
Contents
 Next:    About this document 
Up: No Title
 Previous:  The expected size 
 
 
 
![[Annotate]](/organics/icons/sannotate.gif)
![[Shownotes]](../gif/annotate/shide-161.gif)
References
- 1
 - 
A. Bertrand,
Développements en base de Pisot et répartition modulo 1,
C.R. Acad. Sci. Paris Sér. I Math.,
vol 285 1977 pages 419--421
 [1]  [2] 
 
 - 2
 - 
Z.I. Borevich and I.R. Shafarevich,
Number Theory,
Academic Press New York and London,
1966
 [1]  [2] 
 
 - 3
 - 
D.W. Boyd,
Salem numbers of degree four have periodic expansions,
Théorie des Nombres -- Number Theory,
J.M. de Koninck and C. Levesque,
Walter de Gruyter & Co. Berlin and New York ,
1989  pages 57--64
 [1]  [2]  [3]  [4] 
 
 - 4
 - 
L. Flatto, J.C. Lagarias and B. Poonen,
The zeta function of the beta transformation,
Ergodic Theory Dynamical Systems,
vol 14  1994  237--266
 [1] 
 
 - 5
 - 
A.O. Gelfond,
On a general property of number systems,
Russian,
Izv. Akad. Nauk SSSR Ser. Mat. ,
vol 23 1959 pages 809--814
 [1] 
 
 - 6
 - 
D. Knuth,
The Art of Computer Programming, volume 1: Fundamental Algorithms,
Addison-Wesley  Massachusetts,
1968
 [1] 
 
 - 7
 - 
W. Parry,
On the 
-expansions of real numbers,
Acta Math. Hungar. ,
vol 11 1960 pages 401--416 
 [1]  [2]  [3]  [4]  [5] 
 
 - 8
 - 
A. Rényi,
Representations for real numbers and their ergodic properties,
Acta Math. Hungar.,
vol 8  1957 pages 477-493
 [1] 
 
 - 9
 - 
R. Salem,
Algebraic numbers and Fourier analysis,
D. C. Heath & Co.  Boston,
1963
 [1] 
 
 - 10
 - 
K. Schmidt,
On periodic expansions of Pisot numbers and Salem numbers,
Bull. London Math. Soc. ,
vol 12 1980  pages 269--278
 [1] 
 
 - 11
 - 
B. Solomyak,
Conjugates of beta-numbers and the zero-free domain for a 
class of analytic functions,
Proc. London Math. Soc. (3),
vol 68  1994  pages 477--498
 [1]  
 
  
Contents
 Next:    About this document 
Up: No Title
 Previous:  The expected size