
On Lacunary Polynomial Perfect Powers

Mark Giesbrecht
∗

Symbolic Computation Group
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada
mwg@uwaterloo.ca

http://www.cs.uwaterloo.ca/ mwg/

Daniel S. Roche
Symbolic Computation Group

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
droche@cs.uwaterloo.ca

http://www.cs.uwaterloo.ca/ droche/

ABSTRACT
We consider the problem of determining whether a t-sparse
or lacunary polynomial f is a perfect power, that is, f = hr

for some other polynomial h and r ∈ N, and of finding h
and r should they exist. We show how to determine if f is
a perfect power in time polynomial in t and log deg f , i.e.,
polynomial in the size of the lacunary representation. The
algorithm works over Fq[x] (at least for large characteristic)
and over Z[x], where the cost is also polynomial in log ‖f‖∞.
Subject to a conjecture, we show how to find h if it exists via
a kind of sparse Newton iteration, again in time polynomial
in the size of the sparse representation. Finally, we demon-
strate an implementation using the C++ library NTL.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, Analysis of algorithms; F.2.1
[Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—Computations on poly-
nomials, Number-theoretic computations

General Terms
Algorithms

Keywords
Lacunary polynomial, black box polynomial, sparse polyno-
mial, perfect power

1. INTRODUCTION
Computational work on lacunary polynomials has pro-

ceeded apace for the past three decades. From the dramatic
initial intractability results of [16, 17], through progress in
algorithms (e.g., [3, 22, 12]) and complexity (e.g., [13, 18,

∗Supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’08, July 20–23, 2008, Hagenberg, Austria.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

9]), to recent breakthroughs in root finding and factoriza-
tion [7, 11, 14], these works have important and practical
consequences.

By a lacunary or supersparse polynomial f , we mean with

f =
X

1≤i≤t

cix
ei ∈ F[x1, . . . , x`], (1.1)

where F is a field, c0, . . . , ct ∈ F\{0}, e1, . . . , et ∈ N` are
distinct exponent tuples with 0 ≤ ‖e1‖1 ≤ · · · ≤ ‖et‖1 =

deg f , and by x eii we mean the monomial xei11 xei22 · · ·x
ei`
` of

degree ‖ei‖1 =
P

1≤j≤` eij . We say f is t-sparse and write

τ(f) = t. We will largely consider the univariate case

f =
X

1≤i≤t

cix
ei ∈ F[x], (1.2)

where 0 ≤ e1 < e2 < · · · < et = deg f .
In this paper, we examine an important operation: detect-

ing whether a lacunary polynomial f is a nontrivial perfect
power of another (not necessarily lacunary) polynomial h,
and if so producing the power r and possibly the h such
that f = hr.

We will always assume that τ(f) ≥ 2; otherwise, f = xn,
and determining whether f is a perfect power is equivalent
to determining if n is not prime, for which there are well-
established methods.

The defining methodology of our and previous work in this
area is the sensitivity of the cost to the sparse representation.
That is, we want algorithms which require a number of bit
operations that is polynomial in t and log deg f . When f ∈
Z[x], we furthermore want algorithms for which the number
of bit operations is polynomial in log ‖f‖∞, where ‖f‖∞ =

max1≤i≤t |ci| (for f ∈ Q[x], we simply work with f = cf ∈
Z[x], for the smallest c ∈ Z\{0}). This size reflects that of
the typical linked representation of polynomials in modern
computer algebra systems like Maple and Mathematica.

1.1 Related work and methods
Two well-known techniques can be applied to the problem

of testing for perfect powers, and both are very efficient when
f = hr is dense. We can compute the squarefree decompo-
sition of f as in [24], and determine whether f is a perfect
power by checking whether the GCD of the exponents of all
nontrivial factors in the squarefree decomposition is at least
2. An even faster method (in theory and practice) to find
h given f = hr is by a Newton iteration. This technique
has also proven to be efficient in computing perfect roots of
(dense) multi-precision integers [2, 4]. In summary however,
we note that both these methods require approximately lin-

ear time in the degree of f , which may be exponential in the
lacunary size.

Newton iteration has also been applied to finding perfect
polynomial roots of lacunary (or other) polynomials given by
straight-line programs. Kaltofen [10] shows how to compute
a straight-line program for h, given a straight-line program
for f = hr and the value of r. This method has complexity
polynomial in the size of the straight-line program for f , and
in the degree of h, and in particular is effective for large r.
We do not address the powerful generality of straight-line
programs, but do avoid the dependence on the degree of h.

Closest to this current work, Shparlinski [22] shows how
to recognize whether f = h2 for a lacunary polynomial f .
Shparlinski uses random evaluations and tests for quadratic
residues. How to determine whether a lacunary polynomial
is any perfect power is posed as an open question.

1.2 Our contributions
Given a lacunary polynomial f ∈ Z[x], we present an al-

gorithm to compute an r ∈ Z>1 such that f = hr for some
h ∈ Z[x], or determine that no such r exists. Our algorithm
requires polynomial time in the sparse input size and in fact
is quite efficient, requiring about O (̃t log2 ‖f‖∞ log2 n) ma-
chine operations (for convenience here we use soft-Oh no-
tation: for functions σ and ϕ we say σ ∈ O (̃ϕ) if σ ∈
O(ϕ logc ϕ) for some constant c > 0). Our algorithms are
probabilistic of the Monte Carlo type. That is, they have
the ability to generate random bits at unit cost and, for any
input, on any execution have a probability of getting an in-
correct answer of less than 1/2 (this possibility of error can
be made arbitrarily small with a few repeated executions).

