial and asymptotically ∃pi < 0

Again, label the pi and qi so that asymptotically p1 > p2 >
· · · > pR and q1 > q2 > · · · > qS . In this case not all
of the pi will be asymptotically non-negative. Let i0 be the
smallest i such that as n→∞ we have pi < 0. There then
exists a value NC such that for all n > NC we have pi ≥ 0
for i < i0 and pi < 0 for i ≥ i0.

We may write

g(h(X)) = A+B, where

A =
i0−1∑
i=1

gih(X)pi B =
S∑
i=i0

gi
1

h(X)−pi
.

For n > NC , the exponent polynomials pi are non-negative
in A and the −pi are non-negative in B. We may put the
sum B over a common denominator.

g(h(X)) =
i0−1∑
i=1

gih(X)pi +

∑S
i=i0

gi
∏S
j=i0
j 6=i

h(X)−pj∏S
j=i0

h(X)−pj

.



For each n > NC , we have A ∈ Z[X] and B ∈ Z(X)
with numerator degree strictly less than denominator de-
gree. Since h(X) is not a monomial and since the powers
in the denominator of B are non-zero, the denominator of
B will have poles other than at 0 and infinity. Therefore, for
B to be a Laurent polynomial its numerator must be identi-
cally zero. To examine this case, let

p̃i =
S∑

j=i0
j 6=i

−pj , for i ≥ i0.

Then the numerator of B is

g̃(h(X)) =
S∑
i=i0

gih(X)p̃i

Note that all p̃i > 0 for n > NC . We have already shown
that for g̃(h(X)) to exist in P under these conditions we
must have g̃(X) ∈ Z[X]. Therefore for to have g̃(h(X)) =
0 we must have g̃(X) = 0. That is, we must have gi = 0
for i ≥ i0, contradicts the conditions regarding g.

Therefore there can be no compositions in P in Case C.

5. Decomposition Theorems

A symbolic polynomial may be a composition in more
than one way. We address the question of how such decom-
positions are related. We begin by introducing the notion of
a complete decomposition.

Definition 8 (Decomposition, decomposition factor, com-
plete and partial decomposition). If f = g1 ◦ · · · ◦ gT ,
g1, . . . , gt ∈ P = R[n1, ..., np;X], and no gi is trivial un-
less T = 1, then the list (g1, . . . , gt) is a decomposition
of f . Each of the gi is a decomposition factor of f . If no
gi = h1 ◦ h2 for non-trivial h1, h2 ∈ P , then (g1, ..., gT ) is
a complete decomposition and otherwise it is a partial de-
composition.

We may write the list (g1, ..., gT ) as g1 ◦ · · · ◦ gT when no
confusion will arise.

Theorem 5 (Decomposition shape).
Let f ∈ P = C[n1, ..., np;X]. Then any decomposition of
f is of the form

f = p1 ◦ · · · ◦ pN ◦ S ◦ U1 ◦ · · · ◦ UM , N ≥ 0,M ≥ 0,

where pi ∈ C[X], Ui = uiX
ei ∈ P is a monomial whose

coefficients must be certain roots of unity, either S ∈ P or
S = ` ◦H where ` ∈ C[X,X−1] and H = αXν ∈ P is a
monomial with no conditions on its coefficient.

Proof. By Theorem 4, f may be a composition in one of
only three ways. The decomposition factors may them-
selves be decomposed only in the same ways, etc. Induction
on the number of composition operators and associativity of
functional composition gives the result.

Theorem 6 (Complete decomposition existence).
For every f ∈ P = C[n1, ..., np;X] there is a number N
such that every decomposition of f has at most N decom-
position factors.

Proof. If f is trivial or is not the composition of two non-
trivial symbolic polynomials, then f = g1 is a complete de-
composition and N = 1. If f is non-trivial and f = h1 ◦h2

for non-trivial h1, h2 ∈ P , it may be possible to decompose
h1 or h2 further non-trivially and then to decompose the de-
composition factors non-trivially, and so on. We show this
process must terminate.

Choose an asymptotic ordering of terms, ≺, and let
deg p and ldeg p be the exponents of the leading and trail-
ing terms of p with respect to that order. Let deg f =
ae1 × · · · × eQ be the complete factorization of deg f in
Q[n1, ..., np] with ei = ẽi/di, where ẽi ∈ Z[n1, ..., np] is
primitive and di is the fixed divisor of ẽi. Then ei is integer-
valued with fixed divisor 1 and a ∈ Z because deg f is
integer-valued. Let the factorization of a into integer primes
be a = u× a1 × · · · × aW , with u = ±1. This means there
can be at most Q + W decomposition factors with deg
other than ±1. A similar bound exists for ldeg .

