
Symbolic Polynomials with Sparse Exponents

Stephen M. Watt
Ontario Research Centre for Computer Algebra

Department of Computer Science, University of Western Ontario
London Ontario, CANADA N6A 5B7

watt@uwo.ca

Abstract

Earlier work has presented algorithms to factor and compute GCDs of symbolic Laurent polyno-
mials, that is multivariate polynomials whose exponents are integer-valued polynomials. These earlier
algorithms had the problem of high computational complexity in the number of exponent variables and
their degree. The present paper solves this problem, presenting a method that preserves the structure of
sparse exponent polynomials.

1 Introduction

We are interested in the algebra of polynomials whose exponents are not known in advance, but rather are
given by integer-valued expressions, for example x2m2+n +3xnym3+1 +4. In particular, we consider the case
where the exponents are integer-valued polynomials with coefficients in Q. One could imagine other models
for integer-valued expressions, but this seems sufficiently general for a number of purposes. We call these
“symbolic polynomials.” Symbolic polynomials can be related to exponential polynomials [1] and to families
of polynomials with parametric exponents [2, 3, 4].

To date, computer algebra systems have only been able to do simple ring operations on symbolic polynomials.
They can add and multiply symbolic polynomials, but not much else. In earlier work, we have given a
technical definition of symbolic polynomials, have shown that these symbolic polynomials over the integers
form a UFD, and have given algorithms to compute GCDs and factor them [5, 6]. These algorithms fall
into two families: extension methods, based on the algebraic independence of variables to different monomial
powers (e.g. x, xn, xn2

,...), and homomorphism methods, based on the evaluation and interpolation of
exponent polynomials.

There is a problem with these earlier algorithms, however: they become impractical when the exponent
polynomials are sparse. Extension methods introduce an exponential number of new variables and ho-
momorphism methods require an exponential number of images. We have attempted to address this by
performing sparse interpolation of exponents [7, 8], but this leads to impractical factorizations in the image
polynomial domain.

This paper presents solves these problems. We show a substitution for the extension method that introduces
only a linear number of new variables. The resulting polynomials are super-sparse and may be factored by
taking images using Fermat’s little theorem, as done by Giesbrecht and Roche [9]. (Indeed, Fermat’s little
theorem can be used in a second stage of projection for our homomorphism method, but there combining
images is more complicated.)

The remainder of the paper is organized as follows: Section 2 recalls a few elementary facts about integer-
valued polynomials and fixed divisors. Section 3 summarizes the extension algorithm that we have presented
earlier for dense exponents. Section 4 explains why this algorithm is not suitable for the situation when the
exponent polynomials are sparse and shows how to deal with this problem. Section 5 presents the extension
algorithms adapted to sparse exponents and Section 6 concludes the paper.

1



2 Preliminaries

We recall the definitions of integer-valued polynomial and fixed divisor, and note some of their elementary
properties.

Definition 1 (Integer-valued polynomial). For an integral domain D with quotient field K, the (univariate)
integer-valued polynomials over D, denoted Int(D), are defined as

Int(D) = {f | f ∈ K[X] and f(a) ∈ D, for all a ∈ D}

For example, 1
2n2 − 1

2n ∈ Int(Z) because if n ∈ Z, either n or n − 1 is even. Integer-valued polynomials
have been studied for many years, with classic papers dating back 90 years [10, 11]. We make the obvious
generalization to multivariate polynomials.

Definition 2 (Multivariate integer-valued polynomial). For an integral domain D with quotient field K,
the (multivariate) integer-valued polynomials over D in variables X1, . . . , Xn, denoted Int[X1,...,Xn](D), are
defined as

Int[X1,...,Xn](D) = {f | f ∈ K[X1, . . . , Xn] and f(a) ∈ D, for all a ∈ Dn}

For consistency we will use the notation Int[X](D) for univariate integer-valued polynomials.

When written in the binomial basis, integer-valued polynomials have the following useful property:

Property 1. If f is a polynomial in Int[n1,...,np](Z) ⊂ Q[n1, ...np], then when f is written in the basis(
n1
i1

)
· · ·

(
np

ip

)
, its coefficients are integers.

If a polynomial is integer-valued, then there may be a non-trivial common divisor of all its integer evaluations.

Definition 3 (Fixed divisor). A fixed divisor of an integer-valued polynomial f ∈ Int(D) is a value q ∈ D
such that q|f(a) for all a ∈ D.