We also answer Shparlinski’s open question on perfect
powers of lacunary polynomials over finite fields, at least
for the case of large characteristic. That is, when the char-
acteristic q of the finite field is greater than deg f , we provide
a Monte Carlo algorithm that determines if there exists an
h ∈ Fq[x] and r such that f = hr, and finds r if it exists.

An implementation of our algorithm in NTL indicates ex-
cellent performance on sparse inputs when compared to a
fast implementation based on previous technology (a variable-
precision Newton iteration to find a power-series rth root of
f , followed by a Monte Carlo correctness check).

Actually computing h such that f = hr is a somewhat
trickier problem. Conjectures of Schinzel [20] suggest that
again provided F has zero or sufficiently large characteristic,
h may well be lacunary as well. In fact, we show that if
f ∈ Z[x], then the number of terms in h is bounded by
‖f‖∞. Conditional on the truth of a (we believe) reasonable
conjecture, and with the knowledge that f is a perfect rth
power, we can explicitly compute h ∈ F[x], again in time
polynomial in logn, t, and log ‖f‖∞.

The remainder of the paper is arranged as follows. In
Section 2 we present the main theoretical tool for our algo-
rithms and then show how to employ it for polynomials over
finite fields and the integers. We also show that if a lacunary
polynomial is a perfect power of some h, then it cannot be a
high power, and show how to identify it. We also show how
to reduce the multivariate problem to the univariate one.
In Section 3 we show how to compute h such that f = hr

(given that such h and r exist), subject to a conjecture we
posit quite reasonable. Finally, in Section 4, we present an
experimental implementation of our algorithm in NTL.

2. TESTING FOR PERFECT POWERS
In this section we describe a method to determine if a

lacunary polynomial f ∈ Z[x] is a perfect power. That is,
do there exist h ∈ Z[x] and r > 1 such that f = hr? The
polynomial h need not be lacunary, though some conjectures
suggest it may well have to be.

We first describe algorithms to test if f is an rth power
of some polynomial h, where f and r are both given and r
is assumed to be prime. We present and analyze variants
that work over finite fields Fq and over Z. In fact, these
algorithms for fixed r are for black-box polynomials: they
only need to evaluate f at a small number of points. That
this evaluation can be done quickly is a property of lacunary
and other classes of polynomials.

For lacunary f we then show that, in fact, if h exists at
all then r must be small unless f = xn. And if f is a perfect
power, then there certainly exists a prime r such that f is
an rth power. So in fact the restrictions that r is small and
prime are sufficient to cover all nontrivial cases, and our
method is complete.

2.1 Detecting given rth powers
Our main tool in this work is the following theorem which

says that, with reasonable probability, a polynomial is an
rth power if and only if the modular image of an evaluation
in a specially constructed finite field is an rth power.

Theorem 2.1. Let % ∈ Z be a prime power and r ∈ N
a prime dividing % − 1. Suppose that f ∈ F%[x] has degree
n ≤ 1 +

√
%/2 and is not a perfect rth power in F%[x]. Then

R
(r)
f = # {c ∈ F% : f(c) ∈ F% is an rth power} ≤ 3%

4
.

Proof. The rth powers in F% form a subgroup H of F∗% of
index r and size (%−1)/r in F∗%. Also, a ∈ F∗% is an rth power

if and only if a(%−1)/r = 1. We use the method of “complet-
ing the sum” from the theory of character sums. We refer
to [15], Chapter 5, for an excellent discussion of character
sums. By a multiplicative character we mean a homomor-
phism χ : F∗% → C which necessarily maps F% onto the unit
circle. As usual we extend our multiplicative characters χ
so that χ(0) = 0, and define the trivial character χ0(a) to
be 0 when a = 0 and 1 otherwise.

For any a ∈ F∗%,

1

r

X
χr=χ0

χ(a) =

(
1 if a ∈ H,
0 if a 6∈H,

where χ ranges over all the multiplicative characters of order
r on F∗% — that is, all characters that are isomorphic to the
trivial character on the subgroup H. Thus

R
(r)
f =

X
a∈F∗%

1

r

X
χr=χ0

χ(f(a))

!
=

1

r

X
χr=χ0

X
a∈F∗%

χ(f(a))

≤ %

r
+

1

r

X
χr=χ0
χ6=χ0

˛̨̨̨
˛̨X
a∈F%

χ(f(a))

˛̨̨̨
˛̨ .

Here we use the obvious fact thatX
a∈F∗%

χ0(f(a)) ≤
X
a∈F%

χ0(f(a)) = %− d ≤ %,

where d is the number of distinct roots of f in F%. We
next employ the powerful theorem of Weil [23] on character
sums with polynomial arguments (see Theorem 5.41 of [15]),
which shows that if f is not a perfect rth power of another
polynomial, and χ has order r > 1, then˛̨̨̨

˛̨X
a∈F%

χ(f(a))

˛̨̨̨
˛̨ ≤ (n− 1)%1/2 ≤ %

2
,

using the fact that we insisted n ≤ 1+
√
%/2. Summing over

the r − 1 non-trivial characters of order r, we deduce that

R
(r)
f ≤

%

r
+
r − 1

r
· %

2
≤ 3%

4
.

2.2 Certifying specified powers over Fq[x]
Theorem 2.1 allows us to detect when a polynomial f ∈

F%[x] is a perfect rth power, for known r dividing % − 1:

choose random α ∈ F% and evaluate ξ = f(α)(%−1)/r ∈ F%.
Recall that ξ = 1 if and only if f(α) is an rth power.

• If f is an rth power, then clearly f(α) is an rth power
and we always have ξ = 1.

• If f is not an rth power, Theorem 2.1 demonstrates
that for at least 1/4 of the elements of F%, f(α) is not
an rth power. Thus, for α chosen randomly from F%
we would expect ξ 6= 1 with probability at least 1/4.

