Contents
** Next:** About this document
**Up:** Pfaff's Method (III): Comparison
** Previous:** Conclusion.

## References

**1**-
G. E. Andrews.
Pfaff's method I: the Mills-Robbins-Rumsey determinant.
* Discrete Math.*, (to appear).

** [1] [2] [3] [4] [5] [6] [7] **

**2**-
G. E. Andrews.
Pfaff's method II: diverse applications.
* J. of Computational and Appl. Math.*, (to appear).

** [1] [2] [3] [4] [5] **

**3**-
G. E. Andrews and W. H. Burge.
Determinant identities.
* Pac. J. Math.*, 158:1--14, 1993.

** [1] [2] [3] [4] **

**4**-
G. E. Andrews and D. Stanton.
Determinants in plane partitions enumeration.
(to appear).

** [1] [2] [3] **

**5**-
W. N. Bailey.
Some identities involving generalized hypergeometric series.
* Proc. London Math. Soc., Ser. 2*, 29:503--516, 1929.

** [1] [2] [3] [4] [5] **

**6**-
W. N. Bailey.
* Generalized Hypergeometric Series*.
Cambridge University Press, London and New York, 1935.
[Reprinted: Hafner, New York, 1964].

** [1] [2] [3] [4] [5] [6] [7] [8] **

**7**-
S. B. Ekhad and D. Zeilberger.
A 21st century proof of Dougall's hypergeometric sum identity.
* J. Math. Analysis and Appl.*, 147:610--611, 1990.

** [1] [2] [3] [4] [5] [6] [7] **

**8**-
I. Gessel and D. Stanton.
Strange evaluations of hypergeometric series.
* SIAM J. Math. Anal.*, 13:295--308, 1982.

** [1] **

**9**-
T. H. Koornwinder.
On Zeilberger's algorithm and its
**q**-analogue.
* J. Comp. and Appl. Math.*, 48:91--111, 1993.

** [1] [2] **

**10**-
A. Lakin.
A hypergeometric identity related to Dougall's theorem.
* J. London Math. Soc.*, 27:229--234, 1952.

** [1] [2] **

**11**-
J. F. Pfaff.
Observationes analyticae ad L. Euler Institutiones Calculi
Integralis.
* Nova Acta Acad. Sci Petropolitanae*, 11:38--57, 1797.
Vol. IV, Supplem. II et IV, Historia de 1793.

** [1] **

**12**-
F. J. W. Whipple.
On well-poised series, generalized hypergeometric series having
parameters in pairs, each pair with the same sum.
* Proc. London Math. Soc. (2)*, 24:247--263, 1926.

** [1] **

**13**-
H. S. Wilf and D. Zeilberger.
Rational functions certify combinatorial identities.
* J. Amer. Math. Soc.*, 3:147--158, 1990.

** [1] [2] [3] **

**14**-
D. Zeilberger.
A fast algorithm for proving terminating hypergeometric identities.
* Discr. Math.*, 80:207--211, 1990.

** [1] [2] **

**15**-
D. Zeilberger.
The method of creative telescoping.
* J. Symbolic Computation*, 11:195--204, 1991.

** [1] [2] [3] [4] **

**16**-
D. Zeilberger.
Identities in search of identity.
* J. The. Comp. Sci.*, 117:23--38, 1993.

** [1] [2] [3] [4] **

**17**-
D. Zeilberger.
Theorems for a price: tomorrow's semi-rigorous mathematical culture.
* Notices of the Amer. Math. Soc.*, 40:978--981, 1993.

** [1] [2] [3] [4] [5] **

Contents
** Next:** About this document
**Up:** Pfaff's Method (III): Comparison
** Previous:** Conclusion.