Given the following result, it is easy to compute the largest fixed divisor of a multivariate integer-valued
polynomial.

Property 2. If f is a polynomial in Z[n1, ..., np], then the largest fixed divisor of f may be computed as the
gcd of the coefficients of f when written in the binomial basis.

3 Algorithms for Dense Exponents

Following earlier work [5, 6] we define the ring of symbolic polynomials as follows:

Definition 4 (Ring of symbolic polynomials). The ring of symbolic polynomials in x1, ..., xv with exponents
in n1, ..., np over the coefficient ring R is the ring consisting of finite sums of the form∑

i

cix
ei1
1 xei2

2 · · ·xein
n

where ci ∈ R and eij ∈ Int[n1,n2,...,np](Z). Multiplication is defined by

c1x
e11
1 · · ·xe1n

n × c2x
e21
1 · · ·xe2n

n = c1c2x
e11+e21
1 · · ·xe1n+e2n

n

We denote this ring R[n1, ..., np;x1, ..., xv].

2



A more elaborate definition is available that allows symbolic exponents on constants from the coefficient ring
and everything we say here can be carried over.

We have already shown [5, 6] that symbolic polynomials with integer coefficients form a UFD. The first
ingredient of the proof is that xn and xn2

are algebraically independent. The second ingredient is that fixed
divisors become explicit when integer-valued polynomials are written in a binomial basis. The conversion to
the binomial basis detects fixed divisors. For example, n2 + n is even for any integer n so we must detect
that xn2+n − 1 is a difference of squares:

xn2+n − 1 = (x
1
2 n2+ 1

2 n + 1)(x
1
2 n2+ 1

2 n − 1)

This leads to the extension algorithms. For example, for factorization we have:

Dense Extension Algorithm for Symbolic Polynomial Factorization

Input: A symbolic polynomial f ∈ Z[n1, ...np;x1, ..., xv].

Output: The factors g1, ..., gn such that
∏

i gi = f , unique up to units.

1. Put the exponent polynomials of f in the basis
(
ni

j

)
.

2. Construct polynomial F ∈ Z[X10...0, ..., Xvd1...dp
], where di is the maximum degree of ni in any exponent

of f , using the correspondence

γ : x
(n1

i1
)···(np

ip
)

k 7→ Xki1...ip .

3. Compute the factors Gi of F .

4. Compute gi = γ−1(Gi).

Under any evaluation map on the exponents, φ : Int[n1,...,np](Z) → Z, if φ(f) factors into fφ1, ..., fφr these
factors may be grouped to give the factors φ(gi). That is, there is a partition of {1, ..., r} into subsets Ii such
that φ(gi) =

∏
j∈Ii

fφj . This factorization into gi is the maximal uniform factorization in the sense that any
other factorization g′i has ∀i∃jgi | g′j .

4 Sparse Exponents

The problem with the previous algorithm is that the change to the binomial basis makes the exponent
polynomials dense. If all exponent variables are of degree d or less, the new factorization involves v×(d+1)p

indeterminates. If the number of exponent variables or their degree is large, then the problem becomes
difficult. We solve this by introducing a different substitution.

In factorization and related algorithms, the reason we have transformed the exponents of the input symbolic
polynomial to a binomial basis is so that all factors will have exponent polynomials with integer coefficients.
Then, because xcbi =

(
xbi

)c, we can treat the algebraically independent xbi as new polynomial variables.
The only thing that matters, really, is that the coefficients of the factored symbolic polynomials’ exponents
be integers.

We can achieve the same effect by scaling the original variables and using a Pochhammer basis for the
exponent polynomials. Any polynomial in variables zi may be written in terms of the basis (zi)(j) and vice
versa, in the same coefficient ring. The binomial coefficients and the Pochhammer symbols are related by(
x
j

)
= (x)(j)/j! so multiplying the exponent polynomials by a suitable constant will make them integer-valued.

To see this, we make use of the following result.

3



Lemma 1. If h ∈ Int[n1,...,np](Z) is of degree at most d in each of the ni, then d!p × h ∈ Z[n1, ..., np].

Proof. Because h is integer-valued, we can write

d!p × h =
∑

0≤i1,...,ip≤d

hi1,...,ip
d!p

(
n1

i1

)
· · ·

(
np

ip

)
hi1,...,ip ∈ Z.