For a polynomial f ∈ Fq[x] over an arbitrary finite field
Fq, where q is a prime power such that q− 1 is not divisible
by r, we proceed by constructing an extension field Fqr−1

over Fq. From Fermat’s Little Theorem and the fact that
r - q, we know r | (qr−1 − 1), and we can proceed as above.
We now present and analyze this more formally.

Algorithm IsPerfectRthPowerGF

Input: A prime power q, f ∈ Fq[x] of degree n ≤ 1 +
√
q/2,

r ∈ N a prime dividing n, and ε ∈ R>0

Output: True if f is the rth power of a polynomial in F%[x];
False otherwise.

1: Find an irreducible Γ ∈ Fq[z] of degree r − 1, successful
with probability at least ε/2

2: %← qr−1

3: Define F% = Fq[z]/(Γ)
4: m← 2.5(1 + dlog2(1/ε)e)
5: for i from 1 to m do
6: Choose random α ∈ F%
7: ξ ← f(α)(%−1)/r ∈ F%
8: if ξ 6= 1 then
9: return False

10: return True

Notes on IsPerfectRthPowerGF.
To accomplish Step 1, a number of fast probabilistic meth-

ods are available to find irreducible polynomials. We em-
ploy the algorithm of Shoup [21]. This algorithm requires
O((r2 log r + r log q) log r log log r) operations in Fq. It is
probabilistic of the Las Vegas type, and we assume that
it always stops within the number of operations specified,
and returns the correct answer with probability at least 1/2
and “Fail” otherwise (it never returns an incorrect answer).
The algorithm is actually presented in [21] as always find-
ing an irreducible polynomial, but requiring expected time

as above; by not iterating indefinitely our restatement al-
lows for a Monte Carlo analysis in what follows. To obtain
an irreducible Γ with failure probability at most ε/2 we run
(our modified) Shoup’s algorithm 1 + dlog2(1/ε)e times.

The restriction that n ≤ 1+
√

2 (or alternatively q ≥ 4(n−
1)2) is not problematic. If this condition is not met, simply
extend Fq with an extension of degree ν = dlogq(4(n− 1)2)e
and perform the algorithm over Fqν . At worst, each opera-
tion in Fqν requires O(M(logn)) operations in Fq.

Here we define M(r) as a number of operations in F to
multiply two polynomials of degree ≤ r over F, for any field
F, or the number of bit operations to multiply two integers
with at most r bits. Using classical arithmetic M(r) is O(r2),
while using the fast algorithm of [5] we may assume M(r) is
O(r log r log log r).

Theorem 2.2. Let q be a prime power, f ∈ Fq[x], r ∈ N
a prime dividing deg f and ε > 0. If f is a perfect rth power
the algorithm IsPerfectRthPowerGF always reports this. If
f is not a perfect rth power then, on any invocation, this is
reported correctly with probability at least 1− ε.

Proof. That the algorithm always works when f is per-
fect power is clear from the above discussion. When f is not
a perfect power, each iteration of the loop will obtain ξ 6= 1
(and hence a correct output) with probability at least 1/4.
By iterating the loop m times we ensure that the probability
of failure is at most ε/2. Adding this to the probability that
Shoup’s algorithm for Step 1 will fail yields a total proba-
bility of failure of at most ε.

Theorem 2.3. On inputs as specified, the algorithm
IsPerfectRthPowerGF requires O((rM(r) log r log q)·log(1/ε))
operations in Fq plus the cost to evaluate α 7→ f(α) at
O(log(1/ε)) points α ∈ Fqr−1 .

Proof. As noted above, Shoup’s [21] algorithm requires
O((r2 log r + r log q) log r log log r) field operations per iter-
ation, which is within the time specified. The main cost of
the loop in Steps 4–8 is computing f(α)(%−1)/r, which re-
quires O(log %) or O(r log q) operations in F% using repeated
squaring, plus one evaluation of f at a point in F%. Each
operation in F% requires O(M(r)) operations in Fq, and we
repeat the loop O(log(1/ε)) times.

Corollary 2.4. Given f ∈ Fq[x] of degree n with τ(f) =
t, and r ∈ N a prime dividing n, we can determine if f is
an rth power with

O ((rM(r) log r log q + tM(r) logn) · log(1/ε))

operations in Fq. When f is an rth power, the output is
always correct, while if f is not an rth power, the output is
correct with probability at least 1− ε.

2.3 Certifying specified powers over Z[x]
For an integer polynomial f ∈ Z[x], we proceed by work-

ing in the homomorphic image of Z in Fp (and then in an
extension of that field). We must ensure that the homomor-
phism preserves the perfect power property we are interested
in with high probability. Let disc(f) = res(f, f ′) ∈ Z be the
discriminant of f . The proof of the following is left to the
reader.

Lemma 2.5. Let f ∈ Z[x] and p a prime such that p - disc(f).

Then f is a perfect power in Z[x] if and only if f̃ = f mod p
is a perfect power in Fp[x].

Using the Hadamard Inequality, it is easily shown that
|disc(f)| ≤ nn‖f‖2n−1

2 , which has at most

µ =
˚
dlog2(nn‖f‖2n−1

2)e/blog2(4(n− 1)2)c
ˇ

prime factors greater than 4(n − 1)2 (we require the lower
bound 4(n − 1)2 to employ Theorem 2.1 without resorting
to field extensions). Here ‖f‖2 is the coefficient 2-norm of

f : if f is as in (1.2) then ‖f‖2 = (
P

1≤i≤t |ci|
2)1/2. Choose

a γ ≥ 4(n−1)2 such that the number of primes π(2γ)−π(γ)
between γ and 2γ is at least 4µ+ 1. By [19], π(2γ)−π(γ) ≥
2γ/(5 ln γ) for γ ≥ 59.Thus if γ ≥ max{14µ ln(14µ), 100},
then a random prime not equal to r in the range γ . . . 2γ
divides disc(f) with probability at most 1/4. Primes p of
this size have only log2 p ∈ O(logn+ log log ‖f‖∞) bits.

Algorithm IsPerfectRthPowerZ

Input: f ∈ Z[x] of degree n; r ∈ N a prime dividing n;
ε ∈ R>0;

Output: True if f is the rth power of a polynomial in Z[x];
False otherwise

1: µ← ddlog2(nn‖f‖2n−1
2)e/blog2(4(n− 1)2)ce

2: γ ← max{14µ ln(14µ), 4(n− 1)2, 100}
3: for i from 1 to . . . dlog2(1/ε)e do
4: p← random prime in the range γ . . . 2γ
5: if NOT IsPerfectRthPowerGF(p, f mod p, r, 1/4)

then
6: return False
7: return True

Theorem 2.6. Let f ∈ Z[x] of degree n, r ∈ N dividing
n and ε ∈ R>0. If f is a perfect rth power, the algorithm
IsPerfectRthPowerZ always reports this. If f is not a per-
fect rth power, on any invocation of the algorithm, this is
reported correctly with probability at least 1− ε.

Proof. If f is an rth power then so is f mod p for any
prime p, and so is any f(α) ∈ Fp. Thus, the algorithm
always reports that f is an rth power. Now suppose f is
not an rth power. If p | disc(f) it may happen that f mod p
is an rth power. This happens with probability at most
1/4 and we will assume that the worst happens in this case.
When p - disc(f), the probability that IsPerfectRthPowerGF
incorrectly reports that f is an rth power is also at most 1/4,
by our choice of parameter ε. Thus, on any iteration of steps
4–6, the probability of finding that f is an rth power is at
most 1/2. The probability of this happening dlog2(1/ε)e
times is clearly at most ε.

Theorem 2.7. On inputs as specified, the algorithm
IsPerfectRthPowerZ requires

O
“
rM(r) log r ·M(logn+ log log ‖f‖∞)

· (logn+ log log ‖f‖∞) · log(1/ε)
”
,

or O (̃r2(logn+log log ‖f‖∞)2 ·log(1/ε)) bit operations, plus
the cost to evaluate (α, p) 7→ f(α) mod p at O(log(1/ε))
points α ∈ Fp for primes p with log p ∈ O(logn+log log ‖f‖∞).

Proof. The number of operations required by each iter-
ation is dominated by Step 5, for which O(rM(r) log r log p)
operations in Fp is sufficient by Theorem 2.3. Since log p ∈
O(logn + log log ‖f‖∞) we obtain the final complexity as
stated.

Again, we obtain the following corollary for t-sparse poly-
nomials in Z[x]. This follows since the cost of evaluat-
ing a t-sparse polynomial f ∈ Z[x] modulo a prime p is
O(t log ‖f‖∞ log p+ t lognM(log p)) bit operations.

Corollary 2.8. Given f ∈ Z[x] of degree n, with τ(f) =
t, and r ∈ N a prime dividing n, we can determine if f is
an rth power with

O˜
`
(r2 log2 n+ t log2 n+ t log ‖f‖∞ logn) · log(1/ε)

´
bit operations. When f is an rth power, the output is always
correct, while if f is not an rth power, the output is correct
with probability at least 1− ε.

2.4 An upper bound on r.
In this subsection we show that if f = hr and f 6= xn then

r must be small. Over Z[x] we show that ‖h‖2 is small as
well. A sufficiently strong result over many fields is demon-
strated in [20], Theorem 1, where it is shown that if f has
sparsity t ≥ 2 then t ≥ r + 1 (in fact a stronger result is
shown involving the sparsity of h as well). This holds when
either the characteristic of the ground field of f is zero or
greater than deg f .

Here we give a (much) simpler result for polynomials in
Z[x], which bounds ‖h‖2 and is stronger at least in its de-
pendency on t though it also depends upon the coefficients
of f .

Theorem 2.9. Suppose f ∈ Z[x] with deg f = n and
τ(f) = t, and f = hr for some h ∈ Z[x] of degree s and

r ≥ 2. Then ‖h‖2 ≤ ‖f‖
1/r
1 .

Proof. Let p > n be prime and ζ ∈ C a pth primitive
root of unity. Then

‖h‖22 =
X

0≤i≤s

|hi|2 =
1

p

X
0≤i<p

|h(ζi)|2.

(this follows from the fact that the Discrete Fourier Trans-
form (DFT) matrix is orthogonal). In other words, the av-
erage value of |h(ζi)|2 for i = 0 . . . p−1 is ‖h‖22, and so there

exists a k ∈ {0, . . . , p− 1} with |h(ζk)|2 ≥ ‖h‖22. Let θ = ζk.
Then clearly |h(θ)| ≥ ‖h‖2. We also note that f(θ) = h(θ)r

and |f(θ)| ≤ ‖f‖1, since |θ| = 1. Thus,

‖h‖2 ≤ |h(θ)| = |f(θ)|1/r ≤ ‖f‖1/r1 .

The following corollary is particularly useful.

Corollary 2.10. If f ∈ Z[x] is not of the form xn, and
f = hr for some h ∈ Z[x], then

(i) r ≤ 2 log2 ‖f‖1.

(ii) τ(h) ≤ ‖f‖2/r1

Proof. Part (i) follows since ‖h‖2 ≥
√

2. Part (ii) follows

because ‖h‖2 ≥
p
τ(h).

These bounds relate to the sparsity of f since ‖f‖1 ≤
τ(f)‖f‖∞.

