It should be remarked that, thanks to the notion of reducedness, our algorithm gives for every cubic field a canonical equation, which we can call reduced, and which in addition has all the nice properties described in Section 4. In particular the integral basis and decomposition of primes is immediate. One consequence is that, when the cubic number field does not have a power basis, the equation that we will find will not be monic. On the other hand, if there exists a power basis, the reduced equation produced by our algorithm is not necessarily monic. We give a few examples.
Annotation Form Interface

          Your name: 
     E-Mail address: 
 Annotation Subject: 
        Related URL: