
Contents
Next: About this document
Up: Pfaff's Method (III): Comparison
Previous: Conclusion.
![[Annotate]](/organics/icons/sannotate.gif)
![[Shownotes]](../gif/annotate/shide-101.gif)
References
- 1
-
G. E. Andrews.
Pfaff's method I: the Mills-Robbins-Rumsey determinant.
Discrete Math., (to appear).
[1] [2] [3] [4] [5] [6] [7]
- 2
-
G. E. Andrews.
Pfaff's method II: diverse applications.
J. of Computational and Appl. Math., (to appear).
[1] [2] [3] [4] [5]
- 3
-
G. E. Andrews and W. H. Burge.
Determinant identities.
Pac. J. Math., 158:1--14, 1993.
[1] [2] [3] [4]
- 4
-
G. E. Andrews and D. Stanton.
Determinants in plane partitions enumeration.
(to appear).
[1] [2] [3]
- 5
-
W. N. Bailey.
Some identities involving generalized hypergeometric series.
Proc. London Math. Soc., Ser. 2, 29:503--516, 1929.
[1] [2] [3] [4] [5]
- 6
-
W. N. Bailey.
Generalized Hypergeometric Series.
Cambridge University Press, London and New York, 1935.
[Reprinted: Hafner, New York, 1964].
[1] [2] [3] [4] [5] [6] [7] [8]
- 7
-
S. B. Ekhad and D. Zeilberger.
A 21st century proof of Dougall's hypergeometric sum identity.
J. Math. Analysis and Appl., 147:610--611, 1990.
[1] [2] [3] [4] [5] [6] [7]
- 8
-
I. Gessel and D. Stanton.
Strange evaluations of hypergeometric series.
SIAM J. Math. Anal., 13:295--308, 1982.
[1]
- 9
-
T. H. Koornwinder.
On Zeilberger's algorithm and its q-analogue.
J. Comp. and Appl. Math., 48:91--111, 1993.
[1] [2]
- 10
-
A. Lakin.
A hypergeometric identity related to Dougall's theorem.
J. London Math. Soc., 27:229--234, 1952.
[1] [2]
- 11
-
J. F. Pfaff.
Observationes analyticae ad L. Euler Institutiones Calculi
Integralis.
Nova Acta Acad. Sci Petropolitanae, 11:38--57, 1797.
Vol. IV, Supplem. II et IV, Historia de 1793.
[1]
- 12
-
F. J. W. Whipple.
On well-poised series, generalized hypergeometric series having
parameters in pairs, each pair with the same sum.
Proc. London Math. Soc. (2), 24:247--263, 1926.
[1]
- 13
-
H. S. Wilf and D. Zeilberger.
Rational functions certify combinatorial identities.
J. Amer. Math. Soc., 3:147--158, 1990.
[1] [2] [3]
- 14
-
D. Zeilberger.
A fast algorithm for proving terminating hypergeometric identities.
Discr. Math., 80:207--211, 1990.
[1] [2]
- 15
-
D. Zeilberger.
The method of creative telescoping.
J. Symbolic Computation, 11:195--204, 1991.
[1] [2] [3] [4]
- 16
-
D. Zeilberger.
Identities in search of identity.
J. The. Comp. Sci., 117:23--38, 1993.
[1] [2] [3] [4]
- 17
-
D. Zeilberger.
Theorems for a price: tomorrow's semi-rigorous mathematical culture.
Notices of the Amer. Math. Soc., 40:978--981, 1993.
[1] [2] [3] [4] [5]

Contents
Next: About this document
Up: Pfaff's Method (III): Comparison
Previous: Conclusion.