2.5 Perfect Power Detection Algorithm
We can now complete the perfect power detection algo-

rithm, when we are given only the t-sparse polynomial f
(and not r).

Algorithm IsPerfectPowerZ

Input: f ∈ Z[x] of degree n and sparsity t ≥ 2, ε ∈ R>0

Output: True and r if f = hr for some h ∈ Z[x]
False otherwise.

1: P ← {primes r |n and r ≤ 2 log2(t‖f‖∞)}
2: for r ∈ P do
3: if IsPerfectRthPowerZ(f , r, ε/#P) then
4: return True and r
5: return False

Theorem 2.11. If f ∈ Z[x] = hr for some h ∈ Z[x], the
algorithm IsPerfectPowerZ always returns “True” and re-
turns r correctly with probability at least 1− ε. Otherwise, it
returns ”False” with probability at least 1− ε. The algorithm
requires O (̃t log2 ‖f‖∞ log2 n log(1/ε)) bit operations.

Proof. From the preceding discussions, we can see that
if f is a perfect power, then it must be a perfect rth power
for some r ∈ P. So the algorithm must return true on some
iteration of the loop. However, it may incorrectly return
true too early for an r such that f is not actually an rth
power; the probability of this occurring is the probability of
error when f is not a perfect power, and is less than ε/#P at
each iteration. So the probability of error on any iteration
is at most ε, which is what we wanted.

The complexity result follows from the fact that each r ∈
O(log t+ log ‖f‖∞) and using Corollary 2.8.

For polynomials in Fq[x] we use Schinzel’s bound that
r ≤ t− 1 and obtain the following algorithm.

Algorithm IsPerfectPowerGF

Input: f ∈ Fq[x] of degree n and sparsity t, where the
characteristic of Fq is greater than n, and ε ∈ R>0

Output: True and r if f = hr for some h ∈ Fq[x];
False otherwise.

1: P ← {primes r |n and r ≤ t}
2: for p ∈ P do
3: if IsPerfectRthPowerGF(f , r, ε/#P) then
4: return True and r;

Theorem 2.12. If f = hr for h ∈ Fq[x], the algorithm
IsPerfectPowerGF always returns “True” and returns r cor-
rectly with probability at least 1 − ε. Otherwise, it returns
“False” with probability at least 1−ε. The algorithm requires
O (̃t3(log q + logn)) operations in Fq.

Proof. The proof is equivalent to that of Theorem 2.11,
using the complexity bounds in Corollary 2.4.

2.6 Detecting multivariate perfect powers
In this subsection we examine the problem of detecting

multivariate perfect powers. That is, given a lacunary f ∈
F[x1, . . . , x`] as in (1.1), how do we determine if f = hr for
some h ∈ F[x1, . . . , x`] and r ∈ N. This is done simply as a
reduction to the univariate case.

The proof of the following is left to the reader.

Lemma 2.13. Given f ∈ F[x1, . . . , x`] of total degree n >
0 and such that degx1

f > 0. Let

∆ = discx1(f) = resx1(f, ∂f/∂x1) ∈ F[x2, . . . , x`].

Assume that a2, . . . , a` ∈ F with ∆(a2, . . . , a`) 6= 0. Then
f(x1, . . . , x`) is a perfect power if and only if f(x1, a2, . . . , a`)
∈ F[x1] is a perfect power.

It is easy to see that the total degree of ∆ is less than 2n2.
Thus, for randomly chosen a2, . . . , a` from a set S ⊆ F of size
at least 8n2 we have ∆(a2, . . . , a`) = 0 with probability less
than 1/4. This can be made arbitrarily small by increasing
the set size and/or repetition. We then run the appropriate
univariate algorithm over F[x1] (depending upon the field)
to identify whether or not f is a perfect power, and if so, to
find r.

3. COMPUTING PERFECT ROOTS
Once we have determined that f ∈ F[x] is equal to hr for

some h ∈ F[x], an obvious question to ask is how to actually
compute h. Here we give an algorithm to accomplish this
task, subject to a conjecture.

3.1 Sparsity bounds
The conjecture we rely on relates to some questions first

raised by Erdös almost 60 years ago [8] on the number of
terms of a square of a polynomial. Schinzel later answered
these questions and in fact generalized to the case of perfect
powers. For any polynomial h ∈ F[x], Schinzel proved that
τ(hr) tends to infinity as τ(h) tends to infinity [20]. He
also gave an explicit upper bound on τ(h) in terms of τ(hr),
which unfortunately is an exponential function and therefore
not useful for us to prove polynomial-time complexity.

However, our own (limited) investigations, along with more
extensive ones by Coppersmith & Davenport [6], and later
Abbott [1], suggest that, for any h ∈ F[x], where the char-
acteristic of F is not too small, τ(h) ∈ O(τ(hr) + r).

We make use of the following slightly stronger conjecture,
which suffices to prove our algorithm runs in polynomial
time.

Conjecture 3.1. For r, s ∈ N, if the characteristic of F
is zero or greater than rs, and h ∈ F[x] with deg h = s, then

τ(hi mod x2s) < τ(hr mod x2s) + r, i = 1, 2, . . . , r − 1.

This corresponds to intuition and experience, as the sys-
tem is still overly contrained with only s degrees of freedom.
A weaker conjecture would suffice to prove polynomial time,
but we use the stated bounds as we believe these give more
accurate complexity measures.

3.2 Perfect root computation algorithm
Our algorithm is essentially a Newton iteration, with spe-

cial care taken to preserve sparsity. We start with the image
of h modulo x, using the fact that f(0) = h(0)r, and at Step
i = 1, 2, . . . , dlog2(deg h + 1)e, we compute the image of h
modulo xi.