If 0 ≤ i ≤ d, then d!
(
w
i

)
= (d× · · · × (d− i + 1))×(w × · · · × (w − i + 1)) ∈ Z[w] and the result is immediate.

We now use this to avoid having to make a change of basis.

Theorem 1. If f ∈ P = R[n1, ..., np;x1, ..., xv] has factors gi ∈ P with exponents in Int[n1,...,np](Z) with
each exponent of degree at most d in any ni, then making the substitution xi 7→ Xd!p

i gives factors in
R[n1, ..., np, X1, ..., Xv] with exponents in Z[n1, ..., np].

Proof. Let exdegnf denote the maximum degree in n of any exponent polynomial in f . By hypothesis, we
have maxi exdegni

f = d. Then for all gi and nj we have exdegnj
gi ≤ exdegnj

f . Therefore all exponent
polynomials occurring in any gi are elements of Int[n1,...,np](Z) of degree at most d in any ni. By Lemma 1,
multiplying all the exponent polynomials by d!p will give exponent polynomials in Z[n1, ..., np]. Making the
substitution xi 7→ Xd!p

i multiplies the exponent polynomials in exactly this way.

The exponent multiplier given by the change of variables xi 7→ Xd!p

i may be larger than required to give
integer coefficients in the exponents of the factors. This may lead to factors whose exponents are not integer-
valued polynomials when the change of variables is inverted. It is easy to give an example of such an “over
factorization” resulting from too large a multiplier. Suppose we wish to factor

f = xn3+n2
− xn3

+ xn2
− 1.

The substitution from the theorem is x 7→ X3! and this gives

f = X6n3+6n2
−X6n3

+ X6n2
− 1

= (Xn3
)6(Xn2

)6 − (Xn3
)6 + (Xn2

)6 − 1.

This then factors as

f =
(
(Xn2

)2 + 1
)
×

(
(Xn2

)4 − (Xn2
)2 + 1

)
×

(
Xn3

− 1
)
×

(
(Xn3

)2 + Xn3
+ 1

)
×

(
Xn3

+ 1
)
×

(
(Xn3

)2 −Xn3
+ 1

)
=

(
x

1
3 n2

+ 1
)
×

(
x

2
3 n2

− x
1
3 n2

+ 1
)

×
(
x

1
6 n3

− 1
)
×

(
x

1
3 n3

+ x
1
6 n3

+ 1
)
×

(
x

1
6 n3

+ 1
)
×

(
x

1
3 n3

− x
1
6 n3

+ 1
)
.

The these factors do not have integer-valued polynomials as exponents. Combinations of these factors,
however, do: (

x
1
3 n2

+ 1
)
×

(
x

2
3 n2

− x
1
3 n2

+ 1
)

= xn2
+ 1(

x
1
6 n3

− 1
)
×

(
x

1
3 n3

+ x
1
6 n3

+ 1
)
×

(
x

1
6 n3

+ 1
)
×

(
x

1
3 n3

− x
1
6 n3

+ 1
)

= xn3
− 1

Because Z[n1, ..., np;x1, ..., xv] is a UFD, there will be a grouping of factors that leads to a unique fullest
factorization, up to units.

4



5 Algorithms for Sparse Exponents

The transformation given in Section 4 allows us to adapt the dense exponent algorithms for symbolic poly-
nomial factorization, GCD, etc to sparse exponents. In each case we substitute the variables for a suitable
power, compute the result, combine factors and substitute back. We show the algorithm for factorization of
symbolic polynomials in more detail:

Sparse Extension Algorithm for Symbolic Polynomial Factorization

Input: A symbolic polynomial f ∈ P = Z[n1, ...np;x1, ..., xv].

Output: The factors g1, ..., gn such that
∏

i gi = f , unique up to units.

1. Construct E = ρf ∈ Z[n1, ..., np;X1, ...Xv], using the substitution

ρ : xi 7→ Xd!p

i .

2. Construct F = γE ∈ Z[X10...0, ..., Xvd...d], using the correspondence

γ : X
n1

i1 ···np
ip

k 7→ Xki1...ip .

3. Compute the factors Gj of F .

4. Compute Hj = γ−1(Gj).

5. Find the finest partition H1 ∪ · · · ∪HN of {Hj} such that for all Hi we have gi = ρ−1
(∏

G∈Hi
G

)
∈ P.

This gives the maximal uniform factorization of the symbolic polynomial f . We may compute the GCD and
related quantities similarly.