It remains to show that there cannot be an unbounded
number of composition factors with both deg and ldeg
equal to ±1. We have stipulated that none of the decom-
position factors may be trivial, so if deg hik = 1 then
ldeg hik ≤ −1, and if deg hik = −1 then ldeg hik ≤ −2.
We can have a bounded number of decomposition factors
not of the form c1X + c0 + c−1X

−1 with c1, c−1 6= 0 and
by Theorem 5 we can have at most one of these.

We now turn turn to the question of how distinct compo-
sitions can be related. From Theorem 5 we see that we will
need to consider distinct decompositions of polynomials, of
symbolic monomials and of a polynomial with a Laurent
polynomial or indecomposable symbolic polynomial.

It has been well understood since the early work by Ritt
how distinct polynomial decompositions are related: any
complete decomposition of a polynomial in C[X] may be
obtained from any other by use of the identities

(aX + b) ◦ (1/aX − b/a) = x

Xn ◦Xm p(Xn) = Xmp(X)n ◦Xn

Tn(X) ◦ Tm(X) = Tm(X) ◦ Tn(X)

where p(X) ∈ C[X] and Tn, Tm Chebyshev polynomials.



Decompositions involving a polynomial left decompo-
sition factor and a Laurent polynomial left decomposition
factor have been characterized by Zieve.

Theorem 7 (Zieve [29] 5.6).
Let g1, g2 ∈ C[X]\C and h1, h2 ∈ C[X,X−1]\C satisfy
g1 ◦ h1 = g2 ◦ h2. Then, perhaps after switching (g1, g2)
and (h1, h2), we have

g1 = G ◦G1 ◦ µ1

g2 = G ◦G2 ◦ µ2

h1 = µ−1
1 ◦H1 ◦H

h2 = µ−1
2 ◦H2 ◦H

for some G ∈ C[X], some H ∈ C(X), and some linear
µ1, µ2 ∈ C[X], where (G1, G2) satisfy one of

(1) (Xn, Xrp(X)n) where 0 ≤ r < n and gcd(r, n) = 1;

(2) (X2, (X2 − 4)p(X)2);

(3) (Dm(X), Dn(X));

(4) ((X2/3− 1)3, 3X4 − 4X3);

(5) (Ddm(X),−Ddn(X)), where d > 1

and (H1, H2) is the corresponding pair below:

(1) (Xrp(Xn), Xn);

(2) ((X − 1/X)p(X + 1/X), X + 1/X);

(3) (Dn(X), Dm(X));

(4) (X2 + 2X + 1
X −

1
4X2 ,

1
3 ((X + 1− 1

2X )3 + 4));

(5) (Xn+1/Xn, (ζX)m+1/(ζX)m), where ζdmn = −1.

Here p(n) ∈ C[X] and Dn is the Dickson polynomial de-
fined by Dn(x+ 1/x) = xn + 1/xn, related to the Cheby-
chev polynomials via Dn(x) = 2Tn(x/2). Cases 1 and 3
correspond to the polynomial setting and the others are new
for Laurent polynomials.

We are now in a position to make a statement about the
relationship between complete decompositions of symbolic
polynomials.

Theorem 8 (Complete decomposition equivalence).
Let f ∈ P = C[n1, ..., np;X] be a non-trivial symbolic
polynomial. If f has two complete decompositions, they
must be of the form

f = p1 ◦ · · · pN ◦ S ◦ U1 ◦ · · · ◦ UM
= q1 ◦ · · · qN ◦R ◦ V1 ◦ · · · ◦ VM ,

with N,M ≥ 0, pi, qi ∈ C[X] and Ui, Vi ∈ P monomials
and one of the following conditions must hold:

Condition 1. S,R ∈ C[X] and either decomposition may
be obtained from the other by successive application
of the identities

(aX + b) ◦ (1/aX − b/a) = x

Xn ◦Xm p(Xn) = Xmp(X)n ◦Xn

Dn(X) ◦Dm(X) = Dm(X) ◦Dn(X)
(1)

between decomposition factors left of S or R and of
the identity

(aXs) ◦ (bXt) = absXst (2)

between decomposition factors right of S or R;

Condition 2. S = S1 ◦ H , R = R1 ◦ H , S, S1, R,R1 ∈
C[X,X−1]\C[X], H ∈ C(X), and either decompo-
sition may be obtained from the other by successive
application of the identities (1) and