Here, and for the remainder of this section, we will assume
that f, h ∈ F[x] with degrees n and s respectively such that
f = hr for r ∈ N at least 2, and that the characteristic of F is
either zero or greater than n. As usual, we define t = τ(f).
We require the following simple lemma.

Lemma 3.2.1 Let k, ` ∈ N such that ` ≤ k and k+ ` ≤ s,
and suppose h1 ∈ F[x] is the unique polynomial with degree
less than k satisfying hr1 ≡ f mod xk. Then

τ(hr+1
l mod xk+`) ≤ 2t(t+ r).

1Lemma subject to the validity of Conjecture 3.1.

Proof. Let h2 ∈ F[x] be the unique polynomial of degree
less than ` satisfying h1+h2x

k ≡ h mod xk+`. Since hr = f ,

f ≡ hr1 + rhr−1
1 h2x

k mod xk+`.

Multiplying by h1 and rearranging gives

hr+1
1 ≡ h1f − rfh2x

k mod xk+`.

Because h1 mod xk and h2 mod x` each have at most τ(h)
terms, which by Conjecture 3.1 is less than t − r, the total
number of terms in hr−1

1 mod xk+` is less than 2t(t−r).

This essentially tells us that the “error” introduced by ex-
amining higher-order terms of hr1 is not too dense. It leads
to the following algorithm for computing h.

Algorithm ComputePolyRoot

Input: f ∈ F[x], r ∈ N such that f is a perfect rth power
Output: h ∈ F[x] such that f = hr

1: u← highest power of x dividing f
2: fu ← coefficient of xu in f
3: g ← f/(fux

u)
4: h← 1, k ← 1
5: while kr ≤ deg g do
6: `← min{k, (deg g)/r + 1− k}

7: a← hg − hr+1 mod xk+`

rxk

8: h← h+ (a/g mod x`)xk

9: k ← k + `
10: b← any rth root of fu in F
11: return bhxu/r

Theorem 3.3. If f ∈ F[x] is a perfect rth power, then
ComputePolyRoot returns an h ∈ F[x] such that hr = f .

Proof. Let u, fu, g be as defined in Steps 1–4. Thus f =
fugx

u. Now let ĥ be some rth root of f , which we assume
exists. If we similarly write ĥ = ĥv ĝx

v, with ĝ(0) = 1,

then ĥr = ĥ r
v ĝ

rxvr. Therefore fu must be a perfect rth
power in F, r|u, and g is a perfect rth power in F[x] of some
polynomial with constant coefficient equal to 1.

Denote by hi the value of h at the beginning of the ith
iteration of the while loop. So h1 = 1. We claim that at
each iteration through Step 6, hri ≡ g mod xk. From the
discussion above, this holds for i = 1. Assuming the claim
holds for all i = 1, 2, . . . , j, we prove it also holds for i = j+1.

From Step 8, hj+1 = hj + (a/g mod xl)xk, where a is as
defined on the jth iteration of Step 7. We observe that

hjh
r
j ≡ hr+1

j + rhrj (a/g mod xl)xk mod xk+`.

From our assumption, hrj ≡ f mod xk, and l ≤ k, so we have

hjh
r
j+1 ≡ hr+1

j +raxk ≡ hr+1
j +hjf−hr+1

j ≡ hjf mod xk+`

Therefore hrj+1 ≡ f mod xk+`, and so by induction the claim
holds at each step. Since the algorithm terminates when
kr > deg g, we can see that the final value of h is an rth

root of g. Finally,
“
bhxu/r

”r
= fugx

u = f , so the theorem

holds.

Theorem 3.4.2 If f ∈ F[x] has degree n and t nonzero
terms, then ComputePolyRoot uses O

`
(t+ r)4 log r logn

´
op-

erations in F and an additional O
`
(t+ r)4 log r log2 n

´
bit

operations, not counting the cost of Step 10.

Proof. First consider the cost of computing hr+1 in Step
7. This will be accomplished by repeatedly squaring and
multiplying by h, for a total of at most 2blog2(r + 1)c mul-
tiplications. As well, each intermediate product will have at
most τ(f) + r < (t + r)2 terms, by Conjecture 3.1. The
number of field operations required, at each iteration, is
O
`
(t+ r)4 log r

´
, for a total cost of O

`
(t+ r)4 log r logn

´
.

Furthermore, since k+ ` ≤ 2i at the i’th step, for 1 ≤ i <
log2 n, the total cost in bit operations is less thanX

1≤i<log2 n

(t+ r)4 log2 ri ∈ O
`
(t+ r)4 log r log2 n

´
.

In fact, this is the most costly step. The initialization in
Steps 1–4 uses only O(t) operations in F and on integers at
most n. And the cost of computing the quotient on Step 8
is proportional to the cost of multiplying the quotient and
dividend, which is at most O(t(t+ r)).

The method used for Step 10 depends on the field F. For
F = Q, we just need to find two integer perfect roots, which
can be done in “nearly linear” time [4]. Otherwise, we can

compute a root of xr − fu using O(rO(1)) operations in F.
When F = Q, we must account for coefficient growth.

We use the normal notion of the size of a rational number:
For α ∈ Q, write α = a/b for a, b relatively prime integers.
Then define H(α) = max{|a|, |b|}. And for f ∈ Q[x] with
coefficients c1, . . . , ct ∈ Q, write H(f) = maxH(ci).

Thus, the size of the lacunary representation of f ∈ Q[x]
is proportional to τ(f), deg f , and logH(f). Now we prove
the bit complexity of our algorithm is polynomial in these
values, when F = Q.