We make a few general observations:

In Step 1, we need not necessarily substitute all variables with xi 7→ Xd!p

i . The exponents of each xi form
independent spaces so we may calculate separate bounds bi and substitute xi 7→ Xbi

i . If any xi has fewer
than all p exponent variables or if some exponent variables have lower degrees, then the corresponding bi

will be lower.

In Step 2, if the original exponent polynomials are sparse, then most of the variables will not appear in F .
In particular, the number of variables in F is at most linear in the size of the input polynomial.

The polynomial F will be supersparse: We have replaced the problem of having a number of new vari-
ables exponential in d with the problem of increasing the number of bits in the exponent coefficients by
p log(d!)/ log 2 = O(pd log d). In general, factoring super-sparse polynomials is intractable in a complexity
theoretic sense as there may be dense factors of high degree. Likewise, the corresponding GCD problem can
be reduced to an NP-complete problem [12]. In our problem, however, the symbolic polynomial factorization
must be valid for all values of the exponent variables ni. In particular, the symbolic polynomial polynomial
factorization

∏
i gi evaluated with φ : {n1, ..., np} → 0 will be a (possibly incomplete) factorization of the

polynomial φf . The number of terms in the final symbolic polynomial factorization is therefore unaffected
by the multiplication of the exponent polynomials by a large constant.

In Step 3, we may reduce the size of the exponents that occur in the factorization of F by taking several
images using Fermat’s little theorem for small primes. That is, if a variable x is going to be evaluated by
a homomorphism to give an image problem, then reduce first using xp ≡ x (mod p). This has idea been
observed by other authors (for example [9]).

In Step 5 we can limit the combinations that need be considered by examining only those for which the sum
of asymptotically leading (and, separately, trailing) exponents give integer-valued polynomials.

5



6 Conclusions

We have shown how to preserve the sparsity of exponents in problems related to the factorization of of
symbolic polynomials. We do this by making a change of variables that guarantees the exponents of the
output polynomials will have integer coefficients.

We have implemented this method in Maple and have found it to allow factorizations of symbolic polynomials
far larger than any we have been able to achieve using other methods. For the first time we appear to have
an algorithm of reasonable practical complexity for computing the factorization of symbolic polynomials.

References

[1] C.W. Henson, L. Rubel and M. Singer, Algebraic properties of the ring of general exponential polyno-
mials. Complex Variables Theory and Applications, 13 (1989) 1-20.

[2] V. Weispfenning, Gröbner bases for binomials with parametric exponents. Technical report, Universität
Passau, Germany, 2004.

[3] K. Yokoyama, On systems of algebraic equations with parametric exponents. Proc. ISSAC 2004, July
4-7, 2004, Santander, Spain, ACM Press, 312-319.

[4] W. Pan and D. Wang. Uniform Gröbner bases for ideals generated by polynomials with parametric
exponents. Proc. ISSAC 2006, ACM Press, 269–276.

[5] S.M. Watt, Making computer algebra more symbolic. Proc. Transgressive Computing 2006: A conference
in honor of Jean Della Dora, April 24–26, 2006, Granada, Spain, 44–49.

[6] S.M. Watt, Two families of algorithms for symbolic polynomials. Computer Algebra 2006: Latest
Advances in Symbolic Algorithms — Proceedings of the Waterloo Workshop I. Kotsireas, E. Zima
(editors), World Scientific 2007, 193–210.

[7] M. Malenfant and S.M. Watt, Sparse exponents in symbolic polynomials. Symposium on Algebraic Ge-
ometry and Its Applications: In honor of the 60th birthday of Gilles Lachaud (SAGA 2007) (Abstracts),
May 7–11 2007, Papeete, Tahiti.

[8] M. Malenfant, A comparison of two families of algorithms for symbolic polynomials. MSc.Thesis, Dept
of Computer Science, University of Western Ontario, December 2007.

[9] M. Giesbrecht and D. Roche, Interpolation of shifted-lacunary polynomials. Proc. Mathematical Aspects
of Computer and Information Sciences (MACIS), 2007.

[10] A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlköpern. J. Reine Angew. Math., 149
(1919), 117–124.

[11] G. Pólya, Über ganzwertige Polynome in algebraischen Zahlköpern. J. Reine Angew. Math., 149 (1919),
97–116.

[12] D. A. Plaisted, New NP-hard and NP-complete polynomial and integer divisibility problems. Theoret.
Comput. Sci., 31 (1984), 125–138.

6


