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1 Introduction
The transposition principle says that by “reversing” the flow of a linear
arithmetic circuits one obtains a circuit that computes the transposed
map.
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Figure 1: Two linear arithmetic circuits. The linear map y1 = x1 +
3x2, y2 = x3 is computed by the circuit on the left and its transpose is
computed by the circuit on the right.

1.1 History of the transposition principle
•Originally discovered by Bordewijk [1] in electrical network theory

(only works for C); some authors attribute the discovery to Tellegen,
Bordewijk’s director, but this is debated;
• Fiduccia [2] and Hopcroft & Musinski [3]: transposition of bilinear

chains, the most complete formulation (non-commutative rings);
• Special case of Baur & Strassen’s differentiation of circuits [4];
• In computer algebra, popularized by Shoup, von zur Gathen,

Kaltofen [5],. . .
• Bostan, Lecerf & Schost [6] improve algorithms for polynomial eval-

uation and solve an open question on space complexity.

1.2 Why is it useful?
Let K/k be a field extension and let K∗ be the dual space of K. Fix
σ ∈ K and consider the k-linear maps

Cσ : k[X ]→ K, Pσ : K∗→ k[[X ]],

g 7→ g(σ), ` 7→
∑
i>0

`(σi)Xi.

If we identify k[[X ]] to the dual space of k[X ], these are one other’s
dual. Pσ is called the power projection. When σ is algebraic, Cσ is
called the modular composition because its is computed as g◦h mod f
where h is a representation for σ in k[X ]/f (X).

•Modular composition is a well-known problem; the most famous al-
gorithm is Brent and Kung’s [7],
• Shoup [8] was the first to realize that applying the transposition

principle to modular composition could yield efficient algorithms for
power projection.
• As a consequence, one can compute efficiently

– minimal polynomials in towers of extensions [8, 5],
– change of order in triangular sets [9],
– arithmetics in Artin-Schreier towers [10].
•Other applications of the transposition principle include

– generation of irreducible polynomials [11],

– complexity bounds on evaluation/interpolation [6],
– reverse mode in automatic differentiation [12].

1.3 Why automatic transposition?
• Algorithms are hard to transpose, transposed algorithms are hard

or impossible to understand;
•How to be confident that a transposed algorithm is well imple-

mented if no one understands it?
•When proving programs with a proof assistant, why should we do

the work twice?

2 Methods

2.1 Linearization
Algorithms usually involve non linear operations, the most common
being multiplication. Arithmetic circuits involving multiplication nodes
can be linearized by fixing some nodes as parameters, then the trans-
position principle can be applied to the linearized circuit. Of course,
there may be more than one linearization for a given circuit.
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Figure 2: A linearization of a multilinear circuit and its transposition.

Similarly, computer programs containing multiplication, conditionals,
loops, etc. may be linearized by partially evaluating their parameters.
The result is a straight line program that can be transposed.

2.2 Linearity inference
All the possible linearizations of a computer program can be inferred
automatically by type checking, starting from the signature of the ele-
mentary functions 0, 1, +, ×, etc.

We define the type ` of elements used linearly and the type s of ele-
ments used as scalars. We give the following quantified types to the
elementary functions

0 : ∀α ∈ {`, s}.α 1 : s

+ : ∀α ∈ {`, s}.α→ α→ α

× : ∀α ∈ {`, s}.α→ s→ α × : s→ `→ `

It is easy to verify that for any validly typed program, the program ob-
tained by partially evaluating all the arguments having type different
from ` is a linearized program.

If we forget the type × : s → ` → `, all these type constraints can be
expressed in Haskell’s type system as

� �
data L = L R; data S = S R
class Ring r where
zero :: r
plus :: r -> r -> r
neg :: r -> r
times :: r -> S -> r

instance Ring L where ...
instance Ring S where ...
one = S oneR� �

Thus linearizations can be inferred by Hindley-Milner type inference
[13] in this restricted setting. A minor modification to the Hindley-
Milner algorithm permits to treat the case × : s→ `→ ` as well.

2.3 Transposition
Once a possible linearization has been inferred, we partially evaluate
the program in what we call a forward sweep. This is similar to the
forward sweep of reverse mode in automatic differentiation [14].

The resulting partially evaluated program is transposed going from the
bottom to the top line-by-line, swapping the inputs and the outputs of
each function as in [6].

The algebraic time complexity of the resulting transposed program is
the same as for the original one. There is an increase in space com-
plexity due to the need to store data for the partial evaluation; however
this increase tends to be relatively small since usual programs have
few non-linear variables.

3 transalpyne
We are currently implementing our ideas in a python-like language
called transalpyne. Its main features are

• python-like syntax,
• dynamically typed, except for algebraic variables,
• pure functional semantics,
• linearity inference, automatic transposition,
• on-the-fly interpretation inside python, or compilation to python,
• open source CeCILL licence.

The first release will be distributed at the url http://transalpyne.
gforge.inria.fr/. As an avant-goût we give here an implemen-
tation of Karatsuba’s algorithm in transalpyne and the generated
transposed code.� �
def (M c)karatsuba(const M a, M b, n):
if n == 1:

tmp = M.zero()
tmp[0] += a[0] * b[0]
c = tmp

elif n > 1:
a0, a1 = split(a, n/2, n)
b0, b1 = split(b, n/2, n)
x0 = karatsuba(a0, b0, n/2)
x2 = karatsuba(a1, b1, n - n/2)
x1 = karatsuba((a1 + a0), (b1 + b0), n - n/2) - x0 - x2
c = shift(x2, n, n+1) + shift(x1, n/2, n+1) + x0� �

� �
def (M b)_transAL_T_karatsuba(M a, M c, n):

# Forward sweep
if (n == 1):

pass
elif n > 1:

a0, a1 = split(a, n / 2, n)
# Reverse sweep
if (n == 1):

tmp = c
_transAL_tmp_0[0] += a[0] * tmp[0]
b = _transAL_tmp_0

elif n > 1:
x2 = trans shift(c, n, n + 1)
x1 = trans shift(c, n / 2, n + 1)
x0 = c
b1 = trans karatsuba(x1, a1 + a0, n - n / 2)
b0 = b1
x0 += - x1
x2 += - x1
b1 += trans karatsuba(x2, a1, n - n / 2)
b0 += trans karatsuba(x0, a0, n / 2)
b = trans split(b0, b1, n / 2, n)� �
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