Theorem 3.5.2 Suppose f ∈ Q[x] has degree n and t
nonzero terms, and is a perfect rth power. ComputePolyRoot

computes an rth root of f using O˜
`
t(t+ r)4 · logn · logH(f)

´
bit operations.

Proof. Let h ∈ Q[x] such that hr = f , and let c ∈ Z>0

be minimal such that ch ∈ Z[x]. Gauß’s Lemma tells us that
cr must be the least positive integer such that crf ∈ Z[x] as
well. Then, using Theorem 2.9, we have:

H(h) ≤ ‖ch‖∞ ≤ ‖ch‖2 ≤ (t‖crf‖∞)1/r ≤ t1/rH(f)(t+1)/r.

(The last inequality comes from the fact that the lcm of the
denominators of f is at most H(f)t.)

Hence logH(h) ∈ O ((t logH(f))/r). Clearly the most
costly step in the algorithm will still be the computation
of hr+1

i at each iteration through Step 7. For simplicity in
our analysis, we can just treat hi (the value of h at the
ith iteration of the while loop in our algorithm) as equal to
h (the actual root of f), since we know τ(hi) ≤ τ(h) and
H(hi) ≤ H(h).

Lemma 3.2 and Conjecture 3.1 tell us that τ(hi) ≤ 2(t+
r)2 for i = 1, 2, . . . , r. To compute hr+1, we will actually
compute (ch)r+1 ∈ Z[x] by repeatedly squaring and multi-
plying by ch, and then divide out cr+1. This requires at
most blog2 r + 1c squares and products.

Note that ‖(ch)2i‖∞ ≤ (t+r)2‖(ch)i‖2∞ and ‖(ch)i+1‖∞ ≤
(t+ r)2‖(ch)i‖∞‖ch‖∞. Therefore

‖(ch)i‖∞ ≤ (t+ r)2r‖ch‖r∞, i = 1, 2, . . . , r,

2Theorem subject to the validity of Conjecture 3.1.

and thus log ‖(ch)i‖∞ ∈ O (r(t+ r) + t logH(f)), for each

intermediate power (ch)i.
Thus each of the O

`
(t+ r)4 log r

´
field operations at each

iteration costs O(M(t logH(f)+log r(t+r))) bit operations,
which then gives the stated result.

3.3 Further comments on the algorithm
We have shown that, subject to the truth of Conjecture

3.1, and using the bounds on r from Corollary 2.10 and [20],
our algorithm runs in polynomial time in lacunary represen-
tation size of the input. We hope to understand more about
the size of a perfect rth root so that our algorithm can be
made unconditional, as it seems to perform well in practice.

Note that ComputePolyRoot and the theorems that follow
require that f is actually a perfect rth power. However,
with the concrete bounds on the size of the rth root we have
proven and conjectured, it would be easy to terminate the
algorithm immediately whenever the partial computation of
the result h is“too big”(either in sparsity or height). Finally,
using the ideas of sparse interpolation from [12], we can
certify that the h computed is actually a perfect rth root
with O(t) evaluations in f and in h. These modifications
will not affect the asymptotic complexity of the algorithm.

Our algorithm could also be used to compute a right de-
composition factor of f of degree n/r (that is, h ∈ F[x] such
that f = g ◦ h for some g ∈ F[x]) when one exists. This
is because the high-order terms of f are the same as those
from hr. However, even less is known about the size of h
in this case, so proving a polynomial-time complexity would
be more difficult (or rely on more shaky conjectures).

Another approach might be to construct a black box for
evaluating h from f and r (and hence avoid difficult con-
jectures on the sparsity of h). We could then choose to re-
construct h via sparse interpolation. The techniques used in
[10] to compute polynomial roots of straight-line programs
might be useful here, though it is unclear to us how to avoid
the dependence on the degree of h.

4. IMPLEMENTATION
To investigate the practicality of our algorithms, we imple-

mented IsPerfectPowerZ using Victor Shoup’s NTL. This
is a high-performance C++ for fast dense univariate poly-
nomial computations over Z[x] or Fq[x].

NTL does not natively support a lacunary polynomial rep-
resentation, so we wrote our own using vectors of coefficients
and of exponents. In fact, since IsPerfectPowerZ is a black-
box algorithm, the only sparse polynomial arithmetic we
needed to implement was for evaluation at a given point.

The only significant diversion between our implementa-
tion and the algorithm specified in Section 2 is our choice of
the ground field. Rather than working in a degree-(r−1) ex-
tension of Fp, we simply find a random p in the same range
such that (r − 1) | p. It is more difficult to prove that we
can find such a p quickly (using e.g. the best known bounds
on Linnik’s Constant), but in practice this approach is very
fast because it avoids computing in field extensions.

As a point of comparison, we also implemented the New-
ton iteration approach to computing perfect polynomial roots,
which appears to be the fastest known method for dense
polynomials. This is not too dissimilar from the techniques
from the previous section on computing a lacunary rth root,
but without paying special attention to sparsity. We work
modulo a randomly chosen prime p to compute an rth per-

fect root h, and then use random evaluations of h and the
original input polynomial f to certify correctness. This
yields a Monte Carlo algorithm with the same success proba-
bility as ours, and so provides a suitable and fair comparison.

We ran two sets of tests comparing these algorithms. The
first set, depicted in Figure 1, does not take advantage of
sparsity at all; that is, the polynomials are dense and have
close to the maximal number of terms. It appears that the
worst-case running time of our algorithm is actually a bit
better than the Newton iteration method on dense input,
but on the average they perform roughly the same. The
lower triangular shape comes from the fact that both algo-
rithms can (and often do) terminate early. The visual gap in
the timings for the sparse algorithm comes from the fact that
exactly half of the input polynomials were perfect powers.
It appears our algorithm terminates more quickly when the
polynomial is not a perfect power, but usually takes close to
the full amount of time otherwise.