X2 ◦ (X − 1/X)p(X + 1/X) =

(X2 − 4)p(X)2 ◦ (X + 1/X)

(X2/3− 1)3 ◦ (X2 + 2X +
1
X
− 1

4X2
)

(3X4 − 4X3) ◦ 1
3

((X + 1− 1
2X

)3 + 4)

(Xn + 1/Xn) ◦Ddm(X) =
(ζX)m + 1/(ζX)m) ◦ −Ddn(X)

(3)

between decomposition factors to the left of H or the
identity (2) to the right of H;

Condition 3. S,R ∈ P\C[X,X−1] and either decompo-
sition may be obtained from the other by successive
application of the identities (1) to the left of S or R or
the identity (2) to the right of S or R.

Here n,m ∈ N, s, t ∈ Z, a, b, ζ ∈ C, p(X) ∈ C[X] and
ζdnm = 1.

Proof. That the complete decompositions must be of the
form specified is guaranteed by Theorem 5.

For both decompositions we can extract the greatest de-
gree monomial right composition factor with respect to a
particular asymptotic term order. As this decomposition
must exist for all particular evaluations of the exponent vari-
ables, this left composition factor will be unique for any par-
ticular asymptotic order. The decomposition of symbolic
monomials is straightforwardly related to the factorization
of the exponents. As in the proof of Theorem 6, we can
split the exponent of the maximal right monomial compo-
sition factor into the product of a polynomial part with no
fixed divisor and an integer. Both of these can be factored
separately and each permutation of these factors gives a dis-
tinct decomposition. Conditions 1 and 2 are then provided
by Theorem 7.



We now consider the situation where g1◦h1 = g2◦h2 and
g1, g2 ∈ C[X], h1, h2 ∈ P = C[n1, ..., np;X]\C[X,X−1]
with no right monomial composition factor. The only non-
trivial decompositions hi can have all give a left decompo-
sition factor in C[X]. We may therefore associate this with
gi and restrict our attention to the case where h̃i ∈ P are not
monomials and have no further non-trivial decomposition.

Now, under any evaluation of the exponent variables in
hi, Theorem 7 must apply. In each of cases (1)–(5), how-
ever, the minimum and maximum degrees ofG1 andG2 are
determined by g1, g2 ∈ C[X] and these determine the de-
grees of termsH1 and H2 (in the notation of Theorem 7).
Therefore, under each evaluation the decomposition factors
H1 andH2 are the same so all the symbolic exponents must
lie in H , which is the same for both decompositions. As we
have excluded the case where H is a monomial, we must
have G ◦ Gi ◦Hi ∈ C[X] so H is a polynomial under any
evaluation and is therefore a symbolic polynomial.

6. Computing Decompositions

To find a decomposition f = g◦hwe consider two cases:
h being a monomial (Conditions 1 and 2) and g being an
ordinary polynomial (Condition 3).

When h is a monomial

If h = h1x
q1 is a symbolic monomial, then q1 will be a

common factor of the exponents of x in f . The co-factors
of q1 in the exponents of x in f will give the exponents pi
of g.

When g is an ordinary polynomial

If g ∈ R[X] then we may substitute Xn1 , Xn2
1 , Xn2 ,

Xn1n2 , etc with new variables to obtain a multivariate Lau-
rent polynomial. We may then perform a uni-multivariate
Laurent polynomial decomposition, as described in [26].

In order to ensure that the coefficients of the expo-
nent polynomials are integers, we first make the substitu-
tion X 7→ XL where L is the smallest integer such that
Lp1, ..., Lpr ∈ Z[n1, ..., np]. Then, with all integer coeffi-
cients in the exponents, we able to transform XP to a prod-
uct of new variables raised to integer powers. For example,
if p = 2 we can introduce the new variables Xij = Xni

1n
j
2

and the term cX3n2
1−4n2 becomes cX3

20X
−4
01 . This choice

of L does not make explicit all fixed divisors of the expo-
nent polynomials. If no decomposition is obtained with this
L, then try again with L = d!p, where d is the maximum de-
gree of any ni in any exponent in f . This will be sufficient
to detect any fixed divisor of exponent polynomials [24].

Algorithm 1 (Symbolic polynomial decomposition).

INPUT: f =
∑T
i=1 fiX

ei ∈ P = C[n1, ..., np;X]

OUTPUT: If there exists a decomposition f = g ◦ h, g, h ∈
P not of the form c1X + c0 ∈ C[X], then output true,
g and h. Otherwise output false.