The second set of tests, depicted in Figure 2, held the
number of terms of the perfect power, τ(f), roughly fixed,
letting the degree n grow linearly. Here we can see that, for
sufficiently sparse f , our algorithm performs significantly
and consistently better than the Newton iteration. In fact,
we can see that, with some notable but rare exceptions, it
appears that the running time of our algorithm is largely
independent of the degree when the number of terms remains
fixed. The outliers we see probably come from inputs that
were unluckily dense (it is not trivial to produce examples
of hr with a given fixed number of nonzero terms, so the
sparsity did vary to some extent).

Perhaps most surprisingly, although the choices of param-
eters for these two algorithms only guaranteed a probability
of success of at least 1/2, in fact over literally millions of
tests performed with both algorithms and a wide range of
input polynomials, not a single failure was recorded. This is
of course due to the loose bounds employed in our analysis,
indicating a lack of understanding at some level, but it also
hints at the possibility of a deterministic algorithm, or at
least one which is probabilistic of the Las Vegas type.

Both implementations are available as C++ code down-
loadable from the second author’s website.

5. REFERENCES
[1] J. Abbott. Sparse squares of polynomials. Math.

Comp., 71(237):407–413 (electronic), 2002.

[2] E. Bach and J. Sorenson. Sieve algorithms for perfect
power testing. Algorithmica, 9(4):313–328, 1993.

[3] M. Ben-Or and P. Tiwari. A deterministic algorithm
for sparse multivariate polynomial interpolation. In
Proc. STOC 1988, pages 301–309, New York, N.Y.,
1988. ACM Press.

[4] D. J. Bernstein. Detecting perfect powers in
essentially linear time. Mathematics of Computation,
67(223):1253–1283, 1998.

[5] D. Cantor and E. Kaltofen. Fast multiplication of
polynomials over arbitrary algebras. Acta Informatica,
28:693–701, 1991.

[6] D. Coppersmith and J. Davenport. Polynomials whose
powers are sparse. Acta Arith., 58(1):79–87, 1991.

[7] F. Cucker, P. Koiran, and S. Smale. A polynomial
time algorithm for Diophantine equations in one
variable. J. Symbolic Comput., 27(1):21–29, 1999.

Figure 1: Comparison of Newton Iteration (left) vs. our IsPerfectPowerZ (right). Inputs are dense.

Figure 2: Comparison of Newton Iteration (left) vs our IsPerfectPowerZ (right). Inputs are sparse, with
sparsity is fixed around 500.

[8] P. Erdös. On the number of terms of the square of a
polynomial. Nieuw Arch. Wiskunde (2), 23:63–65,
1949.

[9] J. von zur Gathen, M. Karpinski, and I. Shparlinski.
Counting curves and their projections. In ACM
Symposium on Theory of Computing, pages 805–812,
1993.

[10] E. Kaltofen. Single-factor hensel lifting and its
application to the straight-line complexity of certain
polynomials. In STOC ’87: Proceedings of the
nineteenth annual ACM conference on Theory of
computing, pages 443–452, New York, NY, USA, 1987.
ACM.

[11] E. Kaltofen and P. Koiran. Finding small degree
factors of multivariate supersparse (lacunary)
polynomials over algebraic number fields. In ISSAC
’06: Proceedings of the 2006 international symposium
on Symbolic and algebraic computation, pages
162–168. ACM Press, New York, NY, USA, 2006.

[12] E. Kaltofen and W s. Lee. Early termination in sparse
interpolation algorithms. J. Symbolic Comput.,
36(3-4):365–400, 2003. International Symposium on
Symbolic and Algebraic Computation (ISSAC’2002)
(Lille).

[13] M. Karpinski and I. Shparlinski. On the
computational hardness of testing square-freeness of
sparse polynomials. Electronic Colloquium on
Computational Complexity (ECCC), 6(027), 1999.

[14] H. W. Lenstra, Jr. Finding small degree factors of
lacunary polynomials. In Number theory in progress,
Vol. 1 (Zakopane-Kościelisko, 1997), pages 267–276.

de Gruyter, Berlin, 1999.

[15] R. Lidl and H. Niederreiter. Finite Fields, volume 20
of Encyclopedia of Mathematics and its Applications.
Addison-Wesley, Reading MA, 1983.

[16] D. A. Plaisted. Sparse complex polynomials and
polynomial reducibility. J. Comp. and System
Sciences, 14:210–221, 1977.

[17] D. A. Plaisted. New NP-hard and NP-complete
polynomial and integer divisibility problems. Theor.
Computer Science, 31:125–138, 1984.

[18] A. Quick. Some gcd and divisibility problems for
sparse polynomials. Technical Report 191/86,
University of Toronto, 1986.

[19] J. B. Rosser and L. Schoenfeld. Approximate formulas
for some functions of prime numbers. Ill. J. Math.,
6:64–94, 1962.

[20] A. Schinzel. On the number of terms of a power of a
polynomial. Acta Arith., 49(1):55–70, 1987.

[21] V. Shoup. Fast construction of irreducible polynomials
over finite fields. J. Symbolic Comput., 17(5):371–391,
1994.

[22] I. Shparlinski. Computing Jacobi symbols modulo
sparse integers and polynomials and some
applications. J. Algorithms, 36(2):241–252, 2000.

[23] A. Weil. On some exponential sums. Proc Nat. Acad.
Sci. U.S.A., 34:204–207, 1948.

[24] David Y.Y. Yun. On square-free decomposition
algorithms. In SYMSAC ’76: Proceedings of the third
ACM symposium on Symbolic and algebraic
computation, pages 26–35, New York, NY, USA, 1976.
ACM.