Step 1. Handle the case of monomial h.
Let q := primitive part of gcd(e1, ..., eT ), k :=
gcd(max fixed divisor e1, . . . ,max fixed divisor eT ).

If kq 6= 1, let g =
∑T
i=1 fiX

ei/(kq) and h = Xkq .
Return (true, g, h)

Step 2. Remove fractional coefficients that occur in f .
Let L be smallest integer such that Le1, ..., LeT ∈
Z[n1, ..., np]. Construct f ′ = ρf ∈ P , using the sub-
stitution ρ : X 7→ XL.

Step 3. Convert to multivariate problem. Construct f ′′ =
γf ′ ∈ C[X0...0, ..., Xd...d], using the correspondence
γ : Xn1

i1 ···np
ip 7→ Xi1...ip .

Step 4. Determine possible degrees. Let D be the total de-
gree of f ′′. The possible degrees of the decomposition
factors are the integers that divide D.

Step 5. Try uni-multivariate decompositions. For each in-
teger divisor r ofD, from largest to smallest until a de-
composition is found or there are no more divisors, try
a uni-multivariate Laurent polynomial decomposition
f ′′ = g◦h′′ where g has degree r. If no decomposition
is found, try again with L = d!p. If no decomposition
if found, return false.

Step 6. Compute h. Invert the substitutions to obtain h =
ρ−1γ−1h′′.

Step 7. Return (true, g, h).

Figure 1.
Symbolic Polynomial Decomposition

Symbolic Polynomial Decomposition Algorithm

We can now give our algorithm for symbolic polynomial
decomposition. This is shown in Figure 1. This algorithm
may be applied repeatedly to obtain a complete decompo-
sition. It may be possible to further decompose g and h.
If g ∈ C[X], the standard polynomial decomposition al-
gorithms may be applied. If h = Xa×b, then h may be
decomposed as Xa ◦Xb. Note the lower first value for L is
for efficiency only.



7. Conclusions

We have extended the notion of functional decomposi-
tion of polynomials to the domain of symbolic polynomi-
als and have shown that if such a decomposition exists ei-
ther the inner decomposition factor must be a monomial or
the outer decomposition factor must be an ordinary polyno-
mial. We have also shown that maximal decompositions ex-
ist and how they are related. Finally, we have presented an
algorithm to compute these decompositions based on uni-
multivariate Laurent decomposition.

Some interesting problems remain open to future inves-
tigation: One is to decompose symbolic polynomials over
fields of finite characteristic. Another is to compute the
functional decomposition of extended symbolic polynomi-
als, where elements of the coefficient ring may have sym-
bolic exponents.
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de la force expansive de la vapeur de l’alkool, à différentes
températures. Journal de l’École Polytechnique, 1(22):24–
76, 1795.

[4] M. T. Dickerson. The Functional Decomposition of Polyno-
mials. PhD thesis, Cornell University, 1989.

[5] G. Everest and A. V. D. Poorten. Factorisation in the ring
of exponential polynomials. Proc. American Math. Society,
125(5):1293–1298, 1997.

[6] C. Henson, L. Rubel, and M. Singer. Algebraic properties
of the ring of general exponential polynomials. Complex
Variables Theory and Applications, 13:1–20, 1989.

[7] H. Hong. Groebner basis under composition II. In Interna-
tional Symposium on Symbolic and Algebraic Computation,
pages 79–85, 1996.

[8] H. Hong. Subresultants under composition. J. Symbolic
Computation, 23:355–365, 1997.

[9] H. Hong. Groebner basis under composition I. J. Symbolic
Computation, 25:643–663, 1998.

[10] D. Kozen and S. Landau. Polynomial decomposition algo-
rithms. J. Symbolic Computation, 22:445–456, 1989.

[11] D. Kozen, S. Landau, and R. Zippel. Decomposition of al-
gebraic functions. J. Symbolic Computation, 22(3):235–246,
1996.

[12] M. Malenfant. A comparison of two families of algorithms
for symbolic polynomials. Master’s thesis, Dept of Com-
puter Science, University of Western Ontario, December
2007.

[13] M. Malenfant and S. M. Watt. Sparse exponents in symbolic
polynomials. In Proc. Symposium on Algebraic Geometry
and Its Applications: in honor of the 60th birthday of Gilles
Lachaud, (SAGA 2007), Papeete, Tahiti, 2007